
(12) United States Patent
Boag et al.

US009292267B2

(10) Patent No.: US 9,292,267 B2
(45) Date of Patent: Mar. 22, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

COMPLING NESTED RELATIONAL
ALGEBRAS WITH MULTIPLE
INTERMEDIATE REPRESENTATIONS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Scott Boag, Woburn, MA (US); Moshe
M. E. Matsa, Cambridge, MA (US);
Kristoffer H. Rose, Poughkeepsie, NY
(US); Naoto Sato, Kawasaki (JP);
Lionel A. S. Villard, Yorktown Heights,
NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/317,314

Filed: Jun. 27, 2014

Prior Publication Data

US 2015/O378.693 A1 Dec. 31, 2015

Int. C.
G06F 9/45 (2006.01)
U.S. C.
CPC .. G06F 8/41 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,298,342 B 1 * 10/2001 Graefe et al. 707,602
6,618,719 B1* 9/2003 Andrei

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101923472 A 12/2010
EP O537257 B1 12/1999
WO 2007061784 A2 5/2007

OTHER PUBLICATIONS

Ravindra et al. An Intermediate Algebra for Optimizing RDF Graph
Pattern Matching on MapReduce, pp. 46-61, 2011.*

(Continued)

Primary Examiner — Isaac T Tecklu
(74) Attorney, Agent, or Firm — Mercedes Hobson;
Hoffman Warnick LLC

(57) ABSTRACT

Aspects of the present invention provide a solution for com
piling data. In an embodiment, an input query is received in a
first language. The input query is translated to a nested rela
tional algebra (NRA) in the form of a first intermediate rep
resentation (IR), wherein the first IR comprises a high-level
functional language including algebraic operators. A set of
algorithms of the algebraic operators is implemented to com
pile at least some of the first IR into a second IR, wherein the
second IR comprises a data-flow language. At least one of the
first IR and the second IR is compiled into a low-level code.

16 Claims, 2 Drawing Sheets

PROCESSING
COMPONENT

106

FO
COMPONENT

114

COMPUTING DEVICE 104

MEMORY 110

COMPLER PROGRAM 140
INPUT QUERY MODULE

142

RTRANSLATION

MODULE 144

R2 COMPLERMODULE
146

LOWLEVELCODE

COMPILERMODULE 148

STORAGESYSTEM 118

US 9,292,267 B2
Page 2

(56)

8,990,827
9,158,816

2004/0243799
2007,026.0578
2008, OO82514
2008.O256O26
2009.0024622
2010.0114885
2011/01731.84
2011/02891.18
2013,009 1507
2013/O138473
2013, O1391.64

References Cited

U.S. PATENT DOCUMENTS

3/2015
10, 2015
12, 2004
11/2007
4, 2008

10, 2008
1/2009
5, 2010
T/2011

11, 2011
4, 2013
5, 2013
5, 2013

Wu et al. T18, 104
Schindlauer GO6F 17,30929
Hacigumus et al. T13,150
Ghosh 707/2
Khorlin et al. 707/4
Hays 707/2
Chkodrov et al. 707/6
Bowers et al. 707,736
Kelshikar et al. 707/722
Chen et al. 707/8O3
Wu et al. 718, 104
Balko et al. 705/7.27
Balko T18, 102

OTHER PUBLICATIONS

Bednarek, D.; “Effective Datalog-like representation of procedural
programs'; Department of Software Engineering, Charles University
Prague; DBLP Conference Proceedings, ITAT, pp. 9-16; 2012.
SPI DST et al.; "Compiling Customized Executable Representations
and Interpreters': An IP.com Prior Art Database Technical Disclo
sure: http://ip.com/IPCOM/000148098D; Mar. 28, 2007.
SPIDST et al.; "A Compiler for a Functional Programming System':
An IP.com Prior Art Database Technical Disclosure; http://ip.com/
IPCOM/000150905D; Apr. 19, 2007.
SPI DST et al.: “ORBIT: An Optimizing Compiler for Scheme'. An
IP.com Prior Art Database Technical Disclosure; http://ip.com/
IPCOM/000128722D; Sep. 16, 2005.

