Generation of efficient parsers
through direct compilation of
XML Schema grammars

With the widespread adoption of SOAP and Web services, XML-based processing,
and parsing of XML documents in particular, is becoming a performance-critical aspect
of business computing. In such scenarios, XML is often constrained by an XML Schema
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grammar, which can be used during parsing to improve performance. Although
traditional grammar-based parser generation techniques could be applied to the
XML Schema grammar, the expressiveness of XML Schema does not lend itself well to
the generic intermediate representations associated with these approaches. In this
paper we present a method for generating efficient parsers by using the schema

component model itself as the representation of the grammar. We show that the
model supports the full expressive power of the XML Schema, and we present results
demonstrating significant performance improvements over existing parsers.

INTRODUCTION

XML has begun to work its way into the business
computing infrastructure and underlying protocols
such as the Simple Object Access Protocol (SOAP)
and Web services. In the performance-critical setting
of business computing, however, the flexibility of
XML becomes a liability due to the potentially
significant performance penalty.

XML processing is conceptually a multitiered task,
an attribute it inherits from the multiple layers of
specifications that govern its use: XML,"* XML
Narnespaces,3 XML Information Set (Infoset),4 and
XML Schema.’ Traditional XML processor imple-
mentations reflect these specification layers directly.
Bytes, read off the “wire” or from disk, are
converted to some known form (often UTF-16
characters) and tokenized (UTF stands for Universal
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Text Format). Attribute values and end-of-line
sequences are normalized. Namespace declarations
and prefixes are resolved, and the tokens are then
transformed into some representation of the docu-
ment Infoset; at the same time, checking for well-
formedness'*” is performed. The Infoset is optionally
checked against an XML Schema grammar (XML
schema, schema) for validity and rendered to the
user through some interface, such as Simple API for
XML (SAX) or Document Object Model (DOM) (API
stands for application programming interface).
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In practice, these tasks are combined to some extent.
Typically a generic parser handles scanning, XML
normalization, namespaces, and well-formedness
checking, as required by the XML specification.
Validation is then grafted on as a separate process,
operating as a filter on the output of the generic
parser. Because validation is an add-on in such a
design, it has a strictly detrimental effect on parser
performance. Validation is, therefore, typically used
exclusively for debugging, if at all, and is disabled
during production.

Although schema validation is expensive in the
above scenario, there is no fundamental reason why
validation needs to be expensive. Indeed, grammars
have long been used to generate optimized special-
purpose parsers that operate much more efficiently
than their generic counterparts, while performing
validation checking.6 The XML specifications were
designed to enable the compilation of an XML
Schema grammar to a special-purpose parser (see
Section 2.4 in Reference 5).

Techniques that apply standard grammar-based
parser generation to XML Schema grammars have
been used to demonstrate that compilation of
schemas can produce high-performance special-
purpose parsers.7 Traditional parser-generation
schemes are not, however, particularly well-suited
to XML parsing and have difficulty representing
some XML Schema constructs that are not found in
traditional parsing situations. At the same time, the
syntax of XML and the constraints defined in an XML
schema are not sufficiently complex to require the
full power of traditional parser-generation methods.

Previous efforts in this area that built on conven-
tional intermediate representations have, in general,
supported fewer features of XML’ or delivered less
efficient solutions.”

Rather than adapting a conventional intermediate
representation to the forms of XML and XML
Schema, we propose a compilation technique that
deals directly with the abstract schema components
of the XML Schema Recommendation.” By tying the
code-generation scheme directly to the schema
components, we are able to take advantage of the
simple lexical structure of XML and the determinism
assurances built into XML Schema grammars.

The generated validating parser drives the optimized
scanning process. Two complementary optimization
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strategies, specialization and optimistic scanning,
are used to speed scanning and validation. Special-
ization focuses on the use of specialized context-
sensitive scanning primitives that can scan and
validate the input efficiently. Optimistic scanning
speeds the scanning of the common cases, such as
simple data without comments or entity references.
The resulting generated parser is shown to be
significantly faster than some widely available
parsers, both validating and nonvalidating.

In the next section, we describe the challenges
involved in generating parsers through compilation
of XML schemas. Following that, we propose an
architecture for direct schema compilation, high-
lighting the breadth of support for schema features
and the targeted optimizations that minimize the
cost of parsing. Then we provide performance
measurements of sample generated parsers and
compare those to performance measurements of
commonly used parsers. Finally, we describe related
work from the technical literature and conclude with
final comments.

CHALLENGES OF XML SCHEMA COMPILATION
XML Schema, and the specifications on which it
depends, present several challenges to schema-
based parser generation: XML namespaces and the
dynamic typing features of XML Schema complicate
the scanning of markup. As a result, the schema
grammar and the lexical production of XML are not
easily combined with traditional grammar compila-
tion techniques. Additionally, XML Schema provides
support for content models that are difficult to
represent in traditional automaton models, making
the traditional models inefficient as intermediate
representations of the schema.

XML namespaces

Throughout the XML processing stack, markup and
meta-markup (such as namespace declarations and
xsi:type attributes) assert scoped properties and
declarations for the containing element and all of its
attributes, as well as its content. In the case of XML
namespaces and the dynamic typing mechanism
used in XML Schema, this pattern presents some
difficulties for naive parser implementations.

Namespaces qualify XML element and attribute
names by using a namespace-prefix declaration. The
declaration takes the form of a special attribute with
a reserved prefix (xmins) followed by the prefix to
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be declared. The value of this attribute is the
declared namespace. The scope of the namespace
declaration includes the enclosing element, all of the
sibling attributes, and the element’s content. This
arrangement, although natural, presents some diffi-
culties for XML processors.

Beyond the syntactic complexities of the namespace
declaration, the XML Namespaces Recommendation
augments the well-formedness constraints of XML to
forbid the repetition of a qualified attribute regard-
less of its lexical representation in the tag. Thus, in
the examples below, the first my-elt-1 is well-
formed, but my-elt-2 is not, because both attributes
resolve to the same qualified name.

<a:my-elt-1a:my-attr=true” b:my-attr=“false”
xmins:a=*http://www.example.com/a”
xmins:b=“http://www.example.com/b”/>

<a:my-elt-2 a:my-attr=true” b:my-attr=“false”
xmlns:a=*http://www.example.com/a”
xmins:b="http://www.example.com/a”/>

<a:my-elt-la:my-attr=“true”b:my-attr=<false”
xmins:a="http://www.example.com/a”
xmins:b="http://www.example.com/c”/>

During processing, namespace declarations prevent
the qualified names of the element and its attributes
from being conclusively known until the end of the
tag. This means that scanning of qualified names in
XML requires infinite look-ahead to fully resolve
names. In the preceding examples, the second
a:my-elt-1 appears to be the same as the first until
the last attribute is scanned.

The pattern of declaration used in XML namespaces
is typical throughout the XML processing stack. In
the XML layer, for example, the predefined attri-
butes xm1:1ang and xm1:space, which may be used
to indicate natural language and desired white-space
handling, use this pattern. The values of these
attributes, however, do not affect validation, and
therefore do not complicate scanning or validation.

