
(12) United States Patent
Levin et al.

US00889

(10) Patent No.:
(45) Date of Patent:

3128B2

US 8,893,128 B2
*Nov. 18, 2014

(54) REAL-TIME DISTRIBUTED MONITORING (58) Field of Classification Search
OF LOCAL AND GLOBAL PROCESSOR
RESOURCE ALLOCATIONS AND

None
See application file for complete search history.

DEALLOCATIONS
(56) References Cited

(75) Inventors: Oleg Levin, Acton, MA (US); Sonjeev U.S. PATENT DOCUMENTS
Jahagirdar, Cambridge, MA (US); M
Moshe Emanuel Matsa, Cambridge, 5,809,268 A * 9/1998 Chan T12/200
MA (US) 6,532,520 B1 3/2003 Dean et al.

6,601,083 B1* 7/2003 ReZnak T18, 104
(73) Assignee: International Business Machines 6,668,310 B2 ck 12/2003 McKenney

Corporation, Armonk, NY (US) 6,817,011 B1 * 1 1/2004 Reynolds 717/130
p s s 7,032,222 B1 * 4/2006 Karp et al. T18, 104

7,739,473 B1 6, 2010 Nordquist
(*) Notice: Subject to any disclaimer, the term of this 7,783,647 B2 8, 2010 E. et al.

patent is extended or adjusted under 35 8,087,029 B1* 12/2011 Lindholm et al. T18, 105
U.S.C. 154(b) by 0 days. 8,091,088 B2 * 1/2012 Kishan et al. T18, 104

2002/0199069 A1 12/2002 Joseph
This patent is Subject to a terminal dis- (Continued)
Ca10.

(21) Appl. No.: 13/416,394 FOREIGN PATENT DOCUMENTS
ppl. No.: 9

EP O817044 A2 7, 1998
(22) Filed: Mar. 9, 2012 OTHER PUBLICATIONS

(65) Prior Publication Data Paul West, et al., Core Monitors: Monitoring Performance in
US 2012/O167113 A1 Jun. 28, 2012 Multicore Processors, CF '09, May 18-19, 2009, Ischia, Italy.

(Continued)
Related U.S. Application Data Primary Examiner - Emerson Puente

(63) Continuation of application No. 12/969,692, filed on Assistant Examiner — Benjamin Wu
Dec. 16, 2010, now Pat. No. 8,776,061. (74) Attorney, Agent, or Firm — Grasso PLLC; Fred Grasso

(51) Int. Cl (57) ABSTRACT
Goof i5/16 (2006.01) Processes, devices, and articles of manufacture having pro
G06F II/00 (2006.015 visions to monitor and track multi-core Central Processor
G06F II/30 (2006.015 Unit resource allocation and deallocation in real-time are
G06F 9/50 (2006.015 provided. The allocation and deallocation may be tracked by

(52) U.S. Cl two counters with the first counter incrementing up or down
CPC G06F 9/5016 (2013.01); Y02B 60/142 depending upon the allocation or deallocation at hand, and

- - - - - - - - - - - - - • u. fs (2013.01) with the second counter being updated when the first counter

USPC 718/100: 718/104 709/224 370229. value meets or exceeds a threshold value.

370/230 11 Claims, 4 Drawing Sheets

OC PROCESSEXECUTIN

O
AREADECUATE

RESCURCES AWALABLE
TOMEETOSFOR CONTINUEDPROCESS

EXECUTIONNMLT-CCRE
ENVIRONMENT: DELAY ORREJECTEXECUTING

ADDITIONAL THREADSOR PROGRAMS
UNTILTHEGLOBALRESOURCECOUNTER
ISBELOYACCEPTABLEQOSLIMTS 12O EXECUTEPROGRAMCRTHREAD

MAINTAIN GOEARESOURCECONTER
WHEN THE PROGRAMIS EXECUTING

MAINTAIN LOCAL RESOURCECOUNTERFOR
EACH THREAD OF THE EXECUTINGPROGRAM

DOESGLOBAL
RESORCECONTEREXCEED

QCSTARGET
UPDATETHELOCAL RESOURCECONTERWHEN

THESPPORTNGRESCURESCALLEDORDRCPPEO
FORATHREAD OF THE EXECUTINGPROGRAM

NC)