* cited by examiner

US 9,292,267 B2 Sheet 1 of 2 Mar. 22, 2016 U.S. Patent

(HClOO TIGHLACHT-AAOTI ??T F? ?ITIQOIOIN NOIJLWTTSNIVRIJL IRII II ARHOIAGHIAN I 1 IANCHALSAS (HOVAHO,LS 8?T ?ITIQOIOLA RICHTIIJINOO

FTT JLNCHNOd IAJOO O/I

CHTÍTOIOIN RIGHTI, IWOO ZRII

J?T JLNOHNOdIIANOO 5) NISSCHOORIAI

(HTIQCIOJN ARISITÒ L'IldNI ?Ž? INVRIÐOYHOEI HEITIGHINOO

FÛT GIOLAGICI DNI LI JINOO Z?T WEILSAS RIGILITAINOO

I º In?IAI

US 9,292,267 B2 Sheet 2 of 2 Mar. 22, 2016 U.S. Patent

(HOLOO TITHASHTI -AAOTI OL (HTI) HINOO ZRII OL (HTI, IVANOO IRII OL OHJLWTSNVRIJL ARIGIQÒ JL[ld?NI (HGILAORHdH

z 9.InÃ¡H

US 9,292,267 B2
1.

COMPLING NESTED RELATIONAL
ALGEBRAS WITH MULTIPLE

INTERMEDIATE REPRESENTATIONS

STATEMENT REGARDING PRIOR
DISCLOSURE BY THE INVENTOR OR A JOINT

INVENTOR

The following disclosure is submitted under 35 U.S.C.
102(b)(1)(a): DISCLOSURE: “IBM Websphere DataPower
firmware release 6.0.0 available to the public on Jun. 28,
2013.

TECHNICAL FIELD

The subject matter of this invention relates generally to
Software compilers. More specifically, aspects of the present
invention provide a solution for improved compiling of input
queries using Intermediate Representations (IRS).

BACKGROUND

Relational Algebras are commonly utilized for optimizing
queries, such as database queries. Nested Relational Algebras
(NRAs) are a particular type of extension which are often
utilized for compiling or optimizing nested data, such as
XML. Previous embodiments have translated input queries
into an NRA to be compiled into a low-level code. However,
optimization of the compiled result has been limited.

In one previous attempt to further optimize compilations,
TXE compiled queries without the use of NRAS, such that no
traditional Algebraic optimizations occurred. In another pre
vious attempt, Zorba, an open source solution, used no NRAS
and instead implemented a rudimentary set non-NRA con
struct matching method to attempt to recognize Joins. Saxon
also utilized no NRA. Galax utilized NRAs but with no fur
ther optimizations.

SUMMARY

In general, aspects of the present invention provide a solu
tion for compiling data. In an embodiment, an input query is
provided in a first language. The input query is translated to a
nested relational algebra (NRA) in the form of a first inter
mediate representation (IR), wherein the first IR comprises a
high-level functional language including algebraic operators.
A set of algorithms of the algebraic operators is implemented
to compile at least some of the first IR into a second IR.
wherein the second IR comprises a data-flow language. At
least one of the first IR and the second IR is compiled into a
low-level code.
A first aspect of the invention provides a method for com

piling data, the method comprising: receiving an input query
in a first language; translating the input query to a nested
relational algebra (NRA) in the form of a first intermediate
representation (IR), wherein the first IR comprises a high
level functional language including algebraic operators;
implementing a set of algorithms of the algebraic operators to
compile at least some of the first IR into a second IR, wherein
the second IR comprises a data-flow language; and compiling
at least one of the first IR and the second IR, into a low-level
code.
A second aspect of the invention provides a system for

compiling data, comprising at least one computer device that
performs a method, comprising: receiving an input query in a
first language; translating the input query to a nested rela
tional algebra (NRA) in the form of a first intermediate rep