Dynamic typing in XML Schema

XML Schema includes a mechanism for dynamic
typing of instance elements. By using the xsi:type
attribute, an instance element may assert its XML
Schema type. The declared type must be validly
derived from the type that would otherwise have
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been used to validate the element, with respect to
the constraints on type derivation. This declared
type may have a significantly different content
model from the default type that is otherwise
expected.

The syntax of xsi:type is similar to that of
namespace declarations and poses the same kinds of
processing hurdles. In particular, the possibility of
an xsi:type attribute prevents an XML processor
from conclusively determining the type declaration
to use for validation until the entire tag has been
scanned. Furthermore, because the element type
declaration governs the type declarations used to
validate the attributes, the processor cannot con-
clusively determine the types—and therefore the
validity—of the attributes until the entire tag has
been read. In the example below, the element will be
invalid if the dynamic type restricts the attributes to
be of type xsd:integer:

<my-elt-lmy-attr-1=‘one” my-attr-2="“two”
my-attr-3=“three” my-attr-4=<four”
my-attr-5="five”my-attr-6="six”
xsi:type=“six-integer-attributes”
xmlins:xsi=*http://www.w3.0rg
/2001/XMLSchema-instance” />

XML Schema content models

Like the Document Type Definition (DTD) grammar
used in XML, XML Schema can specify an element’s
content model as a regular expression over its
contained element. In contrast to the grammars that
can be specified with an XML DTD, however, XML
Schema supports a wider range of operators in the
composition of content models. In particular, the
arbitrary finite occurrence constraints and xsd:al1l
groups of XML Schema pose challenges to autom-
aton-based approaches to compilation. Arbitrary
finite occurrence constraints can lead to an explo-
sive growth in the number of states for simple
automaton approaches. In the standard implemen-
tation, an element declaration with a maximum
occurrence constraint of 5000 will result in 5000
states corresponding to each possible occurrence in
the range. Models of xsd:all group content are not
represented in any standard regular expression
syntax and require significant augmentation of the
automaton model. If translated directly into a
standard automaton model, xsd:al1 groups result
in an expansion of states that is combinatorial in the
number of members of the group.

PERKINS ET AL.

227



Because the xsd:all compositor is not well repre-
sented in traditional models, much of the previous
work on XML schema compilation has treated
xsd:all groups as a “corner case” (that is, unim-
portant). In practice, however, xsd:al1 groups are
quite important, as the xsd:al11 group is considered
to be a natural translation of a data structure with
named fields, such as a C struct or a Java class,
where the members are identified by name, rather
than by position. In practice, we have seen that XML
schemas for data stored in relational databases often
have a plethora of xsd:al11 groups. These scenarios
are quite common for Web services.

XML character data

In addition to the particular challenges posed by the
various specifications involved in XML parsing and
validation, the layering of the specifications presents
challenges of its own. In particular, the constraints
imposed by an XML schema operate on an abstract
representation of an actual XML instance described
in the Infoset as an abstract tree of information
items.” All data in the Infoset is represented in a
fully expanded form, with entities and character
references expanded, CDATA sections replaced with
their contents, and end-of-line and attribute nor-
malization completed, as required by XML. This
means that the lexical productions and value
constraints used by XML Schema to constrain data
are defined in terms of this abstract form. As a
result, these constraints are typically implemented
in a two-pass method, where the content is first
scanned according to the lexical-level productions of
XML and then normalized and validated against its
constraining type. This procedure is inefficient
because it requires the data to be scanned twice.

ARCHITECTURE FOR DIRECT SCHEMA
COMPILATION

We present now an architecture for direct compila-
tion of XML schemas in which the code for parsing
and validation is generated directly from the schema
components defined by the XML Schema Recom-
mendation. We describe how this approach sim-
plifies support for schema features that do not
translate well to other grammar representations. We
also show that the simplified custom-compilation
model enables a variety of targeted optimizations
that maximize scanning performance without the
complications normally associated with combined
compilation of XML Schema grammars and XML
concrete syntax. In the following sections, we first
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describe the overall design of the compiler and the
generated parser. The algorithms used in the
compilation engine are then presented, followed by
the design of the generated parser.

Design overview

As discussed in the previous section, from a
validation standpoint, the structure of an XML
document constrained by a schema cannot be
decomposed below the tag level. Because meta-
markup, such as namespace and xsi:type declara-
tions, is contained in conceptually unordered
attributes, no conclusive information about the
document can be inferred until the entire tag is read.
Thus, no exchange of information between the
scanner and the validation logic can be made to
refine the scanning of the rest of the tag without
possibly having to back up and correct mistaken
assumptions. As a result, the grammar must not
direct scanning at a granularity any finer than the
tag. Accordingly, the generated validation logic may
be cleanly separated from the scanning infrastruc-
ture at the tag level, without loss of any significant
performance opportunity. Thus, we divide the
generated parser into two logical layers, scanning
and validation.

The validation layer is a generated recursive-descent
parser that drives the scanner by using compiled,
predictive knowledge from the schema. The scan-
ning layer consists of a set of fixed XML primitives
that scan content at the byte level, at the direction of
the validation layer.

The validation logic is produced directly from the
schema component model, using component-spe-
cific code templates for the various components in
the schema. This approach is enabled by a
constraint on valid schemas ensuring that all
content models are deterministic. This constraint is
called the Unique Particle Attribution (UPA) con-
straint, and is defined in Section 4.4 of the
specification as follows™:

A content model must be formed such that during
validation of an element information item
sequence, the particle component contained
directly, indirectly, or implicitly therein with
which to attempt to validate each item in the
sequence in turn can be uniquely determined
without examining the content or attributes of
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that item, and without any information about the
items in the remainder of the sequence.

This constraint ensures that transitions between
particles in the content model are deterministic. The
implications of the constraint are somewhat com-
plex and often misunderstood. We will therefore
briefly consider a few informative examples using
the compact DTD-style syntax for the grammars.
The first example below is legal, because as soon as
the parser encounters the first element (an A, B, or ()
it knows which branch of the disjunction to validate
against, AA, BA, or CA, respectively.

AA | BA | CA

On the other hand, if all three branches begin with
the same symbol, as in the next example, the
content model is not considered deterministic:

AA | AB | AC

This is because after encountering the first element
(an A), the parser does not know which A to validate
against. In the language of the Schema Recommen-
dation, it does not know which particle to assign to
the A element in the instance: the one in the first
branch, AA, the one in the second branch, AB, or the
one in the third branch, AC. Because XML Schema
allows arbitrary annotations to be attached to each
particle in the schema, significant differences may
exist between these apparently identical particles.

Assuming that all three A particles are identical from
the point of view of the schema author, the problem
can be remedied easily be rewriting the illegal
schema grammar into a legal one. The key differ-
ence is that there is only one A particle—so there is
no ambiguity about which particle validates an A in
the instance:

A(A|B|C)

The determinism ensured by the UPA constraint
enables particles to be compiled individually.
Because any particle that validates a particular input
element within a given context is necessarily the
only particle that will do so, the validation code
generated for the particles in a schema can be
composed together without any look-ahead and
without requiring backtracking. This is easily
represented with greedy logic but could equivalently
be represented with non-greedy logic because the
two are necessarily equivalent. In any grammar that
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conforms to the specification, therefore, the name of
the most recently read tag is sufficient to determine
which branch of the program to execute. This allows
code to be generated directly from the schema
components, while maintaining the assurance that it
will be sufficiently general for all unambiguous
schema grammars. Thus, the particles and their
terms form a sufficient basis for validation-logic
compilation. In the next section, the procedure for
generating the validation logic is explained in detail.
Deterministic but ambiguous content models will be
discussed later.

