
United States Patent

US009037617B2

(12) (10) Patent No.: US 9,037,617 B2
Matsa et al. (45) Date of Patent: May 19, 2015

(54) CONCURRENT ADD-HEAVY SET DATA 7,293,143 B1 1 1/2007 Shavit et al.
GATHERING 8, 181,019 B2 * 5/2012 Saha et al. T13,158

2009,0132563 A1 5/2009 Herlihy et al.
ck

(75) Inventors: Moshe M. E. Matsa, Cambridge, MA 2009/0300224 A1* 12/2009 Duffy et al. T10/6
(US); Eric D. Perkins, Boston, MA (US) OTHER PUBLICATIONS

(73) Assignee: International Business Machines Heller et al., “A Lazy Concurrent List-Based Set Algorithm.” LNCS,
Corporation, Armonk, NY (US) v. 3974/2006, 2006.

Tuyisenge, 'Analyzing Non-Blocking Concurrent Data Structures.”
(*) Notice: Subject to any disclaimer, the term of this African Inst. for Mathematical Sciences, May 20, 2010.

patent is extended or adjusted under 35 U.S. Appl. No. 12/945,689, filed Nov. 12, 2010, entitled “Concurrent
U.S.C. 154(b) by 858 days. Core Affinity for Weak Cooperative Multithreading Systems”.

invented by Matsa, M.M.E. and E.D. Perkins, Total 25 pp.
(21) Appl. No.: 12/945,644

* cited by examiner
(22) Filed: Nov. 12, 2010

Primary Examiner — Jacob F Bétit
(65) Prior Publication Data Assistant Examiner — Christy Kim

US 2012/O124107 A1 May 17, 2012 (74) Attorney, Agent, or Firm — Janaki K. Davda; Konrad,
Raynes, Davda & Victor LLP

(51) Int. Cl.
G06F 12/00 (2006.01) (57) ABSTRACT
G06F 7/30 (2006.01)

(52) U.S. Cl. Object are created such that each of the objects stores a bit that
CPC G06F 17/30359 (2013.01) designates eventual removal of one of the objects. Further, the

(58) Field of Classification Search objects are added to a data structure that includes a set that
CPC G06F 17/30312. G06F 17/30359 comprises a union of a plurality of Subsets such that each
USPC ... - - - - - - - - - - - - 708/816 Subset in the plurality of Subsets is stored separately accord

See application file for complete search history. ing to a corresponding thread and Such that an added object
that is added to the set by a given thread is stored in the

(56) References Cited corresponding Subset. In addition, one of the objects is logi

U.S. PATENT DOCUMENTS

6,857,064 B2 2/2005 Smith et al.
7,000,234 B1 2/2006 Shavit et al.
7,234,044 B1 6/2007 Perry

cally removed, without physical removal, from the set by
activating the bit. Each subset is periodically swept. All
objects marked with the activated bit are physically removed.

20 Claims, 4 Drawing Sheets

300

Nu/
create an object such that the object

stores a bit

3O2

add the object to a data structure that 304
includes a set that comprises a union of ?
a plurality of subsets such that each
object in the plurality of Subsets is
stored separately according to a

corresponding thread and such that an
added object that is added to the set by

a given thread is stored in the
Corresponding Subset

logically remove, without physical
removal, an entry from the set by

activating the bit

306

V
periodically sweep each subset and
physically remove all entries marked

with the activated bit

308

U.S. Patent May 19, 2015 Sheet 1 of 4 US 9,037,617 B2

100

p

Data: -Y Next:- D
lsRemoved: False

Figure 1

US 9,037,617 B2 U.S. Patent May 19, 2015 Sheet 2 of 4

2OO

204 UNThread 1
Y Data: 1. Next: - eData: 1. Next: - -Data: -Y Next: - -

sRemoved: False lsRemoved: False lsRemoved: False

210 212 214'

Thread 2 y y

} t Y Data: Next:-Ho-Data: -Y Next:-Ho-Data: Next -Ho
e lsRemoved: False lsRemoved: True lsRemoved: False

216 218 220
/208

Thread 3
Y y y Y

Data: Next:-Ho-Data: Next:-Ho-Data: Next - He
lsRemoved: True lsRemoved: False lsRemoved: True

222 224 226'

Figure 2

U.S. Patent May 19, 2015 Sheet 3 of 4

create an object such that the object
stores a bit

includes a set that comprises a union of
a plurality of Subsets such that each
object in the plurality of subsets is
stored separately according to a

corresponding thread and such that an
added object that is added to the set by

a given thread is stored in the
Correspondino Subset

logically remove, without physical
removal, an entry from the set by

activating the bit

periodically Sweep each subset and
physically remove all entries marked

With the activated bit

Figure 3

US 9,037,617 B2

304

306

U.S. Patent May 19, 2015 Sheet 4 of 4 US 9,037,617 B2

400

408

402 z
N Processor -b

404

N I/O Devices Memory

Data Gathering Module -b

Figure 4

US 9,037,617 B2
1.