10

15

25

30

35

40

45

50

55

60

65

2
resentation (IR), wherein the first IR comprises a high-level
functional language including algebraic operators; imple
menting a set of algorithms of the algebraic operators to
compile at least some of the first IR into a second IR, wherein
the second IR comprises a data-flow language; and compiling
at least one of the first IR and the second IR, into a low-level
code.
A third aspect of the invention provides a computer pro

gram product embodied in a computer readable medium for
compiling data, which, when executed, performs a method
comprising: receiving an input query in a first language;
translating the input query to a nested relational algebra
(NRA) in the form of a first intermediate representation (IR),
wherein the first IR comprises a high-level functional lan
guage including algebraic operators; implementing a set of
algorithms of the algebraic operators to compile at least some
of the first IR into a second IR, wherein the second IR com
prises a data-flow language; and compiling at least one of the
first IR and the second IR, into a low-level code.
A fourth aspect of the present invention provides a method

for deploying an application for compiling data, comprising:
receive a computer infrastructure being operable to: provide
an input query in a first language; translate the input query to
a nested relational algebra (NRA) in the form of a first inter
mediate representation (IR), wherein the first IR comprises a
high-level functional language including algebraic operators;
implement a set of algorithms of the algebraic operators to
compile at least some of the first IR into a second IR, wherein
the second IR comprises a data-flow language; and compile at
least one of the first IR and the second IR, into a low-level
code.

Still yet, any of the components of the present invention
could be deployed, managed, serviced, etc., by a service
provider who offers to implement passive monitoring in a
computer system.

Embodiments of the present invention also provide related
systems, methods and/or program products.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 shows an illustrative computer system according to
embodiments of the present invention.

FIG. 2 shows an example flow diagram according to
embodiments of the invention.
The drawings are not necessarily to scale. The drawings are

merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DETAILED DESCRIPTION

Current methods of compiling data for optimizing database
queries utilize Nested Relational Algebras (NRAs) and the
input queries translated to NRAS are then optimized. How
ever, the optimizations of NRAS are only one component of a
whole language, and optimizations that target the general
language alone are not practical for algebraic form optimiza
tions. Embodiments of the current invention overcome pre
vious optimizations of compiled queries by utilizing compiler
Intermediate Representations (IRs).

US 9,292,267 B2
3

As indicated above, aspects of the present invention pro
vide a solution for compiling data. In an embodiment, an
input query is provided in a first language. The input query is
translated to a nested relational algebra (NRA) in the form of
a first intermediate representation (IR), wherein the first IR
comprises a high-level functional language including alge
braic operators. A set of algorithms of the algebraic operators
is implemented to compile at least some of the first IR into a
second IR, wherein the second IR comprises a data-flow
language. At least one of the first IR and the second IR is
compiled into a low-level code.

Turning to the drawings, FIG. 1 shows an illustrative envi
ronment 100 for compiling data. To this extent, environment
100 includes a computer system 102 that can perform a pro
cess described herein in order to compile data. In particular,
computer system 102 is shown including a computing device
104 that includes a compiler program 140, which makes
computing device 104 operable to compile data by perform
ing processes described herein.

Computing device 104 is shown including a processing
component 106 (e.g., one or more processors), a memory 110.
a storage system 118 (e.g., a storage hierarchy) in communi
cation with computing device 104, an input/output (I/O) com
ponent 114 (e.g., one or more I/O interfaces and/or devices),
and a communications pathway 112. In general, processing
component 106 executes program code. Such as compiler
program 140, which is at least partially fixed in memory 110.
To this extent, processing component 106 may comprise a
single processing unit, or be distributed across one or more
processing units in one or more locations.
Memory 110 also can include local memory, employed

during actual execution of the program code, in communica
tion with bulk storage (storage 118), and/or cache memories
(not shown) which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage 118 during execution. As
Such, memory 110 may comprise any known type of tempo
rary or permanent data storage media, including magnetic
media, optical media, random access memory (RAM), read
only memory (ROM), a data cache, a data object, etc. More
over, similar to processing component 106, memory 110 may
reside at a single physical location, comprising one or more
types of data storage, or be distributed across a plurality of
physical systems in various forms.