Schema compilation

The compilation procedure takes place in three
stages. The input schema is first read and modeled
in terms of abstract schema components (see
Section 3 in Reference 5). The complete schema is
then augmented with a set of derived (calculated)
components and properties used to drive code
generation. Finally, the schema is traversed, in a
recursive-descent fashion, to generate the validation
code for each component.

In the following subsections we describe the
augmented set of schema components and the
derived properties that supplement the component
model with information needed for compilation.
Then we discuss the process for generating valida-
tion code from our code templates and show the
templates associated with each schema component.
Finally, we provide an example that shows how the
stand-alone templates are composed to generate a
validating parser.

Schema components

To represent and operate on the XML Schema
grammar, we use a publicly available implementa-
tion of the schema components. The schema
components, taken in aggregate, are referred to as
the schema. It is assumed that the schema for any
given grammar is fully resolved before compilation
begins; that is, there are no missing subcomponents,
and no attempt is made to further resolve compo-
nents. The justification of this assumption is
provided by the Schema Recommendation itself.
Figure 1 shows the relevant schema components,
with their compilation annotations in italics, as well
as two special components (synthetic-element and
skip-term, described later).

The schema components have four primary com-
ponent types: element declarations, attribute decla-
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Schema Element-Declaration
type-definition scope
element-declarations nillable

substitution-grp-affiliation
substitution-grp-exclusions
disallowed-substitutions
abstract

type-definition
synthetic-content-model
substitutable-types

attribute-declarations
document-type

Attribute-Declaration Complex-Type-Definition
scope derivation-method
type-definition final

abstract

prohibited-substitutions
base-type-definition
content-type
attribute-uses
attribute-wildcard
prohibited-attributes
required-attributes
simple-base-type

—

Simple-Type-Definition Particle Attribute-Use Wildcard i
facets min-occurs required process-contents
final max-occurs attribute-declaration namespace-constraint
variety term gname-literal synthetic-content-model
base-type-definition emptiable

first-set

follovv-set
Model-Group Synthetic-Element Skip-Term 1
particles element-declaration namespace-constraint
compositor Qname-literal Qname-literals
required-particles

. | Schema component
Figure 1

Schema components

) Synthetic component

rations, complex type definitions, and simple type

definitions. Complex type definitions also reference
a set of helper components: particle, model group,

wildcard, and attribute use.

Complex types may have content that is simple,
complex, or empty. When the content is simple, the
value of the content-type property is a simple-type
definition that defines the content. When the
content is empty, the content type is empty. If the
complex type has complex content, then the
content-type is a particle, which defines a complex
content model. The content model for such a
complex type is defined in terms of the helper
components (particles, model groups, and wild-
cards). Particles and model groups structure the
content model for validating element content, which
is eventually validated by element declarations or
wildcards. The basic unit of the content model is the
particle. See the XML Schema Recommendation:

A particle is a term in the grammar for element
content, consisting of either an element
declaration, a wildcard, or a model group,
together with occurrence constraints. Particles
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contribute to validation as part of complex type
definition validation, when they allow anywhere
from zero to many element information items or
sequences thereof, depending on their contents
and occurrence constraints.

A particle has a pair of occurrence constraints,
min-occurs and max-occurs, and a term. The term
of a particle can be an element declaration, a model
group, or a wildcard. Model groups, in turn,
compose groups of particles, using one of three
composition models (xsd:sequence, xsd:choice,
xsd:al1). These components can be combined
freely, within the constraints of the UPA constraint,
as discussed earlier. Note that in order to facilitate
processing, the XML Schema Recommendation
places extra restrictions on the use of model groups
with the xsd:al1 compositor.

Synthesis of implicit content models

Because of the open-ended composition model of
XML Schema, the schema components as defined by
the specification lack explicit representations of
validation constraints that reference the schema
globally. In particular, the content model for wild-
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cards, element substitution groups, and the content
model for the document itself all make implicit
references to the global element declarations of the
schema without enumerating them. In the compiler,
these implicit validation rules are rendered explicitly
with content models synthesized from the standard
schema components and the global properties of the
schema. These synthetic content models are repre-
sented with the normal schema components, and
with two additional synthetic components. The
definitions for these components are included in
Figure 1.

Document content model. In contrast to a DTD, XML
Schema provides no way to indicate the content
model for the document itself. The validation rule
for the document element is normally taken to be
similar to that of a wildcard, matching any global
element. To represent this, we define a virtual top-
level type for the content of the document. This top-
level type is a complex type called documentType,
and is defined within a private namespace (http://
www.ibm.com/XML/impl/types). Unless otherwise
stipulated, the documentType is assumed to take a
form similar to that of xsd:anyType, but somewhat
more restrictive in that it bears no attributes, forces
strict processing, and does not allow mixed content
(thus emulating the production of an XML docu-
ment, as described in Section 2.1 of the XML
speciﬁcationl’s). In the XML representation of the
schema components, this can be written as:

<xsd:schema targetNamespace=
“http://www.ibm.com/XML/impl/types”
xmlns:xsd=*http://www.w3.0rg/
2001/XMLSchema” >
<xsd:complexType name=*“documentType” >
<xsd:sequence>
<xsd:any/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Element and wildcard content models. Element sub-
stitution groups allow for the substitution of one
named element for another. Any global element
declaration may serve as the head of a substitution
group, and any element with a properly derived type
may declare itself to be substitutable for the head
element.

In a fixed schema, the validation rule for an element
substitution group acts as a choice over the
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name=elmt1 min-occurs=1
synthetic-content-model max-occurs=1
term:
L Model Group

compositor=choice
particles

Particle Particle
min-occurs=]
max-occurs=17
RS

|

|

|

|

| g
| min-occurs=/
} max-occurs=]
| e
|
|
|
|
|
|
|

Synthetic-Element
element-decl=elmt1

Synthetic-Element
element-decl=e/mtN

Figure 2
Element synthetic-content model
I

appropriate element declarations. To represent this
explicitly in the compiler, we augment the element
declaration component with a synthetic-content-
model property that represents the expanded form of
the element declaration (Figure 2). This expanded
form was implicitly part of the original schema
component. The new content model is a choice over
any elements that could transitively appear in the
substitution group headed by this element. In order
to distinguish an element declaration (which is
always considered to be the head of a substitution
group) from the terms of this synthetic choice, we
define a synthetic component called the Synthetic-
Element, which like regular element declarations,
wildcards, and model groups may be the term of any
particle. The Synthetic Element, as opposed to the
regular element declaration, validates only the
declared element and not any of its substitution
group members.