EXECUTE ADDITIONAL
THREADSOR PROGRAMS

195

STHE
LOCAL RESOURCE

COUNTER THRESHOLDCROSSEDBECAUSE
(FMCSTRECENT

UPDATE

INCREASEORDECREASE THE GLOBALRESOURCE
COUNTER WITH THE WALECF THELOCALCOUNTER
ANDRESET THELOCAL RESOURCE COUNTERIZERO

17O

US 8,893,128 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2005/01 14605 A1* 5/2005 Iyer T11 133
2006, O136761 A1* 6, 2006 Frasier et al. 713,320
2006/0221819 A1 * 10, 2006 Padwekar 370,229
2007, OO86389 A1 4/2007 Park et al.
2007/0286071 A1* 12/2007 Cormode et al. 370,229
2008/0022283 A1*
2008.OO77909 A1*

1/2008 Krieger et al. .
3/2008 Collins et al. ..

718, 104
717,104

2008/0244576 A1* 10, 2008 Kwon et al. T18, 1
2009/0049449 A1* 2/2009 Varadarajan T18, 104
2009,0178041 A1 7/2009 Friess et al.
2009/0300134 A1* 12/2009 Smith et al. TO9,216
2010.0049985 A1 2/2010 Levow et al.
2010.0064.043 A1 3/2010 Iino et al. TO9,226
2010. 0235496 A1 9, 2010 Zhao
2010, O27 1940 A1 10, 2010 Padwekar
2010.0312872 A1 12/2010 Cormode et al.
2012/003O356 A1 2/2012 Fletcher TO9,226
2012/0066383 A1 3/2012 Cormode et al.
2012/0159502 A1* 6, 2012 Levin et al. T18, 104

OTHER PUBLICATIONS

Xiao Zhang, et al., Towards Practical Page Coloring-based Multi
Core Cache Management, EuroSys '09, Apr. 1-3, 2009 Nuremburg,
Germany.

Levent Akyil. Managing Applications' Thread Usage on Shared
Memory Systems to Improve Aggregate System Performance, Intel,
May 23, 2009.
Jiang Lin, et al., Enabling Software Management for Multicore
Caches with a Lightweight Hardware Support, SC '09, Nov. 14-20,
2009, Portland, Oregon.
David Tam, Managing Shared L2 Caches on Multicore Systems in
Software, Workshop on the Interaction between Operating Systems
and Computer Architecture, 2007.
Matthew A. Watkins, et al., Dynamically Managed Multithreaded
Reconfigurable Architectures for Chip Multiprocessors, PACT 10,
Sep. 11-15, 2010, Vienna, Austria.
Jichuan Chang, Cooperative Caching for Chip Multiprocessors, Uni
versity of Wisconsin-Madison, 2007.
Bryan Ford, et al., Evolving Mach 3.0 to a Migrating Thread Model,
1994.
Fenggueng Song, et al., Modeling of L2 Cache Behavior for Thread
Parallel Scientific Programs on Chip Multi-Processors, University of
Tennessee Sep. 2006.
Michael Hanus, Putting Declarative Programming into the Web:
Translating Curry to JavaScript, PPDP07, ACM, 2 Penn Plaza, Suite
701-NY, NY, Jul. 14-16, 2007.
International Search Report and Written Opinion, PCT Application
PCT/EP2010/067968, May 30, 2012.

* cited by examiner

U.S. Patent Nov. 18, 2014 Sheet 1 of 4 US 8,893,128 B2

1OO PROCESS EXECUTING

11O
AREADEQUATE

RESOURCES AVAILABLE
TO MEETOOSFOR CONTINUED PROCESS

EXECUTION IN MULT-CORE
ENVIRONMENT DELAY ORREECT EXECUTING

ADDITIONAL THREADS OR PROGRAMS
UNTILTHE GLOBAL RESOURCE COUNTER
ISBELOW ACCEPTABLEQOSLIMITS, 12O EXECUTE PROGRAM OR THREAD

MAINTAIN GLOBAL RESOURCE COUNTER
WHEN THE PROGRAMIS EXECUTING

MAINTAIN LOCAL RESOURCE COUNTERFOR
EACH THREAD OF THE EXECUTINGPROGRAM

UPDATE THE LOCAL RESOURCE COUNTER WHEN
THE SUPPORTING RESOURCE IS CALLED OR DROPPED

FOR A THREAD OF THE EXECUTING PROGRAM

13O

DOES GLOBAL
RESOURCE COUNTEREXCEED

(OSTARGET2

EXECUTE ADDITIONAL
THREADS OR PROGRAMS

195

IS THE
LOCAL RESOURCE

COUNTER THRESHOLD CROSSED BECAUSE
OF MOST RECENT

UPDATE

INCREASE ORDECREASE THE GLOBAL RESOURCE
COUNTER WITH THE WALUE OF THE LOCAL COUNTER
AND RESET THE LOCAL RESOURCE COUNTERTOZERO

