
United States Patent

USOO8943.108B2

(12) (10) Patent No.: US 8,943,108 B2
Allen et al. (45) Date of Patent: Jan. 27, 2015

(54) HARDWARE OFF-LOAD MEMORY 6,473,777 B1 * 10/2002 Hendler et al. 1.1
GARBAGE COLLECTION ACCELERATION 6,604,182 B1 8/2003 Sexton et al.

6,920,541 B2 7/2005 Kolodner et al.
6,950,837 B2 9/2005 Subramoney et al.

(75) Inventors: Joseph H. Allen, Belmont, MA (US); 7,043,623 B2 * 5/2006 Chen et al. T11,219
Moshe M. E. Matsa, Cambridge, MA 7,069,279 B1 6/2006 Rau et al.
(US); David Z. Maze, Somerville, MA 7,200,741 B1* 4/2007 Mine T12/244
(US); Jeffrey M. Peters, Leominster, 7,228,543 B2 6/2007 Baylis
MA (US) 7,302,544 B2 11/2007 Chung et al.

7,412,580 B1 8/2008 Garthwaite
7,822,938 B2 10/2010 Dussud et al.

(73) Assignee: International Business Machines 2003/0196061 A1 10, 2003 Kawahara et al.
Corporation, Armonk, NY (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 799 days. Cell GC: using the cell Synergistic processor as a garbage collection

coprocessor Authors: Chen-Yong Cher IBM T J Watson Research
(21) Appl. No.: 12/645,514 Center, Yorktown Heights, NY Michael Gschwind IBM T.J Watson

Research Center, Yorktown Heights, NY VEE 08 Proceedings of the
(22) Filed: Dec. 23, 2009 fourth ACM SIGPLANSIGOPS international conference on Virtual

ck
(65) Prior Publication Data eXecution environments.

(Continued)
US 2011 FO153690 A1 Jun. 23, 2011

(51) Int. Cl. Primary Examiner — Ajay Bhatia
G06F 7/30 (2006.01) Assistant Examiner — Miranda Huang
G06F 12/02 (2006.01) (74) Attorney, Agent, or Firm — Lee Law, PLLC;

(52) U.S. Cl. Christopher B. Lee
CPC G06F 12/0269 (2013.01)
USPC 707/813; 711/E12.011 (57) ABSTRACT

(58) Field of Classification Search A memory allocation message for each primary memory
CPC. G06F 12/02; G06F 12/0253; G06F 2212/70; allocation in a primary memory made by a primary processor

G06F 11/073; G06F 2009/45583 is received at a hardware memory management module. A
USPC 707/813, 814, 816,999.206; representation of each primary memory allocation is allo

711 FE12.O11 cated within a second memory in response to each memory
See application file for complete search history. allocation message. A determination is made, based upon the

allocated representations of each primary memory allocation
(56) References Cited within the second memory, to free a primary memory alloca

U.S. PATENT DOCUMENTS

5,450,542 A * 9/1995 Lehman et al. 345,542
6,336,180 B1* 1/2002 Long et al. 712/34
6,434,137 B1 * 8/2002 Anderson et al. 370,347

tion in the primary memory. A memory free message is sent to
the primary processor instructing the primary processor to
free the primary memory allocation in the primary memory.

24 Claims, 9 Drawing Sheets

RCEIVE, ATA HARDWAREMEMORY 702
MANAGEMENT MODULE, AMMORY
ALLOCATION MESSAGEFOREACH
PRIMARY MEMORY ALLOCATION INA

PRIMARYMMORY MADBYA
RMARYROCESSOR

ALLOCATE WITHINA SECOND 704
MMORY INRSONS TO EACH
MEMORY ALLOCATIONMESSAGE, A
REPRESENTATION OF EACHPRIMARY

MEMORY ALLOCATION

DETERMINE, BASEDUPONTH 708
ALCATE REPRESENTATIONS OF

EACHPRIMARY MEMORY
ALLOCATION WITHIN THESECOND
MMORY, to Free ApriMARY
MEMORY ALLOCATION IN THE

PRIMARY MEMORY

SENAMEMORY FREEMESSAGETO 708
THPRIMARYPROCESSOR
NSTRUCTING THE PRIMARY

PROCESSORTOFrtHPRIMARY
MEMORY ALLOCATION IN THE

prMARY MEMORY

US 8,943,108 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008. O195682 A1 8, 2008 Holt
2008/0263295 A1 10, 2008 Printezis et al.
2008/0320485 A1 12/2008 Joffe et al. T18, 104
2009 OOO6506 A1 1, 2009 DFlora
2009/0055603 A1 2, 2009 Holt
2010.008293.0 A1* 4/2010 Jiva et al. T11,166

OTHER PUBLICATIONS

Scott Nettles, James O'Toole, Real-Time Replication Garbage Col
lection, Article, Conference on Programming Language Design and
Implementation, 1993, pp. 1-10, Association for Computing Machin
ery (ACM), New York, NY.
James O'Toole, Scott Nettles, Concurrent Replicating Garbage Col
lection, Article, Conference on LISP and Functional Programming,
1994, pp. 1-8, Association for Computing Machinery (ACM), New
York, NY.
Jeffrey Richter, Garbage Collection: Automatic Memory Manage
ment in the Microsoft .NET Framework, Article, MSDN Magazine,
Dec. 2000, pp. 1-18, Microsoft Corporation, Published on the World
WideWeb.
Matthias Meyer, An On-Chip Garbage Collection Coprocessor for
Embedded Real-Time Systems, Article, Proceedings of the 11th
IEEE International Conference on Embedded and Real-Time Com
puting Systems and Applications, Aug. 2005, pp. 517-524. IEEE
Computer Society, Hong Kong.

Kevin D. Nilsen, Cost-Effective Hardware-Assisted Real-Time Gar
bage Collection, Article, ACM SIGPLAN Conference on Program
ming Language Design and Implementation, 1994, pp. 1-10, Asso
ciation for Computing Machinery (ACM), New York, NY.
Kevin Nilsen, A High-Performance Architecture for Real-Time Gar
bage Collection, Article, Submitted to OOPSLA Workshop on Gar
bage Collection in Object-Oriented Systems, 1991, pp. 1-5, Pub
lished on the World WideWeb.
United States Patent and Trademark Office, Office Action for U.S.
Appl. No. 12/645,537. Apr. 4, 2012, pp. 1-16, Alexandria, VA, USA.
Tamar Domani, et al., Implementing an On-the-fly Garbage Collector
for Java, Article, ACM SIGPLAN Notices, 2001, pp. 1-15, vol. 36,
Issue 1, Association for Computing Machinery (ACM), New York,
NY, USA.
Author Unknown, TADS3 System Manual: Automatic Garbage Col
lection and Finalization, Webpage/site, Printed from Website on Dec.
9, 2009, pp. 1-4, Published on the World Wide Web at http://www.
tads.org/t3doc/doc/sysman/gc.htm.
John N. Zigman, Stephen M. Blackburn, Java Finalize Method,
Orthogonal Persistence and Transactions, Article, Proceedings of the
8th International Workshop on Persistent Object Systems (POS8),
1999, pp. 1-7. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.
United States Patent and Trademark Office, Notice of Allowance for
U.S. Appl. No. 12/645.537, Nov. 16, 2012, pp. 1-9, Alexandria, VA,
USA.
United States Patent and Trademark Office, Office Action for U.S.
Appl. No. 12/645,537. Aug. 27, 2012, pp. 1-13, Alexandria, VA,
USA.

* cited by examiner

US 8,943,108 B2 Sheet 2 of 9 Jan. 27, 2015 U.S. Patent

LOETOEHO ELV/EN-HO >HOSSE OO?-le-HOO

(CIEEHH LOET GO HOVE NJOH) LOET™EIO ELVERHO

(S) LOET GO BEH+

(€)

0 || Z.