The content model for wildcards is similarly implicit
(Figure 3). The structure of the validation rule for a
wildcard depends on the value of its process-
contents property. When skip processing is stipu-
lated, the processor is required to skip over the
matching element and all of its content without any
validation. When strict processing is stipulated, the
matching element must be validated with one of the
global element declarations in the schema. Lax
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|
|
|
|
|
|
|

Synthetic-Element
element-decl=elmt1

Skip-Term

Wildcard synthetic-content model

‘ Figure 3
I

processing combines the two options, requiring full
validation of known elements, but allowing skip
processing for unknown elements. In all cases, the
matching element must satisfy the namespace
constraint specified on the wildcard component.

In the compiler, the validation rule for a wildcard is
represented with a choice similar to that used for
element substitution groups. This is assigned to the
synthetic-content-model property of the wildcard.
Skip processing is represented with a special
synthetic component, the Skip-Term. If the process-
contents property is strict or lax, the choice contains
a particle with a Synthetic-Element term for each
global element declaration that satisfies the name-
space constraint. If the process-contents property is
skip or lax, the model-group also contains a particle
with a Skip-Term.

Derived properties of schema components

Once the schema is fully resolved, the derived
properties may be computed. These properties form
the basis for the code generation phase that follows.
Because several of the properties represent global
information about the schema, such as the complete
set of global elements matching a wildcard compo-
nent, the derived properties must all be computed
before code generation begins. The properties must
be calculated in order because the calculations of

PERKINS ET AL.

one step are used in subsequent steps. Note that the
calculation procedures implicitly assume that the
schema is valid with respect to all of the constraints
on schema components in the XML Schema
Recommendation.

Substitutable types. The substitutable-types property
of an element declaration defines the set of types
that can appear in the instance document by using
the xsi:type dynamic typing mechanism, instead of
the declared type. The substitutable-types set con-
tains all global types, including the declared type
itself, that possess the following characteristics: they
are not anonymous or abstract; they are transitively
derived from the declared type; and they do not, at
any step of derivation, violate the prohibited-
substitutions properties of the element declaration
and type definition. In the generated parser, the
substitutable-types set is used to validate the value
of any xsi:type attributes that may appear in the
document.

QName-literals. In validating an XML document, a
correspondence is made between literal element and
attribute names and QNames found in the schema.
To make this correspondence, we define a symbol
called the QName-literal. A QName-literal symbol
may represent a specific QName referenced in the
schema, or some unbounded set of QNames not
directly referenced in the schema but indirectly
referenced by a wildcard. Additionally, special
QName-literal symbols are used for the close-tag
and the end-of-file symbols. At the abstract level,
validation constructs are considered to validate sets
of QName-literal symbols in the case of attributes, or
sequences of QName-literal symbols in the case of
content models.

A QName-literal symbol can have one of several
forms, as shown in Figure 4:

* A QName explicitly referenced in the schema is
represented by the known QName-literal symbol,
which is the {URI, local-part} pair.

* An unknown QName in a known namespace is
represented by a namespace-known QName-literal
symbol, with a single property, the URI (Uniform
Resource Identifier).

e QNames with an unknown namespace are repre-
sented by the special singleton unknown QName-
literal symbol, regardless of their “local-part.”

* Close tags, regardless of their name, are all
represented by the special close QName-literal
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symbol. Similarly, the end of file is represented by
the eof QName-literal symbol.

Note that the set of known QName-literal symbols is
considered to be established completely before
compilation begins, and that unknown and name-
space-known QName-literal symbols are not used to
refer to known QNames. Thus, an element wildcard
may validate known, namespace-known, and un-
known QName-literal symbols.

Farticles. Every particle in the schema has three
calculated properties: emptiable, first-set, and
follow-set.° These properties define the relation-
ship between the schema component and the
QName-literal sequence it will validate.

The emptiable property corresponds to the Particle
Emptiable definition is Section 3.9.6 of the XML
Schema Recommendation® and determines whether
the particle can validate the empty QName se-
quence. The emptiable property is used to calculate
the other particle properties described next.

The first-set property of a particle defines the set of
QName-literal symbols that can occur in the first
position of an element QName-literal sequence that
is validated by the particle. The first set is used to
build control-flow logic for the content model; as a
direct result of the UPA constraint, comparison of an
input QName-literal symbol to the calculated
first-set property of a particle immediately
determines whether or not that particle validates the
input sequence. The first-set property is calcu-
lated recursively, in a single pass over the schema.

The follow-set property of a particle defines the set
of QName-literal symbols that can follow a QName-
literal sequence validated by that particle. The
follow-set property is used to drive context-
sensitive tag scanning. After the first-set property
is calculated for every particle, the follow-set
property is calculated in a second pass over the
schema components, using the first-set proper-
ties of adjacent components.

Attribute occurrence constraint validation. For each
complex type we calculate two sets of attribute
QName-literal symbols, required and prohibited.
These sets are used to validate the attribute
occurrence constraints. The required set includes
the attribute QName-literal symbols that are re-
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QName-literal symbols

quired to appear in the input tag. The prohibited set
includes the attribute QName-literal symbols that
are not allowed to appear in the input tag.

The required and prohibited sets are created from
information in the attribute uses of the complex
type. Entries for attribute wildcards are also
included, in the form of known QName-literal
symbols, namespace-known QName-literal sym-
bols, and the unknown QName-literal symbol,
depending on the wildcard’s process-contents value.

Generation of validation logic

The generated parser consists of modules validating
each type in the input schema, including the
synthetic documentType (see “Document content
model” in the subsection “Synthesis of implicit
content models” in the previous section). The
validation logic is produced directly from the
schema component-model representation of each
type. Validation code for simple types is largely
independent of the input schema, and in our
prototype implementation consists mostly of library
code. The simple type validation code is described in
the section on scanning infrastructure later.

For every complex type we define a recursive-
descent parse function that parses all the attributes
and content of the complex type. To validate
element content in a complex type, we also define
the element dispatch function. This function handles
element-specific validation constructs, such as
defaulting and nilability, as well as dynamic typing,
and dispatches a call to the actual type’s parse
function. Together, the type parse functions and
element dispatch functions make up the whole
validation engine.

The main entry point of the generated parser is the
parse function for the documentType. Starting with
the parse function for the documentType, control
passes back and forth between parse and dispatch
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functions, descending through the different types in
the schema. The code for each complex type is
generated using component-specific templates, de-
scribed next.

Component templates

For the purposes of this discussion, we ignore out-
of-band constraints such as ID/IDREF (Section 3.3.1
in Reference 1) and key/keyref/unique (Section
3.3.2 in Reference 5). Although we did design an
implementation for many of these features in order
to prove that they would have little effect on the rest
of parsing and validation, they are not implemented
in our prototype. These constraints are orthogonal
to the content model validation code presented and
would have no impact on them, if implemented, as
well as little noticeable performance impact. We
also do not implement a few XML features such as
DTD-internal-subset support.

The validation logic for complex content is gen-
erated by mapping the various schema components
in the content model to code templates. The
templates, like the components themselves, are
composable. For any component type, there is at
least one generic template that will produce vali-
dation code for that component. In addition, there
may be several optimized templates tailored for
common, simple use cases. Using optimized code
templates for common use cases helps to minimize
the size of the generated code and results in highly
optimized validation logic.