CONCURRENT ADD-HEAVY SET DATA
GATHERING

BACKGROUND

1. Field
This disclosure generally relates to a computing environ

ment. More particularly, the disclosure relates to data gather
ing.

2. General Background
The computer set data structure has three operations: Add(

) Remove() and some form of accessor to read the contents of
the set. Typical sets access the contents of the set approxi
mately ninety percent of the time, perform Add() approxi
mately nine percent of the time, and perform Remove()
approximately one percent of the time. Thus, most implemen
tations are optimized for these scenarios. In particular, most
implementations are optimized around read-access being
fast.

However, applications also often have to record informa
tion for use in unusual situations. An example is information
that will only be utilized in the case of debugging, but cannot
be reacquired later and thus has to be saved. Another example
is information that will only be utilized in an infrequent
clean-up activity. Any of these situations share the property
that they frequently perform Add() and Remove() but rarely
ever access the contents of the set. Such a set is referred to as
an Add-Heavy Set. The Add() and Remove() operations have
to be efficient and highly performant, but the accessor func
tion performance is nearly irrelevant in Such situations.

The set has to be specifically designed to address these
concerns when multi-core systems with many threads run
ning are involved. In these situations, typical implementa
tions may lock or otherwise have slower implementations of
Add() in order to keep accessing the set wait-free. This
tradeoff is not beneficial for an Add-Heavy set.

Wait-free concurrent set implementations, which are wait
free for all operations, involve special synchronization primi
tives for Add() and Remove() such as Compare-and-Swap on
X86. These instructions have to go to main memory and are
very slow compared with normal instructions which at most
access the processor's Level-1 cache.

SUMMARY

Method, system and computer program product embodi
ments of the invention are provided for data gathering by
creating objects such that each of the objects stores a bit for
designating eventual removal of one of the objects, adding the
objects to a data structure that includes a set that comprises a
union of a plurality of subsets such that each subset in the
plurality of Subsets is stored separately according to a corre
sponding thread and Such that an added object that is added to
the set by a given thread is stored in the corresponding Subset,
logically removing, without physical removal, one of the
objects by activating the bit and periodically Sweeping each
Subset and physically removing all objects marked with the
activated bit.

DRAWINGS

The above-mentioned features of the present invention will
become more apparent with reference to the following
description taken in conjunction with the accompanying
drawings wherein like reference numerals denote like ele
ments and in which:

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 1 illustrates an object that is created by an application

according to an embodiment of the present invention.
FIG. 2 illustrates a data structure according to an embodi

ment of the present invention.
FIG. 3 illustrates a process that may be utilized for data

gathering.
FIG. 4 illustrates a block diagram of a system that performs

data gathering according to an embodiment of the present
invention.

DETAILED DESCRIPTION

A data gathering method, system, and computer program
product is provided that enables data gathering with optimal
performance. In one embodiment, objects are allowed to be
logically removed from a list without being physically
removed by having the objects store a bit for logical removal
from the set. Objects are not re-used. Once an object is passed
to the set, it can be viewed, but it is owned by the set. Inter
nally, the set is implemented as the union of several Subsets
which are stored separately per-thread. In one embodiment,
each Subset can only have objects added and physically
removed by its thread. Therefore, each subset can be imple
mented without using main memory concurrency primitives
for thread safety, i.e., without any Compare and Swap
(“CAS)-style main-memory operations and without any
locking. The term CAS is herein intended to include any
main-memory synchronization primitive such as Compare
and Swap, Load-Linked/Store-Conditional, or any other
Read-Modify-Write instruction or set of instructions. With
out locks or CAS operations. Add() and Remove() can be
extremely fast. The Add() operation can accomplish physical
removal by periodically physically removing all logically
removed entries from the current thread's Subset, e.g., once
per second or every one hundredth time. The objects may then
be deleted or recycled. Reading the contents of the set is
read-only and can happen on any thread as long as minimal
synchronization prevents reading and physical deletion at the
same time.