(Z)

90Z
(L)

ZOZ

U.S. Patent Jan. 27, 2015 Sheet 3 of 9 US 8,943,108 B2

CREATE OBJECT MESSAGE:
31 O 30

(UNUSED)
8

POINTER UPDATE MESSAGE:

N-1 O

FREE OBJECT MESSAGE:
3O8

(UNUSED)
N-1 O

FIG. 3

U.S. Patent Jan. 27, 2015 Sheet 4 of 9 US 8,943,108 B2

402 404

400 408

406

412 404

410 408

414 N
V n
V N
V n na

\ N n
n

41 41

FIG. 4

U.S. Patent Jan. 27, 2015 Sheet 5 Of 9 US 8,943,108 B2

502 504

516 518

510

FIG. 5

U.S. Patent Jan. 27, 2015 Sheet 6 of 9 US 8,943,108 B2

602
HEADER 1

604
HEADER N

610
POINTER METADATA

116
606

BODY OBJECT 1

608
BODY OBJECT M

HEADER METADATA 612

FIG. 6

U.S. Patent Jan. 27, 2015 Sheet 7 Of 9 US 8,943,108 B2

RECEIVE, ATA HARDWARE MEMORY 702
MANAGEMENT MODULE, A MEMORY
ALLOCATION MESSAGE FOREACH
PRIMARY MEMORY ALLOCATION INA

PRIMARY MEMORY MADE BY A
PRIMARY PROCESSOR

ALLOCATE, WITHIN A SECOND 704
MEMORY IN RESPONSE TO EACH
MEMORY ALLOCATION MESSAGE, A
REPRESENTATION OF EACH PRIMARY

MEMORY ALLOCATION

DETERMINE, BASED UPON THE 7O6
ALLOCATED REPRESENTATIONS OF

EACH PRIMARY MEMORY
ALLOCATION WITHIN THE SECOND
MEMORY, TO FREE A PRIMARY
MEMORY ALLOCATION IN THE

PRIMARY MEMORY

SEND A MEMORY FREE MESSAGE TO 708
THE PRIMARY PROCESSOR
INSTRUCTING THE PRIMARY

PROCESSOR TO FREE THE PRIMARY
MEMORY ALLOCATION IN THE

PRIMARY MEMORY

FIG. 7

U.S. Patent Jan. 27, 2015 Sheet 8 of 9 US 8,943,108 B2

CREATE OBJECT?

806a ALLOCATE MEMORY
ALLOCATION HEADER

808. CREATE METADATA
FOR HEADER

816 ALLOCATE MEMORY NO
POINTERELEMENT

POINTER UPDATE2

YES

RETRIEVE HEADER
METADATA

IDENTIFY HEADER
ELEMENT

POINTER
METADATA2

YES
818 INITIALIZE MEMORY

PolyEEMENETH RETRIEVE POINTER
METADATA

CREATE POINTER
2 METADATA TO LOCATE IDENTIFY MEMORY

INDEX MEMORY POINTER POINTERELEMENT
ELEMENT FROM BASE
ADDRESS IN HEADER UPDATE VALUE OF

ELEMENT MEMORY POINTER
ELEMENT

CREATE HEADER
METADATA TO LOCATE/ UPDATE POINTER
INDEX HEADER ELEMENT METADATA AND
FROM POINTERVALUE IN HEADER METADATA

MEMORY POINTER
ELEMENT

822

FIG. 8

U.S. Patent Jan. 27, 2015 Sheet 9 Of 9 US 8,943,108 B2

OO

902

GARBAGE YES
COLLECT?

928 926

SEND FREE IDENTIFY YES
OBJECT UNUSED

ALL HEADER
PROCESSED2

MESSAGES HEADERS

RETRIEVE NEXT
SAVE/PUSH HEADER

NEXT
POINTER
LOCATION
ON STACK MARK HEADER

RETRIEVE POINTER
METADATA

GET NEXT POINTER

POPULATE
RETRIEVE NEXT
HEADER POINTER

LOCATION

EADER ALREAD
MARKED?

FIG. 9

US 8,943,108 B2
1.

HARDWARE OFF-LOAD MEMORY
GARBAGE COLLECTION ACCELERATION

RELATED APPLICATIONS

This application is related to concurrently filed U.S. utility
patent application Ser. No. 12/645,537, titled “HARDWARE
OFF-LOAD GARBAGE COLLECTION ACCELERATION
FOR LANGUAGES WITH FINALIZERS, which is incor
porated herein by reference in its entirety.

BACKGROUND

The present invention relates to memory garbage collec
tion. More particularly, the present invention relates to hard
ware off-load memory garbage collection acceleration.

Conventional memory garbage collection is performed by
a processor to determine memory allocations that are no
longer needed by the processor. A processor executes an
algorithm, known as a garbage collection algorithm, to iden
tify the memory allocations that it no longer needs. Examples
of garbage collection algorithms include a mark and Sweep
garbage collection algorithm and a reference counting gar
bage collection algorithm.

BRIEF SUMMARY

A method includes receiving, at a hardware memory man
agement module, a memory allocation message for each pri
mary memory allocation in a primary memory made by a
primary processor, allocating, within a second memory in
response to each memory allocation message, a representa
tion of each primary memory allocation; determining, based
upon the allocated representations of each primary memory
allocation within the second memory, to free a primary
memory allocation in the primary memory; and sending a
memory free message to the primary processor instructing the
primary processor to free the primary memory allocation in
the primary memory.
A system includes a first processor operatively coupled to

a first memory; a bi-directional message queue; and an off
load processor operatively coupled to a second memory, and
programmed to: receive, via the bi-directional message
queue, a memory allocation message for each primary
memory allocation in the first memory made by the first
processor, allocate, within the second memory in response to
each memory allocation message, a representation of each
primary memory allocation; determine, based upon the allo
cated representations of each primary memory allocation
within the second memory, to free a primary memory alloca
tion in the first memory; and send, via the bi-directional
message queue, a memory free message to the first processor
instructing the first processor to free the primary memory
allocation in the first memory.
A computer program product includes a computer useable

storage medium including computer readable program code,
wherein the computer readable program code when executed
on a computer causes the computer to: receive a memory
allocation message for each primary memory allocation in a
first memory made by a first processor; allocate, within a
second memory in response to each memory allocation mes
sage, a representation of each primary memory allocation;
determine, based upon the allocated representations of each
primary memory allocation within the second memory, to
free a primary memory allocation in the first memory; and

10

15

25

30

35

40

45

50

55

60

65

2
send a memory free message to the first processor instructing
the first processor to free the primary memory allocation in
the first memory.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an example of an implemen
tation of a system for automated hardware off-load memory
garbage collection acceleration according to an embodiment
of the present subject matter;

FIG. 2 is a message flow diagram of an example of an
implementation of a messaging interaction between a main
processor and a coprocessor for automated hardware off-load
memory garbage collection acceleration according to an
embodiment of the present subject matter;

FIG. 3 is an illustration of example implementations of
message formats that may be used for messages described in
association with FIG. 2 according to an embodiment of the
present Subject matter,

FIG. 4 is a block diagram of an example of an implemen
tation of memory allocations for direct mapping between a
main memory and a coprocessor memory according to an
embodiment of the present subject matter;

FIG. 5 is a block diagram of an example of an implemen
tation of memory allocations for reduced mapping within the
coprocessor memory relative to memory allocations within
the main memory according to an embodiment of the present
Subject matter;

FIG. 6 is a block diagram of an example of an implemen
tation of memory allocations and associated metadata for
reduced mapping within the coprocessor memory according
to an embodiment of the present Subject matter;

FIG. 7 is a flow chart of an example of an implementation
of a process for automated hardware off-load memory gar
bage collection acceleration according to an embodiment of
the present Subject matter,

FIG. 8 is a flow chart of an example of an implementation
of a process for automated hardware off-load memory gar
bage collection acceleration to receive and process messages
for memory element creation and pointer updating according
to an embodiment of the present Subject matter; and

FIG. 9 is a flow chart of an example of an implementation
of a process for automated hardware off-load memory gar
bage collection acceleration using a processor memory stack
to instruct a main processor to free memory allocations
according to an embodiment of the present Subject matter.

DETAILED DESCRIPTION

The examples set forth below represent the necessary
information to enable those skilled in the art to practice the
invention and illustrate the best mode of practicing the inven
tion. Upon reading the following description in light of the
accompanying drawing figures, those skilled in the art will
understand the concepts of the invention and will recognize
applications of these concepts not particularly addressed
herein. It should be understood that these concepts and appli
cations fall within the scope of the disclosure and the accom
panying claims.
The subject matter described herein provides hardware

off-load memory garbage collection acceleration. A system
for hardware off-load memory garbage collection accelera
tion includes a main (e.g., primary) processor and a copro
cessor that operates as a hardware off-load module. Perfor
mance improvements for the main processor involve off
loading garbage collection activities to the coprocessor.