Templates for the content model schema compo-
nents are presented next, in pseudo-C code. In the
templates, compile-time substitutions are indicated
as follows:

® COMPILE[x] marks the insertion of the compiled
code for the schema-component specified by x,
relative to the current schema component.

* 1D[x]represents a constant for the QName-literal x.

® SET[x] represents a constant set for the given
QName-literal set.

e SET_CASE[x] represents a series of switch cases
(all with the same body) for each of the QName-
literal symbols in x.

e [F[x] indicates a conditional section of the
template that is evaluated at compile time.

® READ_TAG[x] is used to mark the insertion of the
appropriate read-tag primitive (described later) for
the QName-literal set x.
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® READ_SIMPLE_CONTENT[x] marks the insertion of
the appropriate read-content function for the
simple type specified by x.

® DISPATCHLx] represents a call to the dispatch
function to validate the type of the element
declaration x.

In our prototype, we have implemented all com-
parisons of QName-literal sets as bit-vector oper-
ations. At compile time, the literal bit vectors are
calculated, and at runtime, the instance literals are
compared against the set in bulk.

Farticle. Particle templates handle occurrence con-
straints. They must also handle emptiability, which
interacts with the min-occurs property. The generic
template is:

int count=0;
Tabel: while (count <max) {
if (ISET[first-set].contains(current_tag))
break Tabel;
COMPILE [term];
count+4+;

}
IF [lemptiable]l {if (count <min) Fail(); }

For an unbounded particle, with
maxOccurs=*unbounded”, there is no upper bound to
check, thus the template may be simplified:

int count=0;
Tabel: while (true) {
if (ISET[first-set].contains(current_tag))
break Tabel;
COMPILE[term];
count++;

}
IF[!'emptiable] { if (count <min) Fail(); }

An optimized template for optional particles (par-
ticles that have maxOccurs=1, and are emptiable) can
be greatly simplified:

if (SET[first-set].contains(current_tag))
COMPILE[Lterm];

The template for fixed-repeat particles (particles that
have minOccurs=maxOccurs and are not emptiable)
is similarly trivial:

int count=0;

while (count <max) {
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COMPILELterm];
count+4+;

The template for trivial particles (particles that have
minOccurs =maxOccurs =1 and are not emptiable) is
simply the code for the term.

Model-Group: xsd:sequence. The generic template
for model groups with compositor xsd:sequence is
just a sequence of substitutions. There is no need for
optimized templates. In the model-group templates,
up to three particles are shown for demonstration. In
cases where more (or fewer) particles may exist,
[...]1is used to represent a continuation of the
pattern for the rest of the particles.

COMPILE[particles.0];
COMPILE[particles.1];
COMPILE[particles.2];
[...]

Model-Group: xsd:choice. The generic template for a
choice is a simple switch statement:

switch (current-tag) {
SET_CASE
[particles.l.first-set]:
COMPILE[particle.1]; break;
SET_CASE
[particles.2.first-set]:
COMPILE[particle.2]; break;
SET_CASE
[particles.3.first-set]:
COMPILE[particle.3]; break;
[...]
default: Fail();

An optimized template for a choice with two
particles simplifies the switch to the more efficient
if-else clause. A choice with only one particle is a
direct substitution of that particle.

Model-Group: xsd:all. All-group templates make use
of a set to check occurrence constraints. The set is
checked at runtime against the set of required
particles. The required-particles set contains an
entry for each particle in the model group that has
min-occurs = = 1. The entries in the set are one-
based indexes into the list of particles. The generic
template is as follows:
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Set s;
while (1) {
switch (current-tag) {
SET_CASE[particles.l.first-set]:
if (Is.add(1)) Fail();
COMPILE[particles.1];
SET_CASE [particles.2.first-set]:
if (Is.add(2)) Fail();
COMPILE[particles.2];
SET_CASE [particles.3.first-set]:
if (Is.add(3)) Fail();
COMPILE[particles.3]1;
[...]
case ID[close]:
break;
default: Fail();

}
if (ISET[required-particles].isSubsetOf(s))

Fail();

An optimized all-groups template with no required-
particles set does not need the final test for the
existence of all required particles. As with choice, an
all-group with exactly one particle is a direct
substitution of that particle. As with sequence, an
all-group with no particles validates the empty
sequence. The template is therefore a no-op.

Element Declaration/Wildcard. Validation code for
element declarations and wildcards are produced by
their synthetic-content models. Synthetic-elements
validate exactly one element. Here, the follow-set
property is the follow-set property of the enclosing
particle:

if (ID[QName-Titeral] !=current-tag) Fail();
DISPATCH[element-declaration];
READ_TAG[follow-set];

The content model for a skip term, which is used by
the synthetic-content-model of skip and lax wild-
cards, repeatedly calls the scanner to scan through
one well-formed element. Here, the first-set and
the follow-set properties are those of the enclosing
particle.

if (ISET[first-set].contains(current_tag))
Fail();

count=l;

while (count>0) {
read_tag_mixed();
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if (ID[close]==current-tag) {
count--;

}else{
count-++;

}
READ_TAG[follow-set];

Complex type. The template for complex types is
composed of a header that handles attributes and
xsi:nil and a body that handles content. The
header template is the same for all complex types:

if (ISET[prohibited-attributes].isDisjointFrom
(current_attributes))
Fail();

if (ISET[required-attributes].isSubsetOf
(current_attributes))
Fail();

if (current_attributes.isPresent(
IDLattribute-uses.1.QName-Titeral]))
COMPILE[attribute-uses.1];
if (current_attributes.isPresent(
IDLattribute-uses.2.QName-Titeral]))
COMPILE[attribute-uses.2];
if (current_attributes.isPresent(
IDLattribute-uses.3.QName-Titeral]))
COMPILE[attribute-uses.37;
[...]
handleNil();

The body template for complex types with complex
content reads the next tag and calls the code to
validate the content-type particle:

READ_TAG[particle.firstSet];

COMPILE[particlel;

if (ID[close] !=current_tag) {
Fail();

}

Note that in the special case of the documentType,
the template is modified to compare the final tag
against EOF rather than CLOSE.

The body template for complex types with simple
content uses simple-base-type, which is the com-
plex type’s nearest ancestor of simple type:

READ_SIMPLE_CONTENT[simple-based-typel;

The body template for complex types with empty
content is simply read-tag-close.
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Template composition example

We now present an example to illustrate the
composition of the component templates. The
generated source code is subject to standard well-
known source-language optimizations, which are
performed by the C-language compiler that is used
to compile the generated parser. Some of these
optimizations have been applied by hand in the
examples below to improve readability. Beyond this
clean-up, the code presented is actual code gener-
ated by the schema compiler.

The example code is generated from the purchase
order schema from the Primer in the XML Schema
Recommendation. The schema fragments used in
the example are given below:

<xsd:complexType name=“PurchaseOrderTYpe”>
<xsd:sequence>
<xsd:element name=“shipTo” type=“USAddress”/>
<xsd:element name="bil1To” type=“USAddress”/>
<xsd:element ref=“comment” minOccurs=“0"/>
<xsd:element name="“items” type="Items”/>
</xsd:sequence>
<xsd:attributename=“orderDate” type=xsd:date”/>

</xsd:complexType>

<xsd:complexType name=“Items”>
<xsd:sequence>
<xsd:element name=“Item” minOccurs="0"
maxOccurs=“unbounded”>

</xsd:element>
</xsd:sequence>
</xsd:complexType>

The PurchaseOrderType example demonstrates
parsing and validation of attributes, required chil-
dren, and optional children. The corresponding
generated code is shown in Figure 5.