FIG. 1 illustrates an object 100 that is created by an appli
cation according to an embodiment of the present invention.
In one embodiment, the field IsRemoved equals False. The
object with is passed into a set with the appropriate data.

FIG. 2 illustrates a data structure 200 according to an
embodiment of the present invention. Objects are passed into
a set 202. A determination is made in the set as to which thread
is currently running. The relevant object is added at the front
of the linked list for a subset of the set 202.
As an example, the set 202 has one or more Subsets that are

stored on a first thread 204, a second thread 206, and a third
thread 208. The first thread 204 stores a subset with a first
object 210 with an IsRemoved bit that is False, a second
object 212 with an IsRemoved bit that is False, and a third
object 214 with an IsRemoved bit that is False. Further, a
second thread 206 stores a subset with a first object 216 with
an IsRemoved bit that is False, a second object 218 with an
IsRemoved bit that is True, and a third object 220 with an
IsRemoved bit that is False. In addition, a third thread 208
stores a subset with a first object 222 with an Iskemoved bit
that is True, a second object 224 with an Iskemoved bit that is
False, and a third object 226 with an IsRemoved bit that is
True.
To picka Subset, the mapping from threadid to Subset does

not involve any locking or synchronization if the mapping
already has the Subset, which is the common occurrence. A
CAS is not utilized.

US 9,037,617 B2
3

To perform the Add() operation, each subset performs an
Add() operation by initially setting the objects Next pointer
to the head pointer of the subset and then setting the head
pointer of the subset to point to the new object. Only two
memory writes are involved without any locking or CASs.
This action linearizes to the moment when the head pointer
changes. The caller guarantees that the caller will only per
form the Add() operation once. Therefore, the object in
uniquely accessed on this thread. Further, the subsets head
pointer is only ever modified by this thread.
A system scheduler may possibly Suspend the thread after

setting of this Next pointer and before setting the head
pointer, but until the system scheduler reschedules the thread,
nothing else will be added to this subset. After the system
scheduler reschedules the thread, the thread setting the head
pointer to the new object will be the first thing that is pro
cessed.
The caller performs the Remove() operation to invoke

removal without informing the set by setting the IsRemoved
field to True. Neither locking nor main-memory synchroni
zation primitives such as CAS are involved. The Remove()
operation is linearized to exactly that cycle when the Iske
moved field is set to True.

In one embodiment, physical removal is performed peri
odically during Add() by traversing the linked list and remov
ing entries with IsRemoved set to True. Each physical
removal takes a single pointer assign of the previous Next
pointer to point to the next object. Since this is only done on
the owning thread, the Add() operation does not provide any
interference.
The physical removal is ensured not to overlap with data

access. Reading is infrequent and can thus be under a lock to
ensure only one reader at a time. As a result, the problem of
synchronization between a single reader thread and the single
physical removal thread per Subset is reduced in complexity.
Further, the common-case Add() and Remove() routines can
notice when data access is in progress and postpone any
physical cleanup work during data access, until after data
access is complete.
The operation to access data locks in order to ensure that

only one threadata time performs data access. The one thread
from the lock makes Sure that it is not reading any given
Subset during physical removal. This can be accomplished
with simple two-thread mutual exclusion using standard read/
write registers. Then, the thread can just read through each
Subsets data and ignore any logically-removed entries. In
most cases, infrequent use of such data, for example in error
or logging conditions or other exceptional conditions, is
already guarded by a lock or otherwise ensured to only hap
pen non-concurrently. Thus, in many cases this requirement is
already guaranteed.

This read lock is not necessary, but is simple, and has no
impact on the performance of Add or Remove, which are
assumed to be the only operations which can impact overall
system performance. A lock-free implementation may be uti
lized, which would then involve CAS or similar main
memory synchronization primitive during physical delete or
for synchronization of which read threads are interacting with
physical delete. However, a single lock on read maximizes the
common-case performance of Add() which performs a physi
cal delete.
As a result, a significant amount of tracking per-transaction

results in the system 200, which may rarely make use of the
newly stored information without significantly impacting
normal per-transaction performance. Accordingly, signifi
cant improvements in debugging and resource tracking and
allocation may result without impacting performance. The
data structure described herein may be utilized in a variety of
situations such as, for example, the following: a larger num

10

15

25

30

35

40

45

50

55

60

65

4
ber of Add() and Remove() operations with very few data
access operations, a multi-threaded system, data without
exact Snapshot semantics, locking is too slow for any per
transaction synchronization, CAS and other main memory
synchronization primitives are also too slow for per-transac
tion work. These examples are provided only as examples as
the data structure may be utilized in a variety of other condi
tions. In one embodiment, high priority threads may each
have their own subset, but low priority threads may share one
or more Subsets with some extra synchronization on use of
that subset.