US 8,943,108 B2
3

Rather than performing its own memory management for
garbage collection, the main processor communicates with
the coprocessor to inform the coprocessor of memory alloca
tion and memory update activities. The coprocessor indepen
dently and autonomously executes garbage collection activi
ties and identifies memory allocations that are no longer used
by the main processor. The coprocessor communicates with
the main processor to instruct the main processor to free the
identified memory allocations that are no longer in use. As
Such, the time consuming task of memory garbage collection
is partitioned from the main processor and performance for
the main processor may be improved. It should be noted that
in a different embodiment, the main processor and co-proces
Sor may be separate threads and the separate threads may be
running on separate processors of a multi-processor system.
The main processor is coupled to a main (e.g., primary)

memory and the coprocessor is coupled to a second memory.
The main processor executes one or more applications and
allocates memory for the various applications within the main
memory. Rather than performing its own memory manage
ment for garbage collection, the main processor additionally
sends a memory allocation message for each primary
memory allocation in the main memory to the coprocessor.
The coprocessor receives the memory allocation message and
allocates a representation of each primary memory allocation
within the second memory in response to each received
memory allocation message. The coprocessor executes a gar
bage collection algorithm concurrently with the main proces
sor actively processing application actions. The coprocessor
identifies memory allocations within the second memory that
are no longer in use by the main processor and sends a
memory free message to the primary processor instructing the
primary processor to free the main memory allocation in the
main memory.
The main processor and the coprocessor are separated and

communicate via a bi-directional message queue. The bi
directional message queue may be implemented using two
uni-directional message buffers/queues. Each processor has
write access to one of the two uni-directional message queues
and read access to the other message queue. The respective
uni-directional message queues may be memory mapped,
register mapped, or otherwise accessible for write and read
operations, respectively, by the respective processors. When
either processor wishes to communicate with the other, it
writes a message to its respective mapped write message
queue. On the opposite receive side for each message queue,
the respective other processor reads messages written to its
respective mapped read message queue. The uni-directional
message queues may be organized as a first in first out (FIFO)
queue structure. As such, the first message written to one of
the message queue by one of the processors will be the first
message read by the other processor. It should be noted that in
a different embodiment, the bi-directional message queues
may be implemented in shared memory and Software or may
use some other dedicated message passing hardware which
may be available in a multi-processor system.

In one example implementation, the main memory and the
second memory may be implemented with memory devices
that are the same size. This form of implementation shall be
referred to herein as “direct mapping between the main
memory and the second memory. In this example, the copro
cessor may allocate a memory object identical to the memory
object allocated by the main processor. Memory allocations
within the coprocessor may include metadata (e.g., memory
management bits, flags, or other metadata) to allow the copro
cessor to identify the unused memory allocations in the main
memory. The metadata may include identifiers to represent

10

15

25

30

35

40

45

50

55

60

65

4
items as root set memory objects (e.g., static or global Vari
ables or pointers, stack variables or pointers, or other root set
memory objects). Memory allocations within the main
memory may include reserved storage for the metadata used
by the coprocessor to provide the storage location(s) for the
metadata created and used by the coprocessor.

In an alternative example implementation, the coprocessor
may implement a set of data structures for managing memory
allocations in the main memory instead of allocating memory
objects that are identical to those allocated by the main pro
cessor. In Such an implementation, a second memory Smaller
than the main memory may be used. The set of data structures
may include a memory allocation header element and a
memory pointer element. This form of implementation shall
be referred to herein as “reduced mapping within the second
memory relative to the main memory.
The memory allocation header element may be allocated

within the second memory in response to a memory alloca
tion message (e.g., a create object message) received from the
main processor. The memory allocation message may include
a base address and a size of the memory allocation within the
main memory, along with an indication of whether the object
is a root set memory object. The memory allocation header
element may be created to include the base address and the
size of the main memory allocation within the main memory,
along with the indication of whether the object is a root set
memory object. Additional storage for garbage collection
(e.g., a mark bit for use during garbage collection) may be
added to the created memory allocation header element for
each memory allocation within the main memory.
When the main processor initializes a memory allocation

as a pointer, it may send a pointer initialization message (e.g.,
a pointer update message) to the coprocessor. The pointer
initialization message may include an address within the
main memory (e.g., the pointer “value') to which the pointer
has been initialized. The coprocessor may create a memory
pointer element within the second memory to represent the
initialized pointer in the main memory. The coprocessor may
create one or more (e.g., multiple) memory pointer elements
for a given memory allocation header element in response to
multiple pointer update messages received from the main
processor. The coprocessor may further update previously
created memory pointer elements in response to pointer
update messages that reference storage addresses of previ
ously created pointers in the main memory. As such, memory
pointer elements may be both created and updated with a new
value using pointer update messages sent to the coprocessor
from the main processor.
To manage the relationships between the created memory

allocation header elements and the one or more created
memory pointer elements in the second memory, the copro
cessor may create and utilize information (e.g., metadata) that
relates the various created memory elements within the sec
ond memory. This metadata may relate the memory alloca
tion header element previously created for the memory allo
cation and the created or updated one or more memory pointer
elements associated with each memory allocation header ele
ment.

It should be noted that a one-to-many relationship may
exist between header elements and memory pointer elements.
This relationship may occur, for example, when a main pro
cessor creates a complex data structure that includes multiple
pointers. Conversely, a memory pointer element maps to only
one header element. As such, for example, the coprocessor
may create a tree structure, such as a trie structure or some
other kind of associative container or array (each alternative
generally referred to hereinas an “associative mapping struc

US 8,943,108 B2
5

ture' for ease of description), to identify created memory
pointer elements based upon use of the base address and
memory allocation size represented within a memory alloca
tion header element. Conversely, the coprocessor may create
eithera hash table or a tree structure, such as a trie structure or
Some other kind of associative mapping structure, to identify
a memory allocation header element based upon the address
represented within memory pointer elements. As such, with a
reference to either a memory allocation header element or a
memory pointer element, the associated memory pointer ele
ment(s) or memory allocation header element, respectively,
may be identified within the second memory.

Garbage collection algorithms, such as the various mark
and Sweep or counting garbage collection algorithms, may be
executed by the coprocessor against the memory allocations
within the second memory. These various garbage collection
algorithms will not be described herein for brevity. However,
it is understood that a person of skill in the art will be able to
implement Such a garbage collection algorithm in association
with the present subject matter based upon the description
herein.

The hardware off-load memory garbage collection accel
eration described herein may be performed in real time to
allow prompt memory garbage collection with reduced pri
mary processor overhead. For purposes of the present
description, real time shall include any time frame of suffi
ciently short duration as to provide reasonable response time
for information processing acceptable to a user of the Subject
matter described. Additionally, the term “real time' shall
include what is commonly termed “near real time' gener
ally meaning any time frame of Sufficiently short duration as
to provide reasonable response time for on-demand informa
tion processing acceptable to a user of the Subject matter
described (e.g., within a portion of a second or within a few
seconds). These terms, while difficult to precisely define are
well understood by those skilled in the art.

FIG. 1 is a block diagram of an example of an implemen
tation of a system 100 for automated hardware off-load
memory garbage collection acceleration. A main processor
102 and a coprocessor 104 communicate, as described above
and in more detail below, to carry out the automated hardware
off-load memory garbage collection acceleration described
herein.

The main processor 102 is operatively coupled via an inter
connection 106 to a uni-directional message queue 108 (here
inafter “message queue 108) to send messages to the copro
cessor 104. Similarly, the coprocessor 104 is operatively
coupled via an interconnection 110 to a uni-directional mes
sage queue 112 (hereinafter “message queue 112) to send
messages to the main processor 102. The main processor 102
may be implemented to have only write access to the message
queue 108 and only read access to the message queue 112.
Similarly, the coprocessor 104 may be implemented to have
only write access to the message queue 112 and only read
access to the message queue 108. The respective message
queues may be memory mapped, register mapped, or other
wise accessible for write and read operations, respectively, by
the respective processors. Details of implementation for map
ping write operations and read operations to the respective
message queues are omitted for brevity. However, it is under
stood that a person of skill in the art would be able to imple
ment such a mapping for the respective processors based
upon the description herein, such as by use of read and write
signals associated with the respective processors.
The main processor 102 is also operatively coupled via the

interconnection 106 with a main memory 114 to create and
access memory allocations for use by applications executed

10

15

25

30

35

40

45

50

55

60

65

6
by the main processor 102. The coprocessor 104 is similarly
operatively coupled via the interconnection 110 with a copro
cessor memory 116 to create and access memory allocations
for performing garbage collection activities for the main pro
cessor 102.

It is understood that the main memory 114 and the copro
cessor memory 116 may include any combination of Volatile
and non-volatile memory Suitable for the intended purpose,
distributed or localized as appropriate, and may include other
memory segments not illustrated within the present example
for ease of illustration purposes. For example, the main
memory 114 and the coprocessor memory 116 may include a
code storage area, a code execution area, and a data area
without departure from the scope of the present subject mat
ter. As such, code space for run-time memory allocations by
the main processor 102 and coprocessor 104 will be described
in detail herein and references herein to direct mapping and
reduced mapping refer to run-time memory allocation areas,
Such as data areas, associated with the respective processors.
The interconnection 106 and the interconnection 110 may

include a system bus, a network, or any other interconnection
capable of providing the respective components with Suitable
interconnection for the respective purpose.