The sample presented in Figure 5, while partially
cleaned from its original form, clearly shows its
relation to the templates presented in the previous
section. It shows that the direct compilation method
outlined in this paper is extremely simple to
implement and yet capable of producing nearly
optimal validation logic for all schema constructs.

Ambiguous grammars
The template method outlined in the previous
sections relies on the determinism of valid schemas
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void parse_NONE_PURCHASEORDERTYPE() {

{

if ((! isDisjointFrom(NONE_PURCHASEORDERTYPE_prohibited,
((BitVector)currentAttributeSet))))
FAIL_VALIDATIONC() ;

/* Validating optional attribute 'orderDate'. */
/* Since the attribute is optional, first check that it is there, */
/* then validate the contents. */
if (isPresent(currentAttributeSet, ((int)NONE_ORDERDATE))) f{
validateAttribute_XSD_DATE(NONE_ORDERDATE) ;
} else |
/* if this attribute has a default value, use it */
/* This attr has no default. */
}

/* Handle xsi:nil */
if (isPresent(currentAttributeSet, XSI_NIL)) {
XSD_BOOLEAN nilValue;
validateReportedAttribute_XSD_BOOLEAN(C(&(nilValue)), (XSI_NIL));
if (nilValue) {
FINISH_EMPTY () ;
return;
}
}

/* Element Only Content */
PARSE_THIS_TAG("shipTo", NONE, SHIPTO, NONE_SHIPTO);
if (currentTag != NONE_SHIPTO) FAIL_VALIDATIONC);

{
if (NONE_SHIPTO != currentTag) FAIL_VALIDATIONC);
READ_CONTENT_NONE_USADDRESS_subtypes();
PARSE_THIS_TAG("bil1To", 6, NONE, BILLTO, NONE_BILLTO);

if (NONE_BILLTO != currentTag) FAIL_VALIDATIONC);
READ_CONTENT_NONE_USADDRESS_subtypes();
PARSE_NEXT_TAG() ;
if (! ((currentTag == NONE_COMMENT) || (currentTag == NONE_ITEMS)))
FATL_VALIDATION();
}
if (currentTag == NONE_COMMENT) {
{
if (NONE_COMMENT != currentTag) FAIL_VALIDATION();
READ_CONTENT_XSD_STRING_subtypes();
PARSE_THIS_TAG("items", NONE, ITEMS, NONE_ITEMS);
}
}
{
if (NONE_ITEMS != currentTag) FATL_VALIDATIONC();
READ_CONTENT_NONE_ITEMS_subtypes();
PARSE_NEXT_TAG();
if (currentTag != CLOSE) FATIL_VALIDATIONC();

}
if (CLOSE != currentTag) FAIL_VALIDATIONC();
return;

Figure 5
Code generated from purchase order schema
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to ensure that the implied greedy matching will
correctly validate the input. In rare cases, however,
the determinism ensured by the UPA constraint is
not sufficient. In particular, when there is ambiguity
between different iterations of the same particle, the
constraint is still satisfied, but the naive validation
logic is incorrect. In the example below, the
implicitly greedy algorithm in the preceding sample
code templates fails to validate a sequence of six A
elements:

<xsd:sequence minOccurs=“1” maxOccurs="2">
<xsd:element name="A" minOccurs=“3”
maxQccurs=“4~ />
</xsd:sequence>

The template can be adapted, however, to produce
the correct result by relaxing the constraint and
checking the sequence when it is complete against
the aggregate minimum, maximum, and any interior
prohibited sequences (in this case, a sequence of
five As). This can be done because the ambiguity is
confined to the aggregate occurrence constraint, and
because the validation logic is a direct analogue of
the schema component model. As such, the UPA
constraint ensures that the code which is directly
associated with a particular schema particle should
be used to validate given elements in the document,
and that this can be uniquely determined without
look-ahead.

The problematic case may be generalized to content
models of the following form, where i, j, k, [, and m
represent nonzero occurrence constraints, with 0 <
(-1) and 0 < i, and the group references are used to
denote arbitrary content models, with the reference
to the optional a being non-emptiable.

<xsd:sequence minOccurs=“1" maxOccurs="m” >
<xsd:group ref="a” minOccurs="i”
maxOccurs=<j” />
<xsd:group ref="b” minOccurs=0”
maxOccurs=<k” />
</xsd:sequence>

The generic case can be seen to have a finite, known
aggregate minimum and a known aggregate max-
imum. In addition, within this range there is a finite
and potentially empty set of prohibited interior
sequences. This set is finite even when the aggregate
maximum is unbounded.

The use of xsd:group in two places and variables i,
j, k, I, and m has enabled us to construct this
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generalized example, which includes absolutely
every case that can express ambiguity in a legal
schema. Generating code as describe earlier, check-
ing against the aggregate minimum, maximum, and
any interior prohibited sequences after the sequence
is complete, allows us to successfully generate
templated code for the ambiguous grammar, and
thus for every legal schema defined by XML
Schema.

It should be noted that the ambiguous grammars
described here are a rare corner case encountered
only when finite occurrence constraints are com-
bined with nested content models that end with
optional content. This is in contrast to strictly
ambiguous, but non-problematic cases allowed by
the XML DTD (such as repeated emptiable par-
ticles), which do not have the expressive power to
define these more broadly ambiguous grammars. As
far as we know to date, no one has reported a real-
world example of a content model in this problem-
atic class to the XML Schema Working Group.

Grammar-directed scanning

In keeping with the tag-level separation described
earlier, communication of data from the scanning
layer to the validation layer is made through shared
state representing the most recently read tag, and
the comments, processing instructions, and charac-
ter data preceding that tag. Here, and throughout
this section, we define tag to mean any open or close
tag, including all of its attributes. Communication
from the validation layer to the scanner is made
through direct calls to the scanning primitives,
advancing the state forward through the next tag. At
any point in the validation logic, the scanner is
always positioned immediately after a tag.

The interface between these layers is designed to
maximize the ability of the validation logic to drive
optimized scanning, leveraging the full power of
context sensitivity in the generated code, while
minimizing the amount of generated code produced
for any given schema. Performance in the scanner is
achieved through a number of grammar-based
optimizations. In this section we describe, through
examples, the range of optimizations that are used.

Optimization strategies

The various scanning primitives that underpin the
generated parser address byte-level scanning per-
formance optimizations that can be characterized as
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deriving from two complementary strategies: spe-
cialization and optimistic scanning.

The specialization strategy leverages the grammar
context to make use of specialized scanning for
known content. For example, when the validation
logic directs the scanner to read the next tag, it does
so knowing the set of expected QName-literal
symbols, based on the follow-set property of the
preceding particle. In the case where the follow-set
property contains only the special close QName-
literal symbol, specialized scanning logic is used
that looks for the start of a close tag, followed by the
exact bytes already seen in the corresponding start
tag. This is significantly simpler and more efficient
than the general production for a tag.