17O
F.G. 1

U.S. Patent Nov. 18, 2014 Sheet 2 of 4 US 8,893,128 B2

2OO WHEN MEMORY IS ALLOCATED,
INCREMENT LOCAL RESOURCE COUNTER

21O
SABSOLUTE

WALUE OF LOCAL
RESOURCE COUNTEREQUAL TO

OR GREATER THAN
THRESHOLD2

UPDATE GLOBAL COUNTER WITH THE POSITIVE OR
NEGATIVEWALUE OF LOCAL COUNTERUSING

ATOMIC INCREMENT OPERATION

22O

RESET LOCAL COUNTERTO ZERO 23O

CALCULATEREVISED THRESHOLD USING
CURRENT MEMORY ALLOCATIONS

UPDATE EXISTING THRESHOLDIF REVISED
THRESHOLD SOUTSIDE OF ACCEPTABLE

DIFFERENCE

24-O

25O

FG. 2

U.S. Patent Nov. 18, 2014 Sheet 3 of 4 US 8,893,128 B2

PROVIDE MEMORY ALLOCATION FOR A SPECIFIC
THREAD - INT ALLOCATION SIZE

UPDATE LOCAL COUNTER TO ACCOUNT FORTHREAD
ALLOCATION LOCAL COUNTER = LOCAL COUNTER

+ ALLOCATION SIZE

32O

ABS
(LOCAL COUNTER) >=
GLOBAL THRESHOLD

CALCULATE AND UPDATE NEW GLOBAL COUNTER
VALUE GLOBAL COUNTER, GLOBAL COUNTER+

LOCAL COUNTER
34-O

REVISELOCAL COUNTER LOCAL COUNTER-0)

UPDATELOCALTHRESHOLD WALUE
(LOCAL THRESHOLD = (TOTAL MEMORY
GLOBAL COUNTER) / (23 NTHREADS)

33O

37O
CALCULATE AND

COMPARE THRESHOLD
PERCENT WITH LOCAL THRESHOLD

ABS (LOCAL THRESHOLD- GLOBAL THRESHOLD)
/ (GLOBAL THRESHOLD) >=
THRESHOLD PERCENT

38O

FIG. 3

US 8,893,128 B2

s

Q)

U.S. Patent

US 8,893,128 B2
1.

REAL-TIME DISTRIBUTED MONITORING
OF LOCAL AND GLOBAL PROCESSOR

RESOURCE ALLOCATIONS AND
DEALLOCATIONS

BACKGROUND

The present invention relates to shared resources, and more
specifically to selectively updating, in real-time, resource
status counters in a multi-core environment.

DESCRIPTION OF RELATED ART

Central Processing Units (CPUs) can include one or more
processing cores and may be coupled to or supported by
various resources. These Support resources may communi
cate with the core or cores to provide instructions, data, net
working, I/O, storage, and buffering services. As core clock
speeds have increased, the need to increase the speed and
robustness of these Support resources has increased as well.
The oft-repeated analogy, that a chain is as strong as it its

weakest link, can apply with regard to overall system pro
cessing speed. When computations are not conducted during
each clock cycle for one or more cores of the CPU, overall
performance can Suffer. These lost computation clock cycles
can be reduced by increasing the availability of instructions
and data to the processing cores of the CPU. For example,
buffers, which can stockpile instructions and data ahead of
processing, can be used and can serve to reduce lost CPU
clock cycles. Also, local cache, which can be faster and closer
than main memory, may be used to store regularly repeated
instructions and data, and anticipated instructions and data.
Other features, such as improved bus speeds and more robust
I/O methodologies, can also serve to increase overall system
computation speed.

Cache memory, one of the Supporting resources, can
include multiple blocks of high-speed memory for use by the
CPU. Rather than always reading from and writing to slower
main memory, cache memory may be employed to minimize
latency periods attributable to main memory read/write
operations. Thus, cache memory serves as closer and quicker
temporary storage for instructions and data.