While executing program code, processing component 106
can process data, which can result in reading and/or writing
transformed data from/to memory 110 and/or I/O component
114 for further processing. Pathway 112 provides a director
indirect communications link between each of the compo
nents in computer system 102. I/O component 114 can com
prise one or more human I/O devices, which enable a human
user 120 to interact with computer system 102 and/or one or
more communications devices to enable a system user 120 to
communicate with computer system 102 using any type of
communications link.

To this extent, compiler program 140 can manage a set of
interfaces (e.g., graphical user interface(s), application pro
gram interface, and/or the like) that enable human and/or
system users 120 to interact with compiler program 140.
Users 120 could include system administrators who want to
compile data in a plurality of modes, among others. Further,
compiler program 140 can manage (e.g., store, retrieve, cre
ate, manipulate, organize, present, etc.) the data in Storage
system 118 using any solution.

In any event, computer system 102 can comprise one or
more computing devices 104 (e.g., general purpose comput
ing articles of manufacture) capable of executing program

5

10

15

25

30

35

40

45

50

55

60

65

4
code, such as compiler program 140, installed thereon. As
used herein, it is understood that “program code” means any
collection of instructions, in any language, code or notation,
that cause a computing device having an information process
ing capability to perform a particular action either directly or
after any combination of the following: (a) conversion to
another language, code or notation; (b) reproduction in a
different material form; and/or (c) decompression. To this
extent, compiler program 140 can be embodied as any com
bination of system Software and/or application Software. In
any event, the technical effect of computer system 102 is to
provide processing instructions to computing device 104 in
order to compile data.

Further, compiler program 140 can be implemented using
a set of modules 142-148. In this case, a module 142-148 can
enable computer system 102 to perform a set of tasks used by
compiler program 140, and can be separately developed and/
or implemented apart from other portions of compiler pro
gram 140. As used herein, the term “component’ means any
configuration of hardware, with or without software, which
implements the functionality described in conjunction there
with using any solution, while the term “module” means
program code that enables a computer system 102 to imple
ment the actions described in conjunction therewith using any
solution. When fixed in a memory 110 of a computer system
102 that includes a processing component 106, a module is a
Substantial portion of a component that implements the
actions. Regardless, it is understood that two or more com
ponents, modules, and/or systems may share somefall of their
respective hardware and/or software. Further, it is understood
that some of the functionality discussed herein may not be
implemented or additional functionality may be included as
part of computer system 102.
When computer system 102 comprises multiple comput

ing devices 104, each computing device 104 can have only a
portion of compiler program 140 fixed thereon (e.g., one or
more modules 142-148). However, it is understood that com
puter system 102 and compiler program 140 are only repre
sentative of various possible equivalent computer systems
that may perform a process described herein. To this extent, in
other embodiments, the functionality provided by computer
system 102 and compiler program 140 can beat least partially
implemented by one or more computing devices that include
any combination of general and/or specific purpose hardware
with or without program code. In each embodiment, the hard
ware and program code, if included, can be created using
Standard engineering and programming techniques, respec
tively.

Regardless, when computer system 102 includes multiple
computing devices 104, the computing devices can commu
nicate over any type of communications link. Further, while
performing a process described herein, computer system 102
can communicate with one or more other computer systems
using any type of communications link. In either case, the
communications link can comprise any combination of vari
ous types of wired and/or wireless links; comprise any com
bination of one or more types of networks; and/or utilize any
combination of various types of transmission techniques and
protocols.
As discussed herein, compiler program 140 enables com

puter system 102 to compile data. To this extent, compiler
program 140 is shown including an input query module 142,
an IR1 translation module 144, an IR2 compiler module 146,
and a low-level code compiler module 148.

Turning now to FIG. 2, an example flow diagram according
to embodiments of the invention is shown. In one embodi
ment, a method 200 is disclosed. As illustrated, in S1, an input

US 9,292,267 B2
5

query is provided in a first language, for instance using input
query module 142 (FIG. 1), as executed by computer system
102 (FIG. 1). In some embodiments, the first language can
include SQL, XQuery, JSONiq, XSLT, or other known or
later developed languages used for input queries, including
database queries. In some embodiments, generally any gen
eral functional language with query operations can be utilized
for the first language. Further, it should be understood that the
input query can include a program that may include just a
query, as in SQL, or it could refer to the whole of a program
Such as an XQuery query.