One basic example of specialization, native-encoding
validation, is so pervasive in the scanner that it
deserves special mention. Nearly every scanning
activity, from scanning angle brackets and white
space to basic simple content, is carried out in the
native encoding. Thus, when scanning for an angle
bracket or digits in an integer, or comparing against
a known QName-literal symbol, the input bytes are
not transcoded, but rather compared to pre-encoded
literals.

Output transcoding is avoided through the same
mechanism. Rather than converting input bytes for
use by the application, such as in the UTF-16 based
SAX API, pre-encoded output values are used
wherever possible.

The optimistic scanning strategy further leverages
context sensitivity by optimistically favoring the
common, simple case. This strategy is particularly
powerful for simple types, where the common case
is quite simple and where complex lexical constructs
like comments, processing-instructions, and the
ampersand escapes that introduce XML character
and entity references are rare. For example, ignoring
nonstandard usage, the production for an
xsd:integer is simply an optional minus sign
followed by any number of decimal digits, as shown
in the content for integer-element below.

<integer-element>123456</integer-element>
In contrast, because comments and processing-

instructions do not contribute to the validation, and
because escapes are resolved before validation
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occurs, the following is a valid, if perverse,
representation of the same number.

<integer-element>12<!-- -->34<?x ?>5&{54;
</integer-element>

Obviously, scanning the former example is much
simpler and can be written quite efficiently, whereas
scanning the latter involves a great deal of overhead
that will almost never be used in the integer simple
type context. The character entity presents partic-
ular problems because it must be translated and
then validated as a digit, rather than simply ignored.

A pervasive use of optimistic scanning is made in
the handling of unknown names, such as wildcard
elements and prefixes, in the instance. On the
assumption that the parser will be used to parse
many instances that use the same prefixes and
element names, the scanner saves both the input
and output encodings for unknown names in its
name table. The well-formedness of an unknown
name is checked only when it is added to the table.
When reused, it is already known to be well-formed.
This means that the scanner rarely has to resort to
the full production of a well-formed XML name.

Fast scanning primitives

All of the scanning primitives obey a single contract,
defined by the validator-scanner interface. When
invoked, each primitive scans from the current
scanner offset through the end of the next tag,
populating the current shared state.

Read-tag. The basic scanning primitive for non-
simple data is read-tag. Following the strategy of
specialization, the read-tag primitive comes in
several flavors: read-tag, read-tag-one, and read-tag-
close. These correspond to the generic case, and the
common simple cases of exactly one known
QName-literal symbol and exactly the close QName-
literal symbol.

The element-name scanning of the read-tag-one
primitive is a good example of how the strategies of
specialization and optimistic scanning are applied.
Rather than scanning the input bytes for a well-
formed tag name and then comparing against the
expected fixed value, the scanner can use the fixed
value to scan through the tag name. Although not
implemented in the prototype, another common
case that might be optimized easily is read-tag-one-
or-close, reading exactly one known QName-literal
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symbol or the close literal. This primitive is suitably
common, occurring in any scenario where a com-
plex type ends with a repeated or optional element.

Optimistic scanning also comes into play when
namespace-qualified tags are read. The scanner first
tries to compare the input bytes against the
unprefixed name, assuming that the appropriate
namespace has been defaulted. In the case where it
has not, this comparison fails very quickly, and the
check for a prefix can proceed. As with all names,
the prefix need not be checked for well-formedness,
and thus the scanner can simply scan ahead for the
expected colon. Once the colon is encountered, the
scanner can then retry the literal name comparison
as before.

Note that all of the operations required to scan the
tag name make use of basic byte-scanning primitives
like strchr and strcmp. Because these operations
are invariably much faster than table-driven scan-
ning on most architectures, read-tag-one can be seen
to be significantly faster than generic nonvalidating
parsing allows.

Simple-content scanning. Simple-content scanning is
handled by a library of simple-type validators. Each
validator is specialized to scan an individual built-in
simple type or a related set of simple types. As with
the read-tag primitives, all of the simple-type
scanners scan forward through the next tag. In the
case of simple content, this tag is always a close tag,
which is scanned with the same mechanism as read-
tag-close.

Simple content represents a very special case of XML
character data. For most types, it is a safe guess that
the data will not contain comments, processing-
instructions, or even entity references, as in the
<integer-element> example earlier. For this rea-
son, optimistic scanning can greatly improve simple-
content scanning. To facilitate optimistic scanning,
simple-type validators employ a uniform approach
to optimistic scanning and fallback. Each scanner
implements a scanOptimistic and a validate
routine. The optimistic routine scans through the
bytes, matching against the optimistic production.
When a byte is encountered that does not fit the
optimistic production, the content is rescanned,
normalized, and validated with the validate
routine.
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The optimistic routine is called by a standard, boiler-
plate read-type routine. When the optimistic routine
is completed successfully, the main read-type
routine looks ahead two characters for the expected
close tag and reads it if it is found. If the close tag is
not found, or if the optimistic routine is not
completed successfully, read-tag-close is used to
scan from the original start through the end of the
tag. The resulting character data section is then
collated according to its white-space facet and
validated with the validate routine. The code for an
example read-type routine is shown below:

void readType() {
final int of fset=o0ffset ();
if (scanOptimistic() == 0K &&
peekChar (0) == "<’ &&
peekChar (1) =="/"){
incrO0ffset (2);
finishClose ();
}else{
setOffset (offset); /* back up */
readTagClose (MIXED, COLLAPSE);
validate ();
}

checkFacets ();

Optimistic scanners may choose to ignore a wide
variety of rare constructs, from comments and
processing-instructions, to type-specific issues like
leading zeros. The type definitions themselves''
provide some good initial guidelines for what
normal simple data looks like. In addition to the
lexical form, the recommendation also specifies a
canonical lexical representation, which is a limita-
tion of the general lexical representation, such that
each value in the value space has exactly one lexical
representation. For many types, the canonical
representation provides suitable guidance for an
optimistic scanner. For simple content values that
conform to the optimistic form, the optimistic
scanner is clearly much more efficient than the
generic alternative, which has to check for leading
or trailing white space, comments, and other
content that does not often appear in simple type
content.

Even user-defined simple types, which are defined
in the schema, can benefit from this type of
optimistic processing. In schemas, most user-
defined simple types are merely versions of the
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built-in simple types with a set of facets applied.
Thus, scanning functions like those described can be
called for the inherited built-in simple type, and then
the facets applied after parsing and validation. This
requires storing the value, but that is normally
required anyway for reporting in an API.

Attribute scanning and validation. Attributes are
naturally unordered, and their scanning is compli-
cated by the look-ahead issues described earlier:
XML namespaces, dynamic typing, and so forth. As
such, attribute scanning cannot benefit from the
same aggressive optimizations as element-name
scanning. Grammar knowledge can, however, be
used to optimize the evaluation of attribute occur-
rence constraints. In particular, the set of known
QName-literal symbols is used to optimize set
operations, such as subset-of and is-disjoint-from,
by representing attribute sets as bit vectors with an
entry for each known attribute QName-literal
symbol.