It should further be noted that the message queue 108 may
be sized sufficiently to allow the coprocessor 104 to perform
garbage collection without the message queue 108 filling to
capacity. This size may be small or Zero, if the garbage col
lection algorithm is one of the concurrent algorithms, such as
reference counting. The size may be large if the garbage
collection algorithm is not one of the concurrent algorithms,
Such as mark and Sweep. Additionally, for an implementation
of either of the interconnection 106 or the interconnection
110 that includes a network or other protocol-based intercon
nection with associated protocol overhead, the message
queue 108 may be sized sufficiently to accommodate inter
connection delays for message propagation. Similarly, the
message queue 112 may be sized sufficiently to allow the
coprocessor 104 to communicate with the main processor 102
and for the main processor 102 to retrieve all messages with
out the message queue 112 filling to capacity. It should be
further noted that software and hardware may maintain its
own non-shared queues in addition to these shared queues. If
a shared queue is full, the non-shared queues may be used for
additional buffering.
As will be described in more detail below in association

with FIG. 2 through FIG. 9, the coprocessor 104 provides
automated hardware off-load memory garbage collection
acceleration. The automated hardware off-load memory gar
bage collection acceleration is based upon messaging
received from the main processor 102 that identifies memory
allocations, pointer initialization, and update activities car
ried out by the main processor 102. The coprocessor 104
performs garbage collection activities, in association with the
memory allocations in the coprocessor memory 116, to iden
tify memory allocations in the main memory 114 that are no
longer in use and that may be freed by the main processor 102.
The coprocessor 104 sends messages to the main processor
102 instructing to the main processor 102 to free the unused
memory allocations. Performance for the main processor 102
may be improved by use of automated hardware off-load
memory garbage collection acceleration.

FIG. 2 described below shows an example message flow
for messaging between the main processor 102 and the copro
cessor 104. FIG.3 described below shows example message
formats that may be used for communication between the
main processor 102 and the coprocessor 104. FIG. 4 and FIG.
5 show examples of memory allocation elements used by the

US 8,943,108 B2
7

direct mapping and reduced mapping implementations,
respectively. FIG. 6 shows an example memory organization
for the reduced mapping implementation. FIG. 7 through
FIG. 9 show example flow charts that may be used to imple
ment the present Subject matter. Reference may be made
between the respective figures throughout the description
below to facilitate further understanding of the present sub
ject matter.

FIG. 2 is a message flow diagram of an example of an
implementation of a messaging interaction 200 between the
main processor 102 and the coprocessor 104 for automated
hardware off-load memory garbage collection acceleration.
For ease of illustration, the message queue 108 and the mes
sage queue 112 are omitted from FIG. 2. However, it is
understood that the message queue 108 and the message
queue 112, or a similar messaging system, convey the respec
tive messages to the respective processors, as described in
more detail below.
At block 202, the main processor 102 allocates a memory

element within the main memory 114. The memory alloca
tion performed at block 202 may include allocation of a single
byte, an integer, a word, or another storage allocation. The
allocation performed at block 202 may further include allo
cation of a complex data structure, such as an array, an array
of pointers, or other complex data structure.

In response to the memory allocation at block 202, the
main processor 102 sends a create object message to the
coprocessor 104 (line 1). In response to receipt of the create
object message, the coprocessor 104 creates an object repre
sentative of the allocated memory element referenced within
the create object message at block 204.

For purposes of illustration, the present example assumes
that the allocated memory at block 202 includes at least one
pointer. However, it is understood that the present subject
matter may be utilized with non-pointer allocations.

At block 206, the main processor 102 initializes a pointer
within the previously-allocated memory area. In response to
initialization of the pointer, the main processor 102 sends a
pointer update message to the coprocessor 104 (line 2). The
pointer update message includes the address of the previ
ously-allocated memory area where the pointer is initialized
and the initialized pointer value (e.g., the address pointed to
by the pointer). For a complex data structure within which the
pointer is initialized, the address of the pointer that is initial
ized may be different from a base address of the memory
allocation for the complex data structure, as described in
more detail below. At block 208, in response to receipt of the
pointer update message, the coprocessor 104 writes the
address representative of the pointer value to the object cre
ated in block 204.
At sometime later, as represented by the first pair of jagged

markings in FIG. 2, the present example assumes that the
main processor 102 changes the pointer value at block 210. In
response to changing the pointer value, the main processor
102 sends another pointer update message to the coprocessor
104 (line 3). As such, and as can be seen from the present
example, the main processor 102 sends a pointer update mes
sage in response to both initialization of a pointer value and
for changes to pointer values. In response to receipt of the
second pointer update message, the coprocessor 104 deter
mines whether an address associated the pointer update mes
sage references the object that was previously created (e.g., at
block 204) and initialized (e.g., written at block 208). In
response to determining that the second pointer update mes
sage references the object that was previously created and
initialized, the coprocessor 104 overwrites the pointer value
at block 212.

10

15

25

30

35

40

45

50

55

60

65

8
Immediately, or at Some later time, as represented by the

second pair of jagged markings in FIG. 2, the coprocessor 104
runs a garbage collection algorithm at block 214. As
described above and in more detail below, the garbage col
lection algorithm may include any garbage collection algo
rithm appropriate for a given implementation. During the
garbage collection activities associated with block 214, the
coprocessor 104 identifies memory objects within the copro
cessor memory 116 that represent objects within the main
memory 114 that are no longer in use by the main processor
102.

In response to completion of the garbage collection activi
ties at block 214, the coprocessor 104 sends a free object
message to the main processor 102 for each object that is no
longer in use by the main processor 102 (line 4). In response
to receipt of each free object message, at block 216, the main
processor 102 frees the memory object referenced by each
respective free object message within the main memory 114.
As such, the example messaging interaction 200 between

the main processor 102 and the coprocessor 104 allows the
main processor 102 to allocate memory without having to run
garbage collection to identify memory elements that are no
longer used by the main processor 102. The coprocessor 104
operates as a hardware off-load memory garbage collection
acceleration module and performs garbage collection on
behalf of the main processor 102. The main processor 102
receives free object messages from the coprocessor 104 and
frees objects that have been identified as no longer in use.

Accordingly, the main processor 102 may operate more
efficiently and may continue other processing activities while
the coprocessor 104 performs garbage collection for the main
processor 102. As discussed above, the message queue 108
and the message queue 112 may be sized as appropriate for a
given implementation to accommodate messages that accu
mulate during garbage collection activities. Further, idle
cycles for the main processor 102 may be used to retrieve free
object messages and to free the actual memory allocations
within the main memory 114.

FIG. 3 is an illustration of example implementations of
message formats that may be used for the messages described
in association with FIG. 2 above. A create object message
format 300 includes an address of object field 302, a size of
object field 304, and an address of pointer field 306. The
address of object field 302, the size of object field 304, and the
address of pointer field 306 include N bits (e.g., labeled Zero
to N-1). The N bits represent the addressing used on the
interconnection 106 by the main processor 102 to access the
respective memory object. As such, the number of bits (e.g.,
N) may be selected based upon the addressing capabilities of
a processor for a given implementation.

It should be noted that the address of pointer field 306
represents an address of a pointer that will receive the address
of the allocated memory object as a pointer value. The address
of pointer may be used to create a reference to the memory
object created within the coprocessor memory 116 to mitigate
a race condition between the received create object message
and garbage collection processing. Processing to create initial
references to memory objects is described in more detail
below. For purposes of the present portion of this description,
initial references to newly created memory objects may be
initialized in association with create object messages to
ensure that newly-created memory objects are not freed dur
ing garbage collection processing before they are otherwise
referenced within the main memory 114 by the main proces
Sor 102.

It should further be noted that alternative processing may
be performed by the coprocessor 104 to avoid the messaging

US 8,943,108 B2

overhead associated with adding the address of pointer field
306 to create object messages. The coprocessor 104 may
alternatively assign a pointer address value to created
memory objects to prevent freeing newly-created memory
objects in association with the race condition described
above. As another alternative, a requirement may be imple
mented for the main processor 102 to send a pointer update
message immediately after a sending create object message to
alleviate the race condition issue while preserving a smaller
message format size. Many other alternatives are possible for
managing race conditions between the object initialization
processing and the garbage collection processing and all are
considered within the scope of the present subject matter.
The create object message format 300 further includes a

message type field 308 and a root set indicator field 310. The
message type field 308 may include, for example, a two-bit
message type field. Within the present example, a message
type code of “00 binary may be used to indicate that the
message was formed using the create object message format
300. The root set indicator field 310 may include a single bit
field and may be used to indicate whether the memory object
associated with the create object message format300 is a root
set object, as otherwise described herein.
A pointer update message format 312 includes an address

of pointer field 306 identical to that described above. The
pointer update message format 312 further includes a pointer
value field 314. As such, the pointer update message format
312 may be used to indicate, as described above, an address of
a pointer and a value to be associated with that pointerfor both
newly-created pointers and for updated pointers. The pointer
update message format 312 also includes the message type
field 308 described above. The message type field 308 may
include, for purposes of the present example, a value of “01
binary to represent that the message was formed using the
pointer update message format 312.
A free object message format316 also includes the address

of object field 302 identical to that described above. However,
it is noted that the free object message is sent from the copro
cessor 104 to the main processor 102. As such, a free object
message formed using the free object message format 316
represents an instruction to the main processor 102 to free a
memory object located at the address associated with the free
object message. The free object message format 316 also
includes the message type field 308 as described above. The
message type field 308 may include, for purposes of the
present example, a value of “10” binary to represent that the
associated message was formed using the free object message
format 316.