FIG.3 illustrates a process 300 that may be utilized for data
gathering. At a process block 302, the process 300 creates
objects such that each of the objects stores a bit for designat
ing eventual removal of one of the objects. Further, at a
process block 304, the process 300 adds the objects to a data
structure that includes a set that comprises a union of a plu
rality of subsets such that each subset in the plurality of
Subsets is stored separately according to a corresponding
thread and such that an added object that is added to the set by
a given thread is stored in the corresponding Subset. In addi
tion, at a process block 306, the process 300 logically
removes, without physical removal, one of the objects by
activating the bit. At a process block 308, the process 300
periodically Sweeps each Subset and physically removes all
objects marked with the activated bit.

In one embodiment, the logical removal is performed on
the thread effectuating the logical removal and does not have
to be performed on a thread that performs the addition. Fur
ther, in one embodiment, the physical removal Sweep is per
thread by a given thread on the Subset corresponding to the
thread. The object may be stored either directly or indirectly.
Further, the Sweep may be trigger at a time that another entry
is added, by a timer, or by logical removal of an entry.
The processes described herein may be implemented in a

general, multi-purpose or single purpose processor. Such a
processor will execute instructions, either at the assembly,
compiled or machine-level, to perform the processes. Those
instructions can be written by one of ordinary skill in the art
following the description of the figures corresponding to the
processes and stored or transmitted on a computer readable
medium. The instructions may also be created using Source
code or any other known computer-aided design tool.

In one embodiment, a process adaptively delays cleanup of
a data structure based on a workload associated with the data
structure. The process involves maintaining a running metric
of the size of the recent growth of the data structure and an
initial limit associated with the size of the data structure. For
example, a variable mMetric may denote a metric corre
sponding to the recent growth in size and a variable mLimit
may correspond to an initial limit of the of the data structure.
Further, mMetric is initialized to Zero and mLimit to a value
INITIAL LIMIT as illustrated below.

int mMetric=0;
intmLimit=INITIAL LIMIT
When the size of the data structure is increased, the metric

is increased appropriately as illustrated below.
mMetric----,
An increase in size of the data structure indicates that work

is being added that may need to be cleaned-up later. Each time
the metric is increased, the metric is compared with the cur
rent limit to determine if the metric is over the current limitas
illustrated below. If the metric is over the current limit, then
the data structure is cleaned up.

if (mMetric-mLimit)
In addition, the current size of the data structure is calcu

lated. Subsequently, the value of mLimit is updated to be the
average of the old size of the data structure and the current
size of the data structure as illustrated below. This damps the

US 9,037,617 B2
5

old estimate of the size of the data structure with a new
estimate, as a best overall estimate of workload in the near
future.

mLimit=((mLimit--size)/2); //damp new estimate with old
estimate

This updated value is maintained above the INITIAL
LIMIT value to allow for amortizing the cleanup work over a
greater number of useful operations as illustrated below.

mLimit=mLimited-INITIAL LIMIT? mLimit:INITIAL
LIMIT; //floor at INITIAL LIMIT
To complete the process of adaptively delaying cleanup of

the data structure, the current count mMetric is reset to zero.
Thus, the process maintains a sensible minimum of how

long to wait to cleanup, so that it is not done too often. Also,
the process keeps a running metric of the size of the recent
growth of the data structure, and of a maximum amount of
growth to reach before cleanup. The time taken for a clean-up
operation as disclosed herein is significantly lower as com
pared to a non-adaptive clean-up rate. As an example, this
process is helpful in the context of highly concurrent data
structures where delayed cleanup is often utilized to mini
mize contention and enable lock freedom.