Cache memory can vary in size, speed, and position rela
tive to the CPU. The cache closest to the CPU is often desig
nated as L1 cache and can be bifurcated with separate cache
for data and instructions. This L1 cache may reside on the
core complex of a CPU. The next cache further from the core
is often designated as L2 cache. L2 cache may be twice the
size or more of L1 cache and may be shared by more than one
CPU core. The third and final cache L3 cache—may be
larger than the L2 cache and may serve multiple cores and
multiple CPUs.
The size of each level of cache may serve to determine the

extent to which main memory is accessed during processing
and how much data is written to main storage afterwards.
Cache misses, instances when data or instructions needed for
a process are not found in cache, can serve to slow down the
overall performance of a CPU and a system.

BRIEF SUMMARY

Embodiments include processes, devices, and articles of
manufacture having provisions to monitor and track resource
allocation and deallocation. The allocation and deallocation
may be tracked by two counters, where the first counter incre
ments up or down depending upon the allocation or deallo
cation at hand, and where the second counter may be updated

10

15

25

30

35

40

45

50

55

60

65

2
when the first counter value meets or exceeds a threshold
value. The incrementing of the second counter in this fashion
may serve to reduce frequency by which the second counter is
updated and the frequency by which a resource associated
with that second counter is used as well. The value or status of
the second counter, which can be reflective of an available
quality of service, may be used when determining if a new
allocation request attributable to a resource is granted or
provisioned for.

In embodiments, a computing device comprising a bus;
processor, and resources may be provided. The processor
may be configured to track requests to allocate or deallocate
the first processor resource: increment a first resource counter
up or down with an increment reflecting the size of the allo
cation or deallocation of the first resource; determine, after
incrementing the first resource counter up or down, whether
the absolute value of the first resource counter meets or
exceeds a first resource counterthreshold; and when the abso
lute value of the first resource counter is determined to meet
or exceed the first resource counterthreshold, update a second
counter with an increment reflecting the value of the first
resource counter size. The processor may be further config
ured to reset the first resource counter and; before finalizing a
request to allocate a processor resource, consider the value of
the second counter, and determine if a quality of service
criteria can be satisfied if the requested allocation of the
processor resource is finalized.

In embodiments, when the difference between the first
resource counter threshold and the global threshold exceeds a
predetermined percentage, the processor may update the first
resource counter threshold with a revised first resource
counter threshold for use in Subsequent monitoring.

In embodiments, the processor may be a multi-core pro
cessor and the first resource may be cache or other memory. In
embodiments, the requests to allocate or deallocate resources
may be linked to the initiation or conclusion of process
threads running on the multi-core processor and the requests
to allocate or deallocate the processor resources may be made
for each thread allocation or deallocation.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 shows a process with features and elements consis
tent with embodiments of the invention.

FIG. 2 shows a process with features and elements consis
tent with embodiments of the invention.

FIG.3 shows a process with features and elements consis
tent with embodiments of the invention.

FIG. 4 shows a device with features and elements consis
tent with embodiments of the invention.

DETAILED DESCRIPTION

Embodiments of the invention relate to shared resources
and the selective update of status counters of these resources
in a multi-core environment. In embodiments, local and glo
bal resource counters may be used to evaluate the availability,
workload, or status of a resource. As the resource is allocated
or deallocated, a local counter aligned with that resource may
be incremented or decremented in value consistent with the
actual allocation or deallocation. The change in value of the
local counter may be used to update a global counter if a
threshold has been met or crossed. If the threshold has not
been met or crossed, additional allocations and deallocations
may be tracked by the counter with concomitant increases or
decreases in the value of the counter. Once again, the current

US 8,893,128 B2
3

counter status may be compared to a threshold value. If the
threshold value is met or crossed, the local counter may be
reset to Zero, and the applicable global counter may be
increased or decreased by the counter value.
The global counter value may be used to inform or track

resource availability, status, or quality of service. In other
words, if a resource is under pressure, as reflected by the
global counter, threads, processes, data transfer, or other
operations may be held or rerouted to available resources.
Likewise, when a resource is available or underutilized, the
global counter may inform that status as well. For example,
when main memory is tracked as a resource, counters may be
used to reduce the number of read/write operations from/to
main memory, thereby increasing the use of local cache
memory and advantageously providing for improved speed
and operations associated with cache memory use.

Embodiments may be carried out in environments with
tracking and counter configurations designated in the operat
ing system, at the application level, in specific plug-ins or
modules, and in other ways as well. These embodiments may
be configured Such that a desired number of transactions can
be executed in parallel. They may also be configured such that
a target number of parallel transactions may be executed
together in the multi-core embodiment.