It should additionally be noted that the respective message
formats described above may be considered data structures
that may be used to create the associated messages described
above. As such, the respective message formats are stored to
memory, such as memory associated with the message queue
108 and the message queue 112, when they are transmitted
between the respective processing devices.

FIG. 4 is a block diagram of an example of an implemen
tation of memory allocations for direct mapping between the
main memory 114 and the coprocessor memory 116. A main
memory object 400 represents a memory object that is allo
cated by the main processor 102 within the main memory
114. As can be seen from FIG.4, the main memory object 400
includes a header segment 402 and a body segment 404. The
body segment 404 includes storage for allocated memory
associated with the main memory object 400. The header
segment 402 further includes a reserved segment 406 and a
header segment 408. The reserved segment 406 represents an
area set aside for use by the coprocessor 104 that is not used

10

15

25

30

35

40

45

50

55

60

65

10
by the main processor 102. The header segment 408 repre
sents a header for use by the main processor 102 for creating
and managing the main memory object 400.

For purposes of the present description, it is assumed that a
header object, such as the header segment 402, will be asso
ciated with each memory object allocated by a processor,
Such as the main processor 102, and that additional space will
be available for the reserved segment 406. However, for an
implementation that does not allocate a header object, the
reserved segment 406 may be established as appropriate for a
given implementation.
A coprocessor memory object 410 represents a memory

object that is allocated by the coprocessor 104 within the
coprocessor memory 116 in response to receipt of a memory
allocation message from the main processor 102. The copro
cessor memory object 410 includes aheader segment 412 and
a body segment 404. The body segment 404 is identical to the
body segment 404 within the main memory object 400. The
header segment 412 further includes a coprocessor manage
ment data segment 414 and a header segment 408. The header
segment 408 may be identical to the header segment 408 of
the main memory object 400. The coprocessor management
data segment 414 is used by the coprocessor 104 to manage
memory allocations for garbage collection, as described
above and in more detail below.
The coprocessor management data segment 414 may

include, for example, storage space for two bits or flags that
may be used for main processor 102 memory allocation track
ing and for garbage collection purposes. A root set bit 416
may be used to indicate whether the body segment 404 rep
resents a root set memory object (e.g., static or global vari
ables or pointers, stack variables or pointers, or other root set
memory objects). A mark bit 418 may be used to indicate
whether the object has been marked by the garbage collection
algorithm used in the particular implementation to indicate
that the object is still in use.

It is noted that garbage collection algorithms often use a
mark counter that inverts for each pass of the respective
garbage collection algorithm. As such, the mark bit will be
inverted during a mark phase of a mark and Sweep garbage
collection algorithm to indicate that the object is still in use
and will not be inverted if the object is no longer used.
Accordingly, the mark bit 418 may be used to mark the
coprocessor memory object 410 (and thereby the associated
main memory object 400) for freeing, as described above and
in more detail below.

It is further understood that the present example represents
one possible implementation of the present organization of
the main memory object 400 and the coprocessor memory
object 410. Many other possibilities exist for coprocessor
management data, reserved storage relative to the main pro
cessor 102, and other control information. Accordingly, all
such possibilities are considered within the scope of the
present Subject matter. It is also noted that complex data
structures may be managed by the coprocessor 104 without
additional overhead processing because each memory allo
cation made by the main processor 102 within the main
memory 114 has a matching memory allocation within the
coprocessor memory 116 that is made and managed by the
coprocessor 104.

FIG. 5 is a block diagram of an example of an implemen
tation of memory allocations for reduced mapping within the
coprocessor memory 116 relative to memory allocations
within the main memory 114. As described above, a reduced
mapping implementation may allow for a smaller memory
device to be used by the coprocessor 104 relative to a size of
the memory device used by the main processor 102.

US 8,943,108 B2
11

A main memory object 500 represents a memory object
that is allocated by the main processor 102 within the main
memory 114. As can be seen from FIG. 5, the main memory
object 500 is similar to the main memory object 400 of FIG.
4. However, the main memory object 500 does not include a
reserved area, such as the reserved segment 406 as described
above in association with FIG. 4.
The main memory object 500 includes a header 502 and a

body segment 504. The body segment 504 includes storage
for allocated memory associated with the main memory
object 500. The header segment 502 further represents a
header for use by the main processor 102 for creating and
accessing the main memory object 500, though it is under
stood that the header segment 502 may not be necessary for a
given implementation of the present Subject matter.
A coprocessor memory allocation header element 510 rep

resents a first portion of a memory object that is allocated by
the coprocessor 104 within the coprocessor memory 116 in
response to receipt of a memory allocation message from the
main processor 102. The memory allocation header element
510 includes an address segment 512 and a size segment 514.
The address segment 512 includes the address of the main
memory object referenced by the body segment 504 within
the main memory object 500. The size segment 514 includes
a size of the main memory object 500. As such, complex data
structures may be initially represented by the address repre
sented within the address segment 512 in conjunction with the
size represented within the size segment 514. As will be
described in more detail below, data structures that do not
include pointers may be referenced by a header, Such as the
coprocessor memory allocation header element 510, while
pointer allocations and updates are managed by use of a
separate memory allocation by the coprocessor 104.

Coprocessor management data within the coprocessor
memory allocation header element 510 includes storage
space for two bits or flags that may be used for for garbage
collection purposes. A root set bit 516 may be used to indicate
whether a memory allocation represented within the address
segment 512 and the size segment 514 represents a root set
memory object (e.g., static or global variables or pointers,
stack variables or pointers, or other root set memory objects).
A mark bit 518 may be used to indicate whether the object has
been marked by the garbage collection algorithm used in the
particular implementation to indicate that the object is still in
SC.

Regarding pointer creation, as described above and in more
detail below, when the main processor 102 creates a pointer
within an allocated memory element, the main processor 102
sends a pointer update message. Upon receipt of a pointer
update message, the coprocessor 104 determines whether a
memory pointer element has already been created for the
pointer referenced by the pointer update message. When a
pointer memory element has not been created, the coproces
sor 104 creates a memory pointer element. When a pointer
memory element has already been created, the coprocessor
104 updates the memory pointer element. In either situation,
the value of the pointer (e.g., the pointer's referenced address)
is stored within the memory pointer element.
A memory pointer element 520 represents an example

memory pointer element that may be created or updated in
response to such a pointer update message. The memory
pointer element 520 includes an address value segment 522
that stores an address value received from the main processor
102 in association with a pointer update message. As such, the
memory pointer element 520 represents an actual pointer
value.

10

15

25

30

35

40

45

50

55

60

65

12
Accordingly, the memory pointer element 520 may be

considered a value element that may be used in association
with a key element, such as used with a key-value pairing in
database processing. As such, a key derived from an associ
ated coprocessor memory allocation header element, such as
the coprocessor memory allocation header element 510, may
be used to determine the storage location of the memory
pointer element 520. Similarly, a key derived from a memory
pointer element may be used to access an associated copro
cessor memory allocation header element. As described in
more detail below, the respective key derivation may be per
formed using metadata associated with the respective
memory elements.

FIG. 6 is a block diagram of an example of an implemen
tation of memory allocations and associated metadata for
reduced mapping within the coprocessor memory 116. A first
coprocessor memory allocation header element 602
(Header 1) represents a first memory allocation received
from the main processor 102. An "Nth coprocessor memory
allocation header element 604 (Header N) represents a last
memory allocation received from the main processor 102.
A first memory pointer element 606 (Body Object 1) rep

resents storage for a first pointer update message (e.g., a
pointer initialization) received from the main processor 102.
An “Mth' memory pointer element 608 (Body Object M)
represents storage for a last pointer update message (also a
pointer initialization) received from the main processor 102.
It should be noted that the quantity “M” of memory pointer
elements may be a different number than the quantity “N' of
header elements.

Pointer metadata storage area 610 represents storage for
information used for accessing body objects using informa
tion stored within a given header element. Similarly, header
metadata storage area 612 represents storage for information
used for accessing header elements using information stored
within a given body object.

It should be noted that a one-to-many relationship may
exist between header elements, such as the coprocessor
memory allocation header element 602, and memory pointer
elements. This relationship may occur, for example, when the
main processor 102 creates a complex data structure that
includes multiple pointers. Conversely, a memory pointer
element maps to only one header element.
AS Such, the information stored within the pointer metadata

storage area 610 may include, for example, a tree structure,
Such as a trie structure or some other kind of associative
mapping structure, for deriving a key with which to index the
body object(s) associated with the respective header element.
Conversely, the information stored within the header meta
data storage area 612 may include, for example, a hash table
or a tree structure, Such as a trie structure or Some other kind
of associative mapping structure, for deriving a key with
which to index the header element associated with each body
object.