PERFORMANCE ANALYSIS

We developed a compiler for generating a schema-
validating XML parser by using the compilation
techniques outlined in this paper. Whereas care was
taken to include all features that might have a
serious impact on performance and design, such as
namespaces, dynamic typing, substitution-groups,
simple type validation and all-groups, not all
schema features were implemented. In particular,
identity constraints (key/keyref/unique) were not
implemented, and optimized scanners for many
simple types were not implemented. As explained
earlier, these would have had at most a negligible
impact on performance and complexity if imple-
mented.

Basic performance tests were run comparing the
compiled parser against two standard open-source
parsers, Xerces 2.6'% and Expat 1.95.8." Xerces
provides a good baseline for performance because it
is broadly known, widely available, and widely used
for schema validation. We measured Xerces parsing
speed in both validating and nonvalidating modes.
Expat is generally considered to be a fast XML parser
implementation although it does not perform
schema validation. In order to manage the overhead
of populating an API, both the compiled parser and
Xerces render the data as the same SAX-like events,
in which all data must be encoded in UTF-16. Expat
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supports a SAX-like interface as well, except the data
is not transcoded.

The tests reported here were run on an IBM eServer*
xSeries* Model 235 with a 3.2 GHz Intel Xeon**
processor, and 2 GB of main memory, using Micro-
soft Windows Server** 2003 Service Pack 1. Our
parsers were compiled with Microsoft 32-bit
C/C++ Optimizing Compiler Version 13.10.3077. All
of the parsers were tested on a selection of schema
and instance pairs from the Sarvega XML Validation
Benchmark'* and on 1-KB, 8-KB, and 64-KB
instances of the purchase-order schema from the
XML Schema Part 0: Primer."” All tested instances
were UTF-8 encoded.

Table 1 shows the test cases and numerical results,
whereas Figure 6 shows in bar-graph form a
performance comparison between the four XML
parsers. The performance is measured in MB/
GHz*Sec which represents the throughput in meg-
abytes per second on a 1-GHz processor machine.
For 64-KB purchase-order documents, test case 6,
the compiled parser is 8.8 times faster than
validating Xerces, and nearly four times faster than
the non-validating Xerces WFC. The results vary
little with document size. Similarly, the compiled
parser validates 64-KB purchase-order documents
1.6 times faster than Expat checks the same docu-
ments for well-formedness.

RELATED WORK

There have been many different efforts directed at
XML parsing performance, including early work into
XML formalisms (Murata et al.,16 Lowe et al.S). One
theme of these efforts has been to produce varia-
tions of deterministic finite automata (DFA), ex-
tended in different ways to accommodate the
difficulties of XML and XML Schema that we have
discussed.

Chiu and Lu” extend DFAs to nondeterministic
generalized automata and describe a technique for
translating these into deterministic generalized
automata, from which a parser can be generated.
These parsers operate on a byte level, performing
well-formedness checking and validation concur-
rently, as we do, thus speeding up the parser.
Unfortunately, construction of deterministic gener-
alized automata from nondeterministic generalized
automata can cause a multiplicative blowup in the
number of states. In general, this solution subsets
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Figure 6
Comparing performance results for four XML parsers

the XML specification and XML Schema Recom-
mendation in many important ways, excluding
many commonly used features.

For van Engelen9 and Reuter and Luttenberger,17 the
limitations of the generalized automata technique
led to the use of a two-level approach. Van Engelen9
used a lower-level FLEX scanner to drive a DFA
validation layer. Although the construction of the
validation DFA resembles our templated validation
code, the separation of the scanning and validating
layers prevents scanning optimizations such as
using memcmp on strings known at compile time and
specialized type validators. Van Engelen9 handles
more of the XML specifications than Chiu and Lu’

but has to run a FLEX dispatch loop for every input
character.

Reuter and Luttenberger17 extend deterministic
finite automata with cardinality constraints on state
transitions that map naturally to the encoding of
occurrence constraints. Unfortunately, the CCA does
not perform well-formedness checking but runs as a
separate layer on top of a separate SAX parser, with
the associated performance penalty.

A novel approach to speeding XML parsing is
described in Takase et al.'® The technique obviates
the need for compilation but rather relies on parsing
a large number of similar XML documents. As
documents are read, they are recorded in a DFA,
with subsequent documents being compared against
the DFA, rather than parsed directly. Where the
documents match, cached parsing events are re-
turned. Where the documents differ, the new
document is parsed to create new parsing events.
This technique relies on byte-level handling of XML
instance documents, enabling the types of optimi-
zations described in this paper. However, if the
instance documents being compared are semanti-
cally identical but not byte-for-byte identical, then
spurious parsing will be performed. Furthermore,
many of the strings that are truly constant from
document to document are declared statically in the
schema. In a scenario such as any standard Web
service, where the input is constrained by a schema,
the overhead in complexity required to store and
identify these strings dynamically might be much

Table 1 Test cases and performance results for four XML parsers

Throughput (MB/Process or GHz*Sec)
Test case Xerces-SAX Expat Compiled

ID Schema Filename Instance Size (bytes) WFC Val WFC Val

1 po (on 1kpo.xml) 990 4.41 2.65 10.33 16.12
2 MI_AUS_RESPONSE2_1 1,572 3.21 2.98 8.87 17.00
3 po (on 8kpo.xml) 8,062 6.79 3.01 15.14 24.73
4 bibteXML 8,609 8.28 5.58 17.66 26.25
5 MI_AUS_REQUEST2_1 9,429 4.06 3.16 10.42 17.79
6 po (on 64kpo.xml) 63,754 6.88 3.02 16.13 26.58
7 periodic_table 116,506 6.03 3.99 15.68 23.47
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greater than simply compiling them from the
schema.

Other attempts to boost performance of XML parsing
have focused on changing the form of the XML, such
as the various proposals for binary XML forms.
Although all of our approaches could be used to
validate a binary XML stream, binary efforts
inherently lose some of the benefits and flexibility of
XML, provide limited speedups, and can be detri-
mental to interoperability. With speedups as large as
we have seen on standard XML streams, it is not
clear that the potential performance improvement of
binary XML forms justifies the potential cost in
interoperability and standardization, the core
strength of XML. For a thorough analysis of binary
solutions, see Bayardo et al”

CONCLUSION

In this paper we have demonstrated a technique for
generating XML parsers in which the compilation of
XML Schema grammars starts with the abstract-
schema-component model defined in the XML
Schema Recommendation. This allows us to benefit
from the determinism built into XML Schema, which
is inherently reflected in the schema components
and results in a simplified compilation engine.
Furthermore, this method enables the use of
specialized, grammar-sensitive primitives and other
forms of specialized and optimistic validation that
significantly increase parsing performance without
the need for large tables or significant code
generation.

The direct schema compilation method allows for
simpler code generation than traditional automaton-
based models. The simpler model is better suited to
the structure and challenges of XML parsing and
validation and supports the full expressiveness of
XML Schema content models. This includes use of
namespaces and dynamic typing, large occurrence
constraints, and arbitrary compositions of XML
Schema content models.

These features are supported without an explosion
in either compile-time states or runtime code size.

Performance of the generated parsers is greatly
improved over traditional, interpretive validators.
Further, the generated parsers are shown to be
significantly faster than even high-performance non-
validating parsers.
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