In S2, IR1 translation module 144 (FIG. 1), as executed by
computer system 102 (FIG. 1), translates the input query to a
nested relational algebra (NRA) in the form of a first Inter
mediate Representation (IR). In embodiments, the first IR
comprises a high-level functional language with algebraic
operators. This can allow for the separation of functional
operations and sequence, or algebraic, operations. For
instance, the first IR can be optimized by utilizing a set of
functional optimizations on a set of non-algebra portions of
the query. In such an instance, the first IR can be further
optimized by utilizing a set of NRA optimizations on a set of
algebra portions of the query. Previous attempts have grouped
these separate optimizations, resulting in one or the other
being efficiently optimized, but not both. In embodiments, the
translation to the first IR is run long enough to separately
optimize these two components before moving on to the next
step.

In S3, IR2 compiler module 146 (FIG. 1), as executed by
computer system 102 (FIG. 1), implements a set of algo
rithms of the algebraic operators to compile at least Some of
the first IR into a second IR. In embodiments, the second IR
comprises a data-flow language. At least a portion of the first
IR is compiled into the second IR. For example, the second IR
can be optimized by utilizing a set of data-flow optimizations.
In some embodiments, the second IR can be further optimized
by utilizing a set of specific optimizations that target the part
of the second IR that was compiled from a set of the algebraic
operators of the first IR. That is, the second IR can be sepa
rately optimized in order to create data-flow optimizations
and specific optimizations based on the algebraic portions
optimized in the first IR. The second IR can be considered a
hybrid language, utilizing functional data-flow language in
conjunction with lower-level extensions for compiling NRA
operators, and is unique to embodiments of the present inven
tion. The second IR can include hash tables for efficiently
implementing joins. In some embodiments, all of the first IR
is compiled into the second IR.
By separating the first IR and the second IR, as well as

utilizing separate optimizations for algebraic and non-alge
braic portions, significant advantages have become evident.
In practice, many optimizations or implementations of func
tions fit more naturally in either the first IR or the second IR.
Due to this advantage combined with the separate algebraic
and non-algebraic optimizations described above, the com
piling can be easier to implement than previous attempts that
did not allow for multiple IRs in certain embodiments of the
invention, much less separate optimization of both the first IR
and the second IR. For instance, NRAS inside of general
functional programming languages can be better optimized
by allowing for multiple IRs, or multiple optimizations within
multiple IRs, and combinations thereof.

In previous attempts to optimize queries, for instance que
ries in DB2 or Oracle, queries could be very slow and time
consuming, as well as requiring higher amounts of memory
and reducing runtime performance. For instance, a query for
all employees whose names begin with A-L and that were in

10

15

25

30

35

40

45

50

55

60

65

6
a particular region would result in a search of every single
employee to find the names, and every single employee in a
particular region. By optimizing and compiling according to
embodiments of the current invention, the search could be
limited by searching both of these at the same time without a
separate search of each employee for each parameter. As
Such, advantages of embodiments include better runtime per
formance, less memory use, and thus a better compilation
time and quicker time-to-market for Such compilations.
These advantages exceed those in the prior art due to the
combination of multiple IRS and the advantages of utilizing
algebraic and non-algebraic specific optimizations in both the
first IR and the second IR.

In S4, low-level code compiler module 148 (FIG. 1), as
executed by computer system 102 (FIG. 1), compiles at least
one of the first IR and the second IR into a low-level code. As
described above, if all of the first IR is compiled to the second
IR, only the second IR needs to be compiled into low-level
code. However, if only a portion of the first IR is compiled
into the second IR, some of the first IRand some of the second
IR may be compiled into a low-level code. In any case, it
should be understood that low-level code can include, but is
not limited to, assembly code, virtual machine (VM) code,
and virtual machine code instructions. In some embodiments,
the low-level code can include x86 instructions (assembly
code), Java bytecodes (VM code), other specific higher-level
VM code instructions for any known or later developed VMs.
and POWER instructions.