FIG. 4 illustrates a block diagram of a system 400 that
performs data gathering according to an embodiment of the
present invention. In one embodiment, the system 400 is
Suitable for storing and/or executing program code and is
implemented using a general purpose computer or any other
hardware equivalents. Thus, the system 400 comprises a pro
cessor 402, a memory 408, e.g., random access memory
(“RAM) and/or read only memory (“ROM), a data gather
ing module 406, and various input/output devices 404.

The processor 402 is coupled, either directly or indirectly,
to the memory 408 through a system bus. The memory 408
may include local memory employed during actual execution
of the program code, bulk storage, and/or cache memories
which provide temporary storage of at least some program
code in order to reduce the number of times code must be
retrieved from bulk storage during execution.
The input/output devices 404 may be coupled directly to

the system 400 or through intervening input/output control
lers. Further, the input/output devices 404 may include a
keyboard, a keypad, a mouse, a microphone for capturing
speech commands, a pointing device, and other user input
devices that will be recognized by one of ordinary skill in the
art. Further, the input/output devices 404 may include a
receiver, transmitter, speaker, display, image capture sensor,
biometric sensor, etc. In addition, the input/output devices
404 may include storage devices such as a tape drive, floppy
drive, hard disk drive, compact disk (“CD) drive, digital
video disk (“DVD) drive, etc.

Network adapters may also be coupled to the system 400 to
enable the system 400 to become coupled to other systems,
remote printers, or storage devices through intervening pri
vate or public networks. Modems, cable modems, and Ether
net cards are just a few of the currently available types of
network adapters.

For any of the configurations described herein, various
actions may take place when the call stack is retrieved. In one
embodiment, the retrieved call stack is walked into a tree and
the leaf node of the tree has its base count incremented, which
allows for utilization of technology to produce reports or to
view the collected information.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including

10

15

25

30

35

40

45

50

55

60

65

6
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that may contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that may communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(“LAN”) or a wide area network (“WAN”), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, may be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a

US 9,037,617 B2
7

general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

The “processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus may be referred to herein as a “microprocessor.”
However, the term “microprocessor should not be inter
preted as being limited to a single-chip central processing unit
or any other particular type of programmable data processing
apparatus, unless explicitly so stated.

These computer program instructions may also be stored in
a computer readable medium that may direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks. The computer program instructions
may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other devices to produce a com
puter implemented process Such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci
fied in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in Some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, may be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

Reference throughout this Specification to “one embodi
ment,” “an embodiment, or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrase “in one embodiment,” “in an embodiment, and
similar language throughout this Specification may, but do
not necessarily, all refer to the same embodiment. Further
more, the described features, structures, or characteristics of
the invention may be combined in any suitable manner in one
or more embodiments. Correspondingly, even if features are
initially claimed as acting in certain combinations, one or
more features from a claimed combination may in some cases
be excised from the combination, and the claimed combina
tion may be directed to a Subcombination or variation of a
Subcombination.

10

15

25

30

35

40

45

50

55

60

65

8
While the computer program product, method and system

have been described interms of what are presently considered
to be the most practical and preferred embodiments, it is to be
understood that the disclosure need not be limited to the
disclosed embodiments. The disclosure is intended to cover
various modifications and similar arrangements included
within the spirit and scope of the claims, the scope of which
should be accorded the broadest interpretation so as to
encompass all such modifications and similar structures. The
present disclosure includes any and all embodiments of the
following claims.

We claim:
1. A computer program product comprising: a non-transi

tory computer readable storage medium having computer
readable program code embodied therewith, wherein the
computer readable storage medium excludes a computer
readable signal medium, and the computer readable program
code comprising:

computer readable program code to store a data structure
includes a set that includes multiple Subsets, wherein
each of the subsets is a linked list for storing objects and
is associated with a thread, wherein each of the objects
stores a bit for designating whether that object has been
logically removed;

computer readable program code to create an object,
wherein the object stores a bit for designating whether
that object has been logically removed;

computer readable program code to add the object to the
data structure by mapping a thread identifier of a thread
that is adding the object to a subset for that thread and
storing the object in the subset for that thread;

computer readable program code to logically remove,
without physical removal, one of the objects by mapping
a thread identifier of a thread that is removing the object
to a subset for that thread and activating the bit in the
object; and

computer readable program code to adaptively delay
cleanup of the data structure based on a workload asso
ciated with the data structure by:
maintaining a first size of the data structure; and
in response to the first size exceeding an initial limit,

Sweeping each Subset and physically removing all
objects marked with the activated bit;

calculating a second size of the data structure based
on the objects marked with the activated bit having
been removed; and

calculating a new value for the initial limit based on an
average of the first size of the data structure and the
second size of the data structure.