FIG. 1 shows a flowchart of features and elements as may
be employed in embodiments of the invention. As with each
of the embodiments described herein, the features and ele
ments may be used in processes, configured into articles of
manufacture, and used to adapt or configure computing
devices. As shown in FIG. 1, embodiments can serve to man
age main memory, reduce the number or frequency of cache
misses, improve overall system processing speed, improve
system efficiency or improve quality of service.
As can be seen in FIG. 1 at 100, features and elements of

embodiments may include various queries and steps carried
out during process execution. As shown at 110, a query, test,
action, or other provision may be carried out to determine if
adequate resources are available to meet quality of standards
for new processing or execution or continued processing or
execution of a program. This query, test, action, or other
provision may include checking the status of a resource,
querying a resource directly or indirectly, and determining
whether the status of the resource indicates that a thread, data,
or other portion of an executing program, may be accepted or
processed with the assistance of the resource.
As shown at 190, if adequate resources are not available,

the thread, program code, or data, may be delayed or rejected
from execution or handling until adequate resources to main
tain quality of service are available. This may include whether
a global resource counter indicates that adequate main
memory is available to execute or continue running threads,
portions of processes, or other code. This may also include
determining whether data strings represent information too
large for manipulation, storage, or buffering by existing
resources. These resources may include cache memory, buff
ers, I/O adapters, and serial interfaces, among others. Once
the delay or rejection has occurred or has lapsed for appro
priate reasons, the process execution may continue, as shown
at 100.
At 110, if adequate resources are determined to be avail

able to satisfy QOS parameters or guidelines for continued
processing, the particular program or thread may be executed
or the particular data may be transferred or stored, as shown at
120. Furthermore, a global resource counter, which may be
tracking multiple local resource counters for a single resource
type of a multi-core processor or across several multi-core
processors, may be increased by a predetermined amount in

10

15

25

30

35

40

45

50

55

60

65

4
order to reflect that the particular resource being tracked by
the global resource counter is being occupied. Likewise, if a
resource is being released or is not being used as much, the
global resource counter may be decreased in value to reflect
the concomitant change in the local counter value or the
resource allocation.
As shown at 140, a local resource counter, particularly

associated with or assigned to a local resource and a particular
thread or program code being executed, may also be
increased to reflect that the particular resource is currently
being used by the thread or program element. At Subsequent
points in time, when the resource is no longer being used, the
local resource counter may be decreased.
At 150, the local resource counter may be updated when

the Supporting resource associated with the local resource
counter is allocated or deallocated. In other words, if the
memory allocation is made to account for a process thread,
the local resource counter may be increased by the amount of
the memory allocation. Likewise, the local resource counter
may be decreased by an amount consistent with the amount of
deallocated memory. Furthermore, when a thread execution is
completed, and the thread no longer needs to maintain the
memory allocation, the local resource counter may be
decreased by an amount consistent with the amount of
memory previously allocated with the thread or presently
deallocated with the thread.

In embodiments, at certain instances in time, if the local
resource counter reaches a threshold, the local resource
counter may be reset to Zero and the global resource counter
may be increased or decreased incrementally. The meeting of
a threshold or crossing a threshold is shown at step 160, and
the increase or decrease of the global resource counter is
shown at step 170. Crossing the threshold may be completed
during both allocations and deallocations of the memory or
other resource. Consequently, in embodiments the absolute
value of the local resource counter may be considered to
determine whether a threshold is crossed and the value may
be added to or subtracted from the global counter to account
for an increase or decrease in resource availability or use. In
other words, in embodiments, such that the global resource
counter may be maintained, even though an absolute value of
the local resource counter is considered when determining
whether a threshold is crossed, the global resource counter
may be adjusted both upwardly and downwardly by an
amount consistent with the size of the resource allocation or
deallocation.

For example, when an amount of used memory is being
managed, if a threshold is 100 MB, and this threshold is
crossed because 10 MB is allocated for a thread (and the
existing counter reflects 90 MB or so of allocation), an addi
tional 100 MB may be added to the global resource counteras
the local resource counter is reset to zero. Likewise the deal
location of 10MB of memory may be considered to cross the
threshold and trigger an adjustment in the global resource
counter. However, in this instance, the global resource
counter may be reduced since the threshold crossing was
triggered by a deallocation of memory.
At 180, if the global resource counter does not exceed the

quality of service target additional threads or programs or
processes may be executed as shown at 195. Conversely, if the
quality of service target is exceeded, then, as shown at 190,
additional threads or programs may be delayed or rejected
until the global resource counter is below an acceptable QOS
limit. This QOS limit may be set by an administrator, may be
predetermined, may float according to required client needs,
or may be set by other methodologies as well.