While shown and described herein as a method and system
for compiling data using multiple IRS, it is understood that
aspects of the invention further provide various alternative
embodiments. For example, in one embodiment, the inven
tion provides a computer program fixed in at least one com
puter-readable medium, which when executed, enables a
computer system to compile data. To this extent, the com
puter-readable medium includes program code. Such as com
piler program 140 (FIG. 1), which implements some or all of
a process described herein. It is understood that the term
“computer-readable medium' comprises one or more of any
type of tangible medium of expression, now known or later
developed, from which a copy of the program code can be
perceived, reproduced, or otherwise communicated by a com
puting device. For example, the computer-readable medium
can comprise: one or more portable storage articles of manu
facture; one or more memory/storage components of a com
puting device; and/or the like.

In another embodiment, the invention provides a method of
providing a copy of program code. Such as compiler program
140 (FIG. 1), which implements some or all of a process
described herein. In this case, a computer system can process
a copy of program code that implements some or all of a
process described herein to generate and transmit, for recep
tion at a second, distinct location, a set of data signals that has
one or more of its characteristics set and/or changed in Such a
manner as to encode a copy of the program code in the set of
data signals. Similarly, an embodiment of the invention pro
vides a method of acquiring a copy of program code that
implements some or all of a process described herein, which
includes a computer system receiving the set of data signals
described herein, and translating the set of data signals into a
copy of the computer program fixed in at least one computer
readable medium. In either case, the set of data signals can be
transmitted/received using any type of communications link.

In still another embodiment, the invention provides a
method for deploying an application for compiling data. In
this case, a computer system, such as computer system 102
(FIG. 1), can be obtained (e.g., created, maintained, made

US 9,292,267 B2
7

available, etc.) and one or more components for performing a
process described herein can be obtained (e.g., created, pur
chased, used, modified, etc.) and deployed to the computer
system. To this extent, the deployment can comprise one or
more of: (1) installing program code on a computing device;
(2) adding one or more computing and/or I/O devices to the
computer system; (3) incorporating and/or modifying the
computer system to enable it to perform a process described
herein; and/or the like.

The terms “first,” “second, and the like, if and where used
herein do not denote any order, quantity, or importance, but
rather are used to distinguish one element from another, and
the terms 'a' and “an herein do not denote a limitation of
quantity, but rather denote the presence of at least one of the
referenced item. The modifier “approximately”, where used
in connection with a quantity is inclusive of the stated value
and has the meaning dictated by the context, (e.g., includes
the degree of error associated with measurement of the par
ticular quantity). The suffix "(s)' as used herein is intended to
include both the singular and the plural of the term that it
modifies, thereby including one or more of that term (e.g., the
metal(s) includes one or more metals).
The foregoing description of various aspects of the inven

tion has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to an individual in the art
are included within the scope of the invention as defined by
the accompanying claims.

What is claimed is:
1. A method for compiling data, the method comprising:
receiving an input query in a first language;
translating the input query to a nested relational algebra
(NRA) in the form of a first intermediate representation
(IR), wherein the first IR comprises a high-level func
tional language including algebraic operators;

implementing a set of algorithms of the algebraic operators
to compile at least some of the first IR into a second IR,
wherein the second IR comprises a hybrid language
which utilizes a data-flow language and a set of lower
level extensions, and wherein the second IR is optimized
by utilizing a set of specific optimizations targeting a
part of the second IR that was compiled from a set of
algebraic operators of the first IR, wherein the first IR is
optimized by utilizing a set of functional optimizations
on a set of non-algebra portions of the first IR, wherein
the second IR is further optimized by utilizing a set of
data-flow optimizations; and

compiling at least one of the first IR and the second IR, into
a low-level code.

2. The method of claim 1, wherein all of the first IR is
compiled into the second IR.

3. The method of claim 2, wherein only the second IR is
compiled into the low-level code.

4. The method of claim 1, wherein the first IR is further
optimized by utilizing a set of NRA optimizations on a set of
algebra portions of the first IR.