2. The computer program product of claim 1, wherein the
logical removal is performed on a thread effectuating the
logical removal and does not have to be performed on a thread
that performs the addition.

3. The computer program product of claim 1, wherein the
Sweep is per-thread by a given thread on the Subset corre
sponding to the thread.

4. The computer program product of claim 1, wherein each
of the objects stores the bit directly.

5. The computer program product of claim 1, wherein each
of the objects stores the bit indirectly.

6. The computer program product of claim 1, wherein
determination of whether the first size exceeds the initial limit
is periodically triggered when adding another object.

7. The computer program product of claim 1, wherein
determination of whether the first size exceeds the initial limit
is periodically triggered by a timer.

US 9,037,617 B2
9

8. The computer program product of claim 1, wherein
determination of whether the first size exceeds the initial limit
is periodically triggered by logical removal of an object.

9. A method comprising:
storing, using a processor of a computer, a data structure

includes a set that includes multiple Subsets, wherein
each of the subsets is a linked list for storing objects and
is associated with a thread, wherein each of the objects
stores a bit for designating whether that object has been
logically removed;

creating an object, wherein the object stores a bit for des
ignating whether that object has been logically removed,
without being physically removed;

adding the object to the data structure by mapping a thread
identifier of a thread that is adding the object to a subset
for that thread and storing the object in the subset for that
thread;

logically removing, without physical removal, one of the
objects by mapping a thread identifier of a thread that is
removing the object to a subset for that thread and acti
vating the bit in the object; and

adaptively delaying cleanup of the data structure based on
a workload associated with the data structure by:
maintaining a first size of the data structure; and
in response to the first size exceeding an initial limit,

Sweeping each Subset and physically removing all
objects marked with the activated bit;

calculating a second size of the data structure based
on the objects marked with the activated bit having
been removed; and

calculating a new value for the initial limit based on an
average of the first size of the data structure and the
second size of the data structure.

10. The method of claim 9, wherein the logical removal is
performed on a thread effectuating the logical removal and
does not have to be performed on a thread that performs the
addition.

11. The method of claim 9, wherein the sweep is per-thread
by a given thread on the Subset corresponding to the thread.

12. The method of claim 9, wherein each of the objects
stores the bit directly.

13. The method of claim 9, wherein each of the objects
stores the bit indirectly.

14. The method of claim 9, wherein determination of
whether the first size exceeds the initial limit is periodically
triggered when adding another object.

15. The method of claim 9, wherein determination of
whether the first size exceeds the initial limit is periodically
triggered by a timer.

5

10

15

25

30

35

40

45

10
16. The method of claim 9, wherein determination of

whether the first size exceeds the initial limit is periodically
triggered by logical removal of an object.

17. A system comprising:
a processor;
storage coupled to the processor, wherein the storage stores

program code, and wherein the processor executes the
program code to perform:

storing a data structure includes a set that includes multiple
Subsets, wherein each of the subsets is a linked list for
storing objects and is associated with a thread, wherein
each of the objects stores a bit for designating whether
that object has been logically removed;

creating an object, wherein the object stores a bit for des
ignating whether that object has been logically removed,
without being physically removed;

adding the object to the data structure by mapping a thread
identifier of a thread that is adding the object to a subset
for that thread and storing the object in the subset for that
thread;

logically removing, without physical removal, one of the
objects by mapping a thread identifier of a thread that is
removing the object to a subset for that thread and acti
vating the bit in the object; and

adaptively delaying cleanup of the data structure based on
a workload associated with the data structure by:
maintaining a first size of the data structure; and
in response to the first size exceeding an initial limit,

Sweeping each Subset and physically removing all
objects marked with the activated bit;

calculating a second size of the data structure based
on the objects marked with the activated bit having
been removed; and

calculating a new value for the initial limit based on an
average of the first size of the data structure and the
second size of the data structure.

18. The system of claim 17, wherein the logical removal is
performed on a thread effectuating the logical removal and
does not have to be performed on a thread that performs the
addition.

19. The system of claim 17, wherein the sweep is per
thread by a given thread on the Subset corresponding to the
thread.

20. The system of claim 17, wherein each of the objects
stores the bit directly.

k k k k k