FIG. 7 through FIG. 9 below describe example processes
that may be executed by devices, such as the coprocessor 104,
to perform the automated hardware off-load memory garbage
collection acceleration associated with the present Subject
matter. Many other variations on the example processes are
possible and all are considered within the scope of the present
subject matter. It should be noted that time out procedures and
other error control procedures are not illustrated within the
example processes described below for ease of illustration
purposes. However, it is understood that all such procedures
are considered to be within the scope of the present subject
matter.

US 8,943,108 B2
13

FIG. 7 is a flow chart of an example of an implementation
of a process 700 for automated hardware off-load memory
garbage collection acceleration. At block 702, the process
700 receives, at a hardware memory management module, a
memory allocation message for each primary memory allo
cation in a primary memory made by a primary processor. At
block 704, the process 700 allocates, within a second memory
in response to each memory allocation message, a represen
tation of each primary memory allocation. At block 706, the
process 700 determines, based upon the allocated represen
tations of each primary memory allocation within the second
memory, to free a primary memory allocation in the primary
memory. At block 708, the process 700 sends a memory free
message to the primary processor instructing the primary
processor to free the primary memory allocation in the pri
mary memory.

FIG. 8 is a flow chart of an example of an implementation
of a process 800 for automated hardware off-load memory
garbage collection acceleration to receive and process mes
sages for memory element creation and pointer updating. At
decision point 802, the process 800 makes a determination as
to whether a create object message has been received by the
coprocessor 104 from the main processor 102. When a deter
mination is made at decision point 802 that a create object
message has not been received, the process 800 makes a
determination at decision point 804 as to whether a pointer
update message has been received. When a determination is
made at decision point 804 that a pointer update message has
not been received, the process 800 returns to decision point
802 and iterates as described above.
As also described above, a create object message and a

pointer update message may be received at a hardware
memory management module, such as the coprocessor 104.
for each primary memory allocation or update in a primary
memory made by a primary processor, respectively. Each
message may be received from the primary processor via a
uni-directional message queue. Such as the message queue
108.

Returning to the description of decision point 802, when a
determination is made that a create object message has been
received, the process 800 allocates a memory allocation
header at block 806. As described above, for a direct memory
mapping configuration, the coprocessor 104 may allocate, for
each primary memory allocation in the primary memory
made by the primary processor, the memory element within
the coprocessor memory 116 identical to each respective
primary memory allocation in the primary memory made by
the primary processor. Alternatively, for a reduced memory
mapping configuration, the coprocessor 104 may allocate a
memory allocation header element within the coprocessor
memory 116 that includes a base address and a size of the
primary memory allocation within the primary memory.
Additionally, as described above, the memory allocation
header element may further include an indication that the
element represents a root set element and a garbage collection
management indicator.

At block 808, the process 800 creates metadata for the
header. This header metadata may be used to locate the header
using the associated base address, as described above. The
process 800 then proceeds to decision point 804.

Returning to the description of decision point 804, when
the process 800 determines that a pointer update message has
been received, the process 800 retrieves the header metadata
associated with the pointer address received in the pointer
update message at block 810. At block 812, the process 800
identifies the header element based upon the retrieved header
metadata. At decision point 814, the process 800 makes a

10

15

25

30

35

40

45

50

55

60

65

14
determination as to whether there is any existing pointer
metadata associated with the identifiedheader element. When
a determination is made at decision point 814 that there is no
pointer metadata associated with the identified header ele
ment, such as for a pointer initialization operation, the pro
cess 800 allocates a memory pointer element at block 816. As
described above, the pointer update message may include a
primary memory address associated with a primary memory
allocation and a pointer value. As such, at block 818, the
process 800 initializes the memory pointer element with the
received pointer value. At block 820, the process 800 creates
pointer metadata to locate/index the memory pointer element
from the base address in the header element. As such, the
process 800 indexes the memory pointer element relative to
the memory allocation header element.

It is further understood, that for complex data structures
that may include multiple pointers, multiple pointer elements
may be associated with a single header element. The element
size, as described above in association with the header format,
may be used to determine whether multiple pointer elements
may be associated with a given header element. It should
further be noted that indexing the memory pointer element
relative to the memory allocation header element may further
include generating pointer metadata that associate the
memory allocation header element with one or more memory
pointer elements. In Such an implementation, the pointer
metadata may identify a storage location of the memory
pointer element within the coprocessor memory 116 derived
via a tree structure. Such as a trie structure or some other kind
of associative mapping structure, based upon information
within the memory allocation header element.

At block 822, the process 800 creates header metadata to
locate/index the header element from the pointer value and
the memory pointer element. The process 800 may generate
header metadata that associates the memory pointer element
with the memory allocation header element. The header
metadata may identify a storage location of the memory allo
cation header element within the coprocessor memory 116
derived via a hash table, or a tree structure, Such as a trie
structure or some other kind of associative mapping structure,
based upon information within the memory pointer element.
The process 800 then returns to decision point 802 and iter
ates as described above.

Returning to the description of decision point 814, when
the process 800 determines that pointer metadata does
already exist, the process 800 also determines that the pointer
element, associated with the pointer update message, has
already been created in the coprocessor memory 116. As
such, at block 824, the process 800 retrieves the pointer meta
data that was previously created and associated with the iden
tified header element. At block 826, the process 800 identifies
the memory pointer element. At block 828, the process 800
updates the value of the memory pointer element. At block
830, the process 800 updates the pointer metadata and header
metadata based upon the new pointer value stored in the
memory pointer element. The process 800 then returns to
decision 802 and continues iterating as described above.
As such, the process 800 provides for creation of memory

elements through allocation of memory header elements and
header metadata. The process 800 also provides for creation,
initialization, and updating of pointers by allocating pointer
elements and creating pointer metadata to reference created
pointer elements back to the respective header elements. In
response to receipt of create object messages and pointer
update messages, the process 800 creates, manages, and
updates the header metadata and the pointer metadata asso
ciated with the respective memory elements.

US 8,943,108 B2
15

FIG. 9 is a flow chart of an example of an implementation
of a process 900 for automated hardware off-load memory
garbage collection acceleration using a processor memory
stack to instruct a main processor. Such as the main processor
102, to free memory allocations. At decision point 902, the
process 900 makes a determination as to whether to perform
a garbage collection activity. When a determination is made
not to perform a garbage collection activity, the process 900
waits for an indication to begin garbage collection. As
described above, garbage collection may be scheduled peri
odically, non-periodically, or incrementally as appropriate for
a given implementation. Further, it should be noted that the
garbage collection processing described in association with
the process 900 is used to determine, based upon allocated
representations of primary memory allocations within the
coprocessor memory 116, whether to free the respective pri
mary memory allocations. It should further be noted that the
process 900 may be executed concurrently with the main
processor 102 continuing to create memory allocations
within the main memory 114. As described above, the mes
sage queue 108 may be sized to accommodate enough mes
sages to allow the process 900 to execute without loss of any
memory allocation messages.
The process 900 allows a primary processor, such as the

main processor 102, to continue memory allocations in a
primary memory, such as the main memory 114, concurrently
with the hardware off-load module determining to free pri
mary memory allocations in the primary memory that are
represented within a coprocessor memory, Such as the copro
cessor memory 116. As such, additional received memory
allocation messages sent by the main processor 102 during a
period of time that the hardware off-load module determines
to free the primary memory allocations in the main memory
114 may be processed by a process, such as the process 800
associated with FIG. 8 above, after completion of execution
of the process 900. It should further be noted that execution of
the process 800 and the process 900 may be interleaved such
that the process 800 and the process 900 also run concur
rently.

Returning to the description of decision point 902, when a
determination is made to begin garbage collection activities,
the process 900 makes a determination at decision point 904
as to whether all root-set header elements have been pro
cessed. It is noted that the first iteration of the process 900 will
result in a negative determination if at least one root-set
header element has been allocated previously. It should fur
ther be noted that the processing associated with the determi
nation at decision point 904 is performed with respect to
root-set headers. As such, when a determination is made at
decision point 904 that all header elements have not been
processed, the process 900 retrieves a first header element at
block906. At block 908, the process 900 marks the header. As
described above, garbage collection management data asso
ciated with the respective header element, such as the marked
indication, may be used to mark the header. At block 910, the
process 900 retrieves pointer metadata associated with the
retrieved header element.
At block 912, the process 900 gets the next pointer associ

ated with the retrieved header. At decision point 914, the
process 900 makes a determination as to whether all pointers
associated with the retrieved header have been processed.
When a determination is made that all pointers associated
with the retrieved header have not been processed, the process
900 retrieves the header associated with the respective pointer
at block 916 using the header metadata associated with the
pointer that is being processed. At decision point 918, the
process 900 makes a determination as to whether the header

10

15

25

30

35

40

45

50

55

60

65

16
is already marked. It should be noted that the retrieved header
will not be marked during the first iteration of the process 900,
though the retrieved header may already be marked in asso
ciation with processing during otheriterations of the process
900.
When a determination is made at decision point 918 that

the header is already marked, the process 900 returns to block
912 and gets the next pointer associated with the header
retrieved at block 906 and iterates as described above. When
a determination is made at decision point 918 that the header
is not already marked, the process 900 saves/pushes the next
pointer location onto the stack at block 920 and returns to
block 908 to mark the header and iterates as described above.