5. The method of claim 1, wherein the low-level code is
selected from a group comprising: assembly code, virtual
machine code, and virtual machine code instructions.

6. A system for compiling data, comprising at least one
computer device that performs a method, comprising:

receiving an input query in a first language;
translating the input query to a nested relational algebra
(NRA) in the form of a first intermediate representation

8
(IR), wherein the first IR comprises a high-level func
tional language including algebraic operators;

implementing a set of algorithms of the algebraic operators
to compile at least some of the first IR into a second IR,

5 wherein the second IR comprises a hybrid language
which utilizes a data-flow language and a set of lower
level extensions, and wherein the second IR is optimized
by utilizing a set of specific optimizations targeting a
part of the second IR that was compiled from a set of
algebraic operators of the first IR, wherein the first IR is
optimized by utilizing a set of functional optimizations
on a set of non-algebra portions of the first IR, wherein
the second IR is further optimized by utilizing a set of
data-flow optimizations; and

compiling at least one of the first IR and the second IR, into
a low-level code.

7. The system of claim 6, the method further comprising:
wherein all of the first IR is compiled into the second IR.
8. The system of claim 7, the method further comprising:
wherein only the second IR is compiled into the low-level

code.
9. The system of claim 6, the method further comprising:
wherein the first IR is further optimized by utilizing a set of
NRA optimizations on a set of algebra portions of the
first IR.

10. The system of claim 6, the method further comprising:
wherein the low-level code is selected from a group com

prising: assembly code, virtual machine code, and Vir
tual machine code instructions.

11. A computer program product embodied in a non-tran
sitory computer readable medium for compiling data, which,
when executed, performs a method comprising:

receiving an input query in a first language;
translating the input query to a nested relational algebra
(NRA) in the form of a first intermediate representation
(IR), wherein the first IR comprises a high-level func
tional language including algebraic operators;

implementing a set of algorithms of the algebraic operators
to compile at least some of the first IR into a second IR,
wherein the second IR comprises a hybrid language
which utilizes a data-flow language and a set of lower
level extensions, and wherein the second IR is optimized
by utilizing a set of specific optimizations targeting a
part of the second IR that was compiled from a set of
algebraic operators of the first IR, wherein the first IR is
optimized by utilizing a set of functional optimizations
on a set of non-algebra portions of the first IR, wherein
the second IR is further optimized by utilizing a set of
data-flow optimizations; and

compiling at least one of the first IR and the second IR, into
a low-level code.

12. The computer program product of claim 11, the method
55 further comprising:

wherein all of the first IR is compiled into the second IR.
13. The computer program product of claim 12, the method

further comprising:
wherein only the second IR is compiled into the low-level

code.
14. The computer program product of claim 11, the method

further comprising:
wherein the first IR is further optimized by utilizing a set of
NRA optimizations on a set of algebra portions of the
first IR.

15. The computer program product of claim 11, the method
further comprising:

10

15

25

30

35

40

45

50

60

65

US 9,292,267 B2
9

wherein the low-level code is selected from a group com
prising: assembly code, virtual machine code, and Vir
tual machine code instructions.

16. A method for deploying an application for compiling
data, comprising: 5

provide a computer infrastructure being operable to:
receive an input query in a first language;
translate the input query to a nested relational algebra
(NRA) in the form of a first intermediate representation
(IR), wherein the first IR comprises a high-level func- 10
tional language including algebraic operators;

implement a set of algorithms of the algebraic operators to
compile at least some of the first IR into a second IR.
wherein the second IR comprises a hybrid language
which utilizes a data-flow language and a set of lower- 15
level extensions, and wherein the second IR is optimized
by utilizing a set of specific optimizations targeting a
part of the second IR that was compiled from a set of
algebraic operators of the first IR, wherein the first IR is
optimized by utilizing a set of functional optimizations 20
on a set of non-algebra portions of the first IR, wherein
the second IR is further optimized by utilizing a set of
data-flow optimizations; and

compile at least one of the first IR and the second IR, into
a low-level code. 25

k k k k k