US 8,893,128 B2
5

FIG. 2 shows features and steps of embodiments of the
invention. FIG. 2 addresses the incrementing and resetting of
the local counter and the incrementing and decrementing of a
global counter. FIG. 2 also addresses adjusting the threshold
by which the local resource counter may be measured.
As shown in FIG. 2 a process is loaded and executing in a

multi-core environment. At 200, when memories allocated
for a specific thread or program elements of local resource
counter are to be incremented, a local resource counter may
be assigned or attributed to the specific thread as well as to
resource type. This newly incremented local resource counter
value may be measured against a threshold to determine if the
recent change exceeds the threshold. This comparison is
shown at 210. There, a query is conducted as to whether an
absolute value of the local resource counter is greater than or
equal to the threshold. As shown in FIG. 2, if the threshold for
the local resource counter has not been met or crossed the
status counter may remain unchanged, the memory will be
allocated for the thread, and process execution may continue.
Conversely, if the absolute value of local resource counter is
equal to or greater than the threshold, then, as shown at 220,
the global counter may be updated using an atomic increment
operation. This atomic increment operation may be done with
a value that serves to increase the global counter as well as
decrease the global counter. As shown at 230, upon meeting
or crossing the threshold, the local counter may be reset to
Zero. As noted above, because the threshold may be compared
to absolute values of the allocation ordeallocation, the adjust
ment of the global resource counter may be in eitherapositive
or negative direction even though the local resource may be
reset to Zero.
As shown at 240, in embodiments, once a threshold has

been met a revised threshold may be recalculated using cur
rent memory allocations or other current resource conditions.
Recalculating the threshold after reset or after a percentage
change or other predetermined criteria, may serve to increase
the accuracy or exactness of memory allocations or other
managed resource allocations. Changing the threshold may
also serve to reduce the number of changes to the global
resource counter. Accordingly, as shown at 250, if a new
threshold calculated or determined is beyond an acceptable
difference, the threshold may be updated to reflect the newly
calculated or determined number. Comparably, if the newly
calculated threshold for 240 is within acceptable tolerance,
the previously existing threshold for the local resource
counter may remain. This type of threshold calculation and
adjustment can serve to move the threshold to a value that is
more Suitable to the processor environment.

FIG.3 shows features and steps of an embodiment as may
be employed for memory allocation in a multi-threaded
multi-core environment. The embodiment shown in FIG. 3
may be employed in various ways, methods, and architec
tures. As shown at 310, memory allocation for specific
threads in a multi-core environment may be provided by an
integer variable allocation size. As shown at 320, the multi
core environment may be configured to update local counters
to accommodate thread allocations through a configuration
that includes a variable local counter being set equal to the
local counter plus the integer variable allocation size. As
shown at 330, the multi-core environment may be configured
such that if the absolute value of the local counter variable is
greater than or equal to the value of the local threshold vari
able, then atomic increment of the global counter value can
apply and processing continues at 340. If the absolute value of
the local counter variable is not greater than or equal to the
local threshold variable, then the multi-core environment

5

10

15

25

30

35

40

45

50

55

60

65

6
may be configured such that it may wait for the next allocation
or deallocation operation as shown at 390.
As shown at 340, the multi-core environment may be con

figured such that the atomic increment of the existing global
counter value may be carried out using a variable global
counter and a variable local counter. These atomic increment
operations will update global counter with the local counter
variable being added to or subtracted from global counter
variable. In other words, the atomic increment operation may
serve to increase or decrease the existing global counter by a
value attributable to the existing local counter value of a
thread memory counter.
As shown at 350, when a threshold for a local thread

counteris met or crossed the local thread counter may be reset
to zero. This is reflected at 350 with the variable local counter
being set equal to Zero. As shown at 360, the multi-core
environment may be further configured to adjust or update the
threshold value for the local counters after the threshold value
has been satisfied. Adjusting or updating the threshold value
may not occur each time a threshold is crossed and may
depend on a percentage difference or other difference
between the size of the threshold, the value of the global
counter, and the number of threads being executed in the
multi-core environment. Tag 360 shows that an update of the
local threshold value may occur when the free memory (to
tal memory less the value of the global counter) is greater
than the inverse of the number of threads currently running in
a multi-core environment. The number of threads running
may be tabulated or accumulