
(12) United States Patent
Matsa et al.

US008935605B2

US 8,935,605 B2
Jan. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

(58)

VALIDATOR-DRIVEN ARCHITECTURE OF
AN XML PARSING AND VALIDATING
SOLUTION

Inventors: Moshe E. Matsa, Cambridge, MA (US);
Eric Perkins, Boston, MA (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1616 days.

Appl. No.: 12/130,285

Filed: May 30, 2008

Prior Publication Data

US 2008/0229292 A1 Sep. 18, 2008

Related U.S. Application Data
Continuation of application No. 1 1/460,050, filed on
Jul. 26, 2006.

Int. C.
G06F 3/00 (2006.01)
G06F 17/27 (2006.01)
U.S. C.
CPC G06F 17/2725 (2013.01)
USPC .. T15/237
Field of Classification Search
USPC 715/234, 243, 254, 237
See application file for complete search history.

VALIDATINGENGINE

GetNextTag()

PARSINGENGINE

3> <C></C> <dd </dd </ad

(56) References Cited

U.S. PATENT DOCUMENTS

2006, OO74838 A1*
2006/0212859 A1
2007/O250766 A1

OTHER PUBLICATIONS

4/2006 Srivastava 707/1
9, 2006 Parker et al.
10/2007 Medi et al.

Kenneth Chiu and Wei Lu “A Compiler-Based Approach to Schema
Specific XML Parsing”, Indiana University, May 2005. wan.
inrialpes.fr/www-workshop2004/ChiuLupdf.
IBM Systems Journal, vol. 45, No. 2, 2006, "Generation of efficient
parsers through direct compilation of XML Schema grammars.” E.
Perkins, M. Matsa, M.G. Kostoulas, A. Heifets, and N. Mendelsohn.
pp. 1-20.

* cited by examiner

Primary Examiner — Kyle Stork
(74) Attorney, Agent, or Firm — Cantor Colburn LLP. Nidhi
Garg

(57) ABSTRACT

A method for parsing a document in an Extensible Markup
Language (XML) format includes identifying data via the
XML format, defining a tag set including a plurality of tags,
defining a tokenizer that produces one token at a time, parsing
the XML document via a parser, validating the XML docu
ment via a validation engine, the validation engine driving the
tokenizer, the validating being an integral part of the parsing,
and permitting the validation engine to be written in a recur
sive-descent code-driven manner.

15 Claims, 6 Drawing Sheets

10

I2

14

U.S. Patent Jan. 13, 2015 Sheet 1 of 6 US 8,935,605 B2

VALIDATINGENGINE 10

GetNextTag()

12
PARSINGENGINE

3ald Cbd <C></C> <d></d></ad 14

3

FIG. 1

U.S. Patent Jan. 13, 2015 Sheet 2 of 6 US 8,935,605 B2

10 VALIDATING ENGINE

<a D

PARSINGENGINE 12

14

FIG. 2

U.S. Patent Jan. 13, 2015 Sheet 3 of 6 US 8,935,605 B2

10 VALIDATINGENGINE

GetNextTag()

PARSINGENGINE

<a> <C></C></bd <dd </dd </ad 14

5

12

FIG. 3

U.S. Patent Jan. 13, 2015 Sheet 4 of 6 US 8,935,605 B2

10 VALIDATING ENGINE

PARSINGENGINE

2a2 <C></cd <dd </dd </ad

12

14

FIG. 4

U.S. Patent Jan. 13, 2015 Sheet 5 of 6 US 8,935,605 B2

START 50

IDENTIFYING DATAVIA THEXML FORMAT 52

DEFINING ATAGSET INCLUDING A PLURALITY OFTAGS 54

DEFINING ATOKENIZER THAT PRODUCES ONE TOKEN ATA TIME 56

58

VALIDATING THEXMLDOCUMENT VIA AVALIDATION ENGINE, THEVALIDATION ENGINE
DRIVING THE TOKENIZER, AND THE VALIDATING BEING AN INTEGRAL PART OF THE PARSING

to I-60

FIG. 5

U.S. Patent Jan. 13, 2015 Sheet 6 of 6 US 8,935,605 B2

APPLICATION SETSUPTHE INPUT BUFFER AND PASSES CONTROL TO THE VE

VE CALLSGetNextTag() ON THE PE

PE READS THE Cad 74

PE UPDATES ITS STATE INCLUDING UPDATING TSPOINTER INTO
THE DATABUFFER TO AFTER THE Cad

PEPASSES THE <ad BACK TO THEVE, ENDING THE GetNextTag() CALL

VENTERNALLY CALLSValidate-a() 80

VE CALLSGetNextTag() ON THEPE 82

PEREADSTSCURRENT STATE AND READS THE -
 FROM THE BUFFER

PE UPDATESTSSTATE INCLUDING UPDATING ITS POINTER
INTO THE DATABUFFERTO AFTER THE -<be

PEPASSES THE BACK TO THEVE, ENDING THE GetNextTag()CALL

FIG. 6

70

72

76

78

84

86

88

US 8,935,605 B2
1.

VALIDATOR-DRIVEN ARCHITECTURE OF
AN XML PARSING AND VALIDATING

SOLUTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica
tion Ser. No. 1 1/460,050, filed Jul. 26, 2006. The disclosure of
the above application is incorporated herein by reference.

TRADEMARKS

IBM(R) is a registered trademark of International Business
Machines Corporation, Armonk, N.Y., U.S.A. Other names
used herein may be registered trademarks, trademarks or
product names of International Business Machines Corpora
tion or other companies.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to XML parsers, and particularly to

a method that treats validation engines as an integral part of
parsing by allowing the validation engines to be written in a
recursive-descent code-driven manner.

2. Description of Background
XML (Extensible Markup Language) has begun to work its

way into the business computing infrastructure and underly
ing protocols such as the Simple Object Access Protocol
(SOAP) and Web services. In the performance-critical setting
of business computing, however, the flexibility of XML
becomes a liability due to the potentially significant perfor
mance penalty. XML processing is conceptually a multitiered
task, an attribute it inherits from the multiple layers of speci
fications that govern its use including: XML, XML
namespaces, XML Information Set (Infoset), and XML
Schema. Traditional XML processor implementations reflect
these specification layers directly. Bytes, read off the “wire”
or from disk, are converted to some known form. Attribute
values and end-of-line sequences are normalized. Namespace
declarations and prefixes are resolved, and the tokens are then
transformed into some representation of the document
Infoset. The Infoset is optionally checked against an XML
Schema grammar (XML Schema, schema) for validity and
rendered to the user through some interface. Such as Simple
API for XML (SAX) or Document Object Model (DOM)
(API stands for application programming interface).

With the widespread adoption of SOAP and Web services,
XML-based processing, and parsing of XML documents in
particular, is becoming a performance-critical aspect of busi
ness computing. In Such scenarios, XML is invariably con
strained by XML parsing and validation by having the token
izer drive the validation engine. In fact, most tokenizers parse
the entire XML document by performing tokenizing with a
DOM or SAX event stream and then run the validation engine
over the stream oftokens or the DOM. However, technologies
that treat validation as an integral part of parsing have not
reached their full potential. Regardless of which manner of
pushing the tokens is used, none of the current technologies
allow the validation engine to be written in a recursive-de
scent code driven manner. As a result, this requires large
tables, which increase the memory footprint, thus slowing
processing efficiency. It also makes the validation code
slower, and obscures the control flow of the whole parsing and
validation processes.

10

15

25

30

35

40

45

50

55

60

65

2
Thus, it is well known that there are no existing technolo

gies that treat validation as an integral part of parsing. There
fore, it is desired to integrate validation and parsing, and
enable the writing of the validation engine in a recursive
descent code-driven manner.

SUMMARY OF THE INVENTION

The shortcomings of the prior art are overcome and addi
tional advantages are provided through the provision of a
method for parsing a document, the document being in an
Extensible Markup Language (XML) format, the method
comprising: identifying data via the XML format, defining a
tag set including a plurality of tags; defining a tokenizer that
produces one token at a time; parsing the XML document via
a parser, validating the XML document via a validation
engine, the validation engine driving the tokenizer, and the
validating being an integral part of the parsing; and permitting
the validation engine to be written in a recursive-descent
code-driven manner.
The shortcomings of the prior art are overcome and addi

tional advantages are provided through the provision of a
system for parsing a document, the document being in an
Extensible Markup Language (XML) format, the system
comprising: a network; and a host system in communication
with the network, the host system including XML software to
implement a method comprising: identifying data via the
XML format, defining a tag set including a plurality of tags;
defining a tokenizer that produces one token at a time; parsing
the XML document via a parser; validating the XML docu
ment via a validation engine, the validation engine driving the
tokenizer, and the validating being an integral part of the
parsing; and permitting the validation engine to be written in
a recursive-descent code-driven manner.
The shortcomings of the prior art are overcome and addi

tional advantages are provided through the provision of a
computer program for parsing a document, the document
being in an Extensible Markup Language (XML) format, the
computer program product comprising: a storage medium
readable by a processing circuit and storing instructions for
execution by the processing circuit for performing a method
comprising: identifying data via the XML format, defining a
tag set including a plurality of tags; defining a tokenizer that
produces one token at a time; parsing the XML document via
a parser, validating the XML document via a validation
engine, the validation engine driving the tokenizer, and the
validating being an integral part of the parsing; and permitting
the validation engine to be written in a recursive-descent
code-driven manner.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and the drawings.

TECHNICAL EFFECTS

As a result of the Summarized invention, technically we
have achieved a solution that integrates validation and pars
ing, thus resulting in a faster and more efficient validating
parser, without large tables, and with a clear control flow
through the entire parsing and validating processes.

BRIEF DESCRIPTION OF THE DRAWINGS

The Subject matter, which is regarded as the invention, is
particularly pointed out and distinctly claimed in the claims at

US 8,935,605 B2
3

the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates one example of a diagram showing a
validating engine communicating with a parser in order to
receive a start tag:

FIG. 2 illustrates one example of a diagram showing the
parser communicating with the validating engine in order to
send the start tag:

FIG. 3 illustrates one example of a diagram showing the
validation code calling a function GetNextTag();

FIG. 4 illustrates one example of a diagram showing the
parser transferring control back to the validating engine;

FIG. 5 illustrates one example of a method for parsing and
validating a document in a XML (Extensible Markup Lan
guage) format; and

FIG. 6 illustrates one example of a communication
between a validating engine and a parsing engine.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the exemplary embodiments is a method for
integrating validation and parsing processes. Another aspect
of the exemplary embodiments is a method for allowing a
validation engine to be written in a recursive-descent code
driven manner.
A recursive descent parser is a top-down parser built from

a set of mutually-recursive procedures (or a non-recursive
equivalent) where each Such procedure usually implements
one of the production rules of the grammar. Thus the structure
of the resulting program closely mirrors that of the grammar
it recognizes. Code-driven refers to the design style that is
common in some handcrafted programs. In general, there are
three styles of code in generated programs. In a program
generation system, the need for understanding and change
occurs at the specification level, not the program level. This
results in greater flexibility in the design of generated pro
grams. Three styles of generated programs are known. The
OO (Object Oriented) approach favors highly structured OO
techniques. The code-driven approach favors Straightforward
code with embedded data. The table-driven approach puts
data in a separate data section that is used by the code section.
A typical program generator will use some combination of
these three techniques. In the exemplary embodiments, a
generated code is preferred, which is generated from the DTD
or other grammar information for the XML dialect. From the
generated code an XML parser that is code-driven or table
driven may be generated. In most cases, most of the code for
the parser is static and unchanging, but tables are generated
from the DTD. In other words, these current solutions are
table-driven because that is the only viable approach. The
exemplary embodiments of the present invention allow for a
code-driven approach.
Once a class of XML documents is defined, there is a need