Returning to the description of decision point 914, when a
determination is made that all pointers associated with the
retrieved header have been processed, the process 900 makes
a determination at decision point 922 as to whether the stack
is empty. When a determination is made that the stack is not
empty, the process 900 populates the next pointer location at
block 924, returns to block 912 to get the next pointer and
iterates as described above. When a determination is made
that the stack is empty at decision point 922, the process 900
returns to decision point 904 to determine whether all root-set
headers have been processed. As such, the process 900 recur
sively processes all root-set headers and all pointers with
header references until all root-set headers have been pro
cessed. When a determination is made at decision point 904
that all root-set headers have been processed, the process 900
identifies unused headers (e.g., headers that have not been
marked) at block 926. The process 900 sends a free object
message to the main processor 102 for each identified unused
elementatblock928. The process 900 then returns to decision
point 902 to await a new garbage collection indication.
As such, the process 900 performs garbage collection

activities on behalf of the main processor 102 using the pro
cessor memory stack. The process 900 processes allocated
header elements and associated pointer metadata to identify
all pointers associated with each header element. Each
pointer is processed to identify its associated header metadata
to further identify additional header elements associated with
the respective memory allocations. As such, the process 900
recursively processes root-set headers using pointer metadata
and pointers using header metadata, respectively, to perform
a mark phase of a garbage collection algorithm. The process
900 also performs the sweep phase to identify all unused
elements that were not marked during the mark phase and
sends a free object message for each unused element to the
main processor 102. The processing described above may be
performed, for example, by computing a transitive closure of
a reachability graph for allocated objects. Objects that are not
found to be part of the transitive closure may be freed since
they are not referenced.
As described above in association with FIG.1 through FIG.

9, the example systems and processes provide hardware off
load memory garbage collection acceleration. Many other
variations and additional activities associated with hardware
off-load memory garbage collection acceleration are possible
and all are considered within the scope of the present subject
matter.

Those skilled in the art will recognize, upon consideration
of the above teachings, that certain of the above examples are
based upon use of a programmed processor, Such as the
coprocessor 104. However, the invention is not limited to
Such example embodiments, since other embodiments could
be implemented using hardware component equivalents such
as special purpose hardware and/or dedicated processors.
Similarly, general purpose computers, microprocessor based

US 8,943,108 B2
17

computers, micro-controllers, optical computers, analog
computers, dedicated processors, application specific circuits
and/or dedicated hard wired logic may be used to construct
alternative equivalent embodiments.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

5

10

15

25

30

35

40

45

50

55

60

65

18
Aspects of the present invention are described below with

reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable storage medium that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable storage medium produce an
article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control
lers.

US 8,943,108 B2
19

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur
rently available types of network adapters.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
What is claimed is:
1. A method, comprising:
receiving, from a primary processor at a hardware memory
management coprocessor, a plurality of individual
memory allocation messages, where each individual
memory allocation message identifies and is received in
real time in response to a primary memory allocation in
a primary memory made by the primary processor,

allocating, within a second memory of the hardware
memory management coprocessor in response to receiv
ing each individual memory allocation message, a rep
resentation of the primary memory allocation identified
by the respective received individual memory allocation
message, where the hardware memory management
coprocessor maintains a real-time memory representa
tion of the primary memory within the second memory;

determining, based upon the allocated representations of
each primary memory allocation within the second
memory, to free at least one primary memory allocation
in the primary memory of the primary processor, and

sending, for each of the at least one primary memory allo
cation in the primary memory to free, an individual
memory free message to the primary processor instruct
ing the primary processor to free the primary memory
allocation in the primary memory referenced by the
respective memory free message.

2. The method of claim 1, where the second memory com
prises a memory device identical in size to the primary
memory and where allocating, within the second memory of
the hardware memory management coprocessor in response
to receiving each individual memory allocation message, the
representation of the primary memory allocation identified by
the respective received individual memory allocation mes
Sage comprises:

10

15

25

30

35

40

45

50

55

60

65

20
allocating, for each identified primary memory allocation

in the primary memory made by the primary processor
in response to receiving each individual memory alloca
tion message, a memory element within the second
memory identical in size to the respective identified
primary memory allocation in the primary memory
made by the primary processor.

3. The method of claim 1, where the second memory com
prises a memory device Smaller in size than the primary
memory and where allocating, within the second memory of
the hardware memory management coprocessor in response
to receiving each individual memory allocation message, the
representation of the primary memory allocation identified by
the respective received individual memory allocation mes
Sage comprises:

allocating, for each identified primary memory allocation
in the primary memory made by the primary processor
in response to receiving each individual memory alloca
tion message, a memory allocation header element
within the second memory comprising a base address
and a size of the respective identified primary memory
allocation within the primary memory.

4. The method of claim 3, further comprising:
receiving a memory pointer update message from the pri
mary processor in response to a pointer initialization
performed by the primary processor, where the memory
pointer update message comprises a primary memory
address associated with one primary memory allocation
and a pointer value;

identifying a memory allocation header element within the
second memory with a base address that matches the
primary memory address:

allocating a memory pointer element within the second
memory;

indexing the memory pointer element relative to the
memory allocation header element within the second
memory; and

initializing the memory pointer element with the pointer
value.

5. The method of claim 4, where indexing the memory
pointer element relative to the memory allocation header
element within the second memory comprises generating
pointer metadata that associates the memory allocation
header element with one or more memory pointer elements,
where the pointer metadata identifies a storage location of the
memory pointer element within the second memory, derived
via an associative mapping structure, based upon information
within the memory allocation header element.

6. The method of claim 4, where indexing the memory
pointer element relative to the memory allocation header
element within the second memory comprises generating
header metadata that associates the memory pointer element
with the memory allocation header element, where the header
metadata identifies a storage location of the memory alloca
tion header element within the second memory, derived via
one of a hash table and an associative mapping structure,
based upon information within the memory pointer element.

7. The method of claim 1, where:
receiving, from the primary processor at the hardware
memory management coprocessor, the plurality of indi
vidual memory allocation messages, where each indi
vidual memory allocation message identifies and is
received in response to the primary memory allocation
in the primary memory made by the primary processor
comprises receiving each individual memory allocation
message from the primary processor via a first uni-di
rectional message queue; and

US 8,943,108 B2
21

sending, for each of the at least one primary memory allo
cation in the primary memory to free, the individual
memory free message to the primary processor instruct
ing the primary processor to free the primary memory
allocation in the primary memory referenced by the
respective memory free message comprises sending, for
each of the at least one primary memory allocation in the
primary memory to free, the individual memory free
message to the primary processor via a second uni
directional message queue.

8. The method of claim 1, where determining, based upon
the allocated representations of each primary memory allo
cation within the second memory, to free the at least one
primary memory allocation in the primary memory of the
primary processor comprises:

executing one of a memory reference counting garbage
collection algorithm and a mark and Sweep garbage
collection algorithm against the allocated representa
tions of each primary memory allocation within the sec
ond memory; and

determining, based upon the one of the memory reference
counting garbage collection algorithm and the mark and
Sweep garbage collection algorithm executed against the
allocated representations of each primary memory allo
cation within the second memory, to free the at least one
primary memory allocation in the primary memory.

9. A system, comprising:
a bi-directional message queue;
a primary processor operatively coupled to a primary
memory and the bi-directional message queue; and

a hardware memory management coprocessor operatively
coupled to a second memory and the bi-directional mes
Sage queue, and programmed to:

receive, from the primary processor via the bi-directional
message queue, a plurality of individual memory allo
cation messages, where each individual memory alloca
tion message identifies and is received in real time in
response to a primary memory allocation in the primary
memory made by the primary processor,

allocate, within the second memory in response to receiv
ing each individual memory allocation message, a rep
resentation of the primary memory allocation identified
by the respective received individual memory allocation
message, the hardware memory management coproces
Sor being programmed to maintain a real-time memory
representation of the primary memory within the second
memory;

determine, based upon the allocated representations of
each primary memory allocation within the second
memory, to free at least one primary memory allocation
in the primary memory of the primary processor, and

send, via the bi-directional message queue for each of theat
least one primary memory allocation in the primary
memory to free, an individual memory free message to
the primary processor instructing the primary processor
to free the primary memory allocation in the primary
memory referenced by the respective memory free mes
Sage.

10. The system of claim 9, where the second memory
comprises a memory device identical in size to the primary
memory and where, in being programmed to allocate, within
the second memory in response to receiving each individual
memory allocation message, the representation of the pri
mary memory allocation identified by the respective received
individual memory allocation message, the hardware
memory management coprocessor is programmed to:

10

15

25

30

35

40

45

50

55

60

65

22
allocate, for each identified primary memory allocation in

the primary memory made by the primary processor in
response to receiving each individual memory alloca
tion message, a memory element within the second
memory identical in size to the respective identified
primary memory allocation in the primary memory
made by the primary processor.

11. The system of claim 9, where the second memory
comprises a memory device Smaller in size than the primary
memory and where, in being programmed to allocate, within
the second memory in response to receiving each individual
memory allocation message, the representation of the pri
mary memory allocation identified by the respective received
individual memory allocation message, the hardware
memory management coprocessor is programmed to:

allocate, for each identified primary memory allocation in
the primary memory made by the primary processor in
response to receiving each individual memory alloca
tion message, a memory allocation header element
within the second memory comprising a base address
and a size of the respective identified primary memory
allocation within the primary memory.

12. The system of claim 11, where the hardware memory
management coprocessor is further programmed to:

receive a memory pointer update message from the pri
mary processor in response to a pointer initialization
performed by the primary processor, where the memory
pointer update message comprises a primary memory
address associated with one primary memory allocation
and a pointer value;

identify a memory allocation header element within the
second memory with a base address that matches the
primary memory address;

allocate a memory pointer element within the second
memory;

index the memory pointer element relative to the memory
allocation header element within the second memory;
and

initialize the memory pointer element with the pointer
value.

13. The system of claim 12, where, in being programmed to
index the memory pointer element relative to the memory
allocation header element within the second memory, the
hardware memory management coprocessor is programmed
to generate pointer metadata that associates the memory allo
cation header element with one or more memory pointer
elements, where the pointer metadata identifies a storage
location of the memory pointer element within the second
memory, derived via an associative mapping structure, based
upon information within the memory allocation header ele
ment.

14. The system of claim 12, where, in being programmed to
index the memory pointer element relative to the memory
allocation header element within the second memory, the
hardware memory management coprocessor is programmed
to generate header metadata that associates the memory
pointer element with the memory allocation header element,
where the header metadata identifies a storage location of the
memory allocation header element within the second
memory, derived via one of a hash table and an associative
mapping structure, based upon information within the
memory pointer element.

15. The system of claim 9, where the bi-directional mes
sage queue further comprises a first uni-directional message
queue and a second uni-directional message queue, and
where:

US 8,943,108 B2
23

in being programmed to receive, from the primary proces
Sor via the bi-directional message queue, the plurality of
individual memory allocation messages, where each
individual memory allocation message identifies and is
received in response to the primary memory allocation
in the primary memory made by the primary processor,
the hardware memory management coprocessor is pro
grammed to receive each individual memory allocation
message from the primary processor via the first uni
directional message queue; and

in being programmed to send, via the bi-directional mes
Sage queue for each of the at least one primary memory
allocation in the primary memory to free, the individual
memory free message to the primary processor instruct
ing the primary processor to free the primary memory
allocation in the primary memory referenced by the
respective memory free message, the hardware memory
management coprocessor is programmed to send, for
each of the at least one primary memory allocation in the
primary memory to free, the individual memory free
message to the primary processor via the second uni
directional message queue.

16. The system of claim 9, where, in being programmed to
determine, based upon the allocated representations of each
primary memory allocation within the second memory, to
free the at least one primary memory allocation in the primary
memory of the primary processor, the hardware memory
management coprocessor is programmed to:

execute one of a memory reference counting garbage col
lection algorithm and a mark and Sweep garbage collec
tion algorithm against the allocated representations of
each primary memory allocation within the second
memory; and

determine, based upon the one of the memory reference
counting garbage collection algorithm and the mark and
Sweep garbage collection algorithm executed against the
allocated representations of each primary memory allo
cation within the second memory, to free the at least one
primary memory allocation in the primary memory.

17. A computer program product comprising a computer
readable storage medium including computer readable pro
gram code, wherein the computer readable program code
when executed on a computer causes the computer to:

receive, from a primary processor at a hardware memory
management coprocessor, a plurality of individual
memory allocation messages, where each individual
memory allocation message identifies and is received in
real time in response to a primary memory allocation in
a primary memory made by the primary processor,

allocate, within a second memory of the hardware memory
management coprocessor in response to receiving each
individual memory allocation message, a representation
of the primary memory allocation identified by the
respective received individual memory allocation mes
Sage, where the hardware memory management copro
cessor maintains a real-time memory representation of
the primary memory within the second memory;

determine, based upon the allocated representations of
each primary memory allocation within the second
memory, to free at least one primary memory allocation
in the primary memory of the primary processor, and

send, for each of the at least one primary memory alloca
tion in the primary memory to free, an individual
memory free message to the primary processor instruct
ing the primary processor to free the primary memory
allocation in the primary memory referenced by the
respective memory free message.

5

10

15

25

30

35

40

45

50

55

60

65

24
18. The computer program product of claim 17, where the

second memory comprises a memory device identical in size
to the primary memory and where, in causing the computer to
allocate, within the second memory of the hardware memory
management coprocessor in response to receiving each indi
vidual memory allocation message, the representation of the
primary memory allocation identified by the respective
received individual memory allocation message, the com
puter readable program code when executed on the computer
causes the computer to:

allocate, for each identified primary memory allocation in
the primary memory made by the primary processor in
response to receiving each individual memory alloca
tion message, a memory element within the second
memory identical in size to the respective identified
primary memory allocation in the primary memory
made by the primary processor.

19. The computer program product of claim 17, where the
second memory comprises a memory device Smaller in size
than the primary memory and where, in causing the computer
to allocate, within the second memory of the hardware
memory management coprocessor in response to receiving
each individual memory allocation message, the representa
tion of the primary memory allocation identified by the
respective received individual memory allocation message,
the computer readable program code when executed on the
computer causes the computer to:

allocate, for each identified primary memory allocation in
the primary memory made by the primary processor in
response to receiving each individual memory alloca
tion message, a memory allocation header element
within the second memory comprising a base address
and a size of the respective identified primary memory
allocation within the primary memory.

20. The computer program product of claim 19, where the
computer readable program code when executed on the com
puter further causes the computer to:

receive a memory pointer update message from the pri
mary processor in response to a pointer initialization
performed by the primary processor, where the memory
pointer update message comprises a primary memory
address associated with one primary memory allocation
and a pointer value;

identify a memory allocation header element within the
second memory with a base address that matches the
primary memory address;

allocate a memory pointer element within the second
memory;

index the memory pointer element relative to the memory
allocation header element within the second memory;
and

initialize the memory pointer element with the pointer
value.

21. The computer program product of claim 20, where, in
causing the computer to index the memory pointer element
relative to the memory allocation header element within the
second memory, the computer readable program code when
executed on the computer causes the computer to generate
pointer metadata that associates the memory allocation
header element with one or more memory pointer elements,
where the pointer metadata identifies a storage location of the
memory pointer element within the second memory, derived
via an associative mapping structure, based upon information
within the memory allocation header element.

22. The computer program product of claim 20, where, in
causing the computer to index the memory pointer element
relative to the memory allocation header element within the

US 8,943,108 B2
25

second memory, the computer readable program code when
executed on the computer causes the computer to generate
header metadata that associates the memory pointer element
with the memory allocation header element, where the header
metadata identifies a storage location of the memory alloca
tion header element within the second memory, derived via
one of a hash table and an associative mapping structure,
based upon information within the memory pointer element.

23. The computer program product of claim 17, where:
in causing the computer to receive, from the primary pro

cessor at the hardware memory management coproces
Sor, the plurality of individual memory allocation mes
Sages, where each individual memory allocation
message identifies and is received in response to the
primary memory allocation in the primary memory
made by the primary processor, the computer readable
program code when executed on the computer causes the
computer to receive each individual memory allocation
message from the primary processor via a first uni-di
rectional message queue; and

in causing the computer to send, for each of the at least one
primary memory allocation in the primary memory to
free, the individual memory free message to the primary
processor instructing the primary processor to free the
primary memory allocation in the primary memory ref
erenced by the respective memory free message, the

10

15

25

26
computer readable program code when executed on the
computer causes the computer to send, for each of the at
least one primary memory allocation in the primary
memory to free, the individual memory free message to
the primary processor via a second uni-directional mes
Sage queue.

24. The computer program product of claim 17, where, in
causing the computer to determine, based upon the allocated
representations of each primary memory allocation within the
second memory, to free the at least one primary memory
allocation in the primary memory of the primary processor,
the computer readable program code when executed on the
computer causes the computer to:

execute one of a memory reference counting garbage col
lection algorithm and a mark and Sweep garbage collec
tion algorithm against the allocated representations of
each primary memory allocation within the second
memory; and

determine, based upon the one of the memory reference
counting garbage collection algorithm and the mark and
Sweep garbage collection algorithm executed against the
allocated representations of each primary memory allo
cation within the second memory, to free the at least one
primary memory allocation in the primary memory.

k k k k k