for a method of navigating through the XML documents.
XML cursors are away to navigate through an XML instance
document. Once a user loads an XML document, the user may
create a cursor to represent a specific place in the XML
document. Becausea user may utilize a cursor with or without
a schema corresponding to the XML document, cursors arean
ideal way to handle XML documents without the schema.
With the XML cursor, the user may utilize a token model to
move through the XML document in Small increments, or in
a manner similar to using a DOM-based model.

In the exemplary embodiments of the present application,
the validator-driven architecture has a validation engine drive

10

15

25

30

35

40

45

50

55

60

65

4
the tokenizer and the tokenizer produces one token at a time,
as needed by the validation engine. This enables the valida
tion engine to be written in a recursive-descent code-driven
manner. This results in a faster validating parser, without
large tables, and with a clear control flow through the whole
parsing and validation process. This makes the validation
code easier to write, test, maintain, and extend, as well as
making the code shorter and faster.

Below is one example of an algorithm containing the vali
dation code written in a recursive-descent code-driven man
ner. In particular, at any given point in the parse, the parsing
engine maintains a pointer in the XML buffer, as well as other
states, as appropriate. The validating engine maintains con
trol of the parse, and engages the parsing engine when it
requires a next piece of information from the XML instance
document, using for example a call function GetNextTag().
Consider the following DTD fragment:

<!ELEMENT a (bd)>
<!ELEMENT b (c)>

In this case, the validation code could be written in a recur
sive-descent code-driven manner, as indicated by this
pseudo-code:

validate-top-level-tag {
tag = GetNextTag();
if tag == "a')

validate-a();
else iftag = "b')

validate-b();
(ISO

error(“illegal top-level tag);

validate-a {
if GetNextTag() ==

validate-b();
(ISO

error(“a should start with a b'):
if GetNextTag() == “d')

validate-d();
(ISO

error(“a should continue with a d’):
if GetNextTag() == “?a)

return
(ISO

error(“a should end with a fa);

validate-b {
if GetNextTag() == “c”)

validate-cC);
(ISO

error(“b should start with a c');
if GetNextTag() == “/b')

return
(ISO

error(“b should end with a b'):

FIGS. 1-4 illustrate one example of a process diagram
showing a validating engine communicating with the parser
in order to receive one or more start tags.

FIG. 1 illustrates a validating engine 10 communicating
with a parsing engine 12. The parsing engine 12 receives one
or more tags from an input buffer 14. In FIG. 1, the process
starts in a routine at the top and the validating engine 10
requests a tag (i.e. <a tag 3) from the parsing engine 12.

In FIG. 2, the parsing engine 12 has updated its state,
including moving the pointer ahead, beyond the <a tag 3, to
the next spot 5 in an input buffer 14.

US 8,935,605 B2
5

In FIG. 3, the validating engine 10 receives the <ad tag 3
and the validation code proceeds by calling a “validate-a”
routine, whose first action is to re-call the function GetNext
Tag().

In FIG. 4, the parsing engine 12 decides to return the
tag 5 it received from the input buffer 14. Finally, the parsing
engine 12 transfers control back to the validating engine 10,
deciding that when asked it will continue the parse where its
state indicates that it left off, namely at the next spot 7.

Processing continues in this manner until the validating
engine 10 completes a path through the entire XML docu
ment. The validation code is very straightforwardly an imple
mentation of this particular DTD fragment, and thus the vali
dation code could be written in a generic manner to process
any DTD, and validate the XML instance document againstit.

Referring to FIG. 5, a method for parsing a document in a
XML format is shown. The parsing process commences at
step 50 when a user commences a document parsing opera
tion. At step 52 the data is identified to determine whether it is
XML format data. At step 54 a tag set is defined that includes
a plurality of tags. At step 56 a tokenizer that produces one
token at a time is defined. At step 58 the XML document is
validated via a validation engine, the validation engine driv
ing the tokenizer, and the validating being an integral part of
the parsing. At step 60 the parsing process terminates.

Referring to FIG. 6, a communication between a validating
engine and a parsing engine is shown. At step 70, the method
sets up the input buffer and passes control to the VE (validat
ing engine). At step 72, the VE calls GetNextTag() on the PE
(parsing engine). At step 74, the PE reads the <a tag. At step
76, the PE updates its state including updating its pointer into
the data buffer to after the <ad tag. At step 78, the PE passes
the <ad tag back to the VE, ending the GetNextTag() call. At
step 80, the VE internally calls validate-a(). At step 82, the VE
calls GetNextTag () on the PE. At step 84, the PE reads its
current state and reads the tag from the buffer. At step 86,
the PE updates its state including updating its pointer into the
data buffer to after the tag. At step 88, the PE passes the
 tag back to the VE, ending the GetNextTag() call.
The capabilities of the present invention can be imple

mented in Software, firmware, hardware or some combination
thereof.
As one example, one or more aspects of the present inven

tion can be included in an article of manufacture (e.g., one or
more computer program products) having, for instance, com
puter usable media. The media has embodied therein, for
instance, computer readable program code means for provid
ing and facilitating the capabilities of the present invention.
The article of manufacture can be included as a part of a
computer system or sold separately.

Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa
bilities of the present invention can be provided.

The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per
formed in a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention has been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

5

10

15

25

30

35

40

45

50

55

60

65

6
What is claimed is:
1. A method for parsing a document, the document being in

an Extensible Markup Language (XML) format, the method
comprising:

parsing the XML document via a parser;
validating the XML document via a validation engine oper

ating on a computer, the validation engine driving a
tokenizer to produce one token at a time from the XML
document, the driving being based on a recursive-decent
and code driven method, and the validating being an
integral part of the parsing.

2. The method of claim 1, wherein the parser maintains one
or more datatypes in a buffer.

3. The method of claim 1, wherein the validation engine
maintains control of the parser.

4. The method of claim 1, wherein the validation engine
activates the parser when the validation engine requires a next
piece of information from the XML document.

5. The method of claim 4, wherein the next piece of infor
mation is retrieved via a function GetNextTag().

6. A system for parsing a document, the document being in
an Extensible Markup Language (XML) format, the system
comprising:

a network; and
a host system in communication with the network, the host

system including XML software to implement a method
comprising:

parsing the XML document via a parser;
validating the XML document via a validation engine oper

ating on a computer, the validation engine driving a
tokenizer to produce one token at a time from the XML
document, the driving being based on a recursive-decent
and code driven method, and the validating being an
integral part of the parsing.

7. The system of claim 6, wherein the parser maintains one
or more datatypes in a buffer.

8. The system of claim 6, wherein the validation engine
maintains control of the parser.

9. The system of claim 6, wherein the validation engine
activates the parser when the validation engine requires a next
piece of information from the XML document.

10. The system of claim 9, wherein the next piece of infor
mation is retrieved via a function GetNextTag().

11. A computer program product for parsing a document,
the document being in an Extensible Markup Language
(XML) format, the computer program product comprising:

a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the pro
cessing circuit for performing a method comprising:

parsing the XML document via a parser;
validating the XML document via a validation engine oper

ating on a computer, the validation engine driving a
tokenizer to produce one token at a time from the XML
document, the driving being based on a recursive-decent
and code driven method, and the validating being an
integral part of the parsing.

12. The computer program product of claim 11, wherein
the parser maintains one or more datatypes in a buffer.

13. The computer program product of claim 11, wherein
the validation engine maintains control of the parser.

14. The computer program product of claim 11, wherein
the validation engine activates the parser when the validation
engine requires a next piece of information from the XML
document.

US 8,935,605 B2
7

15. The computer program product of claim 14, wherein
the next piece of information is retrieved via a function Get
NextTag().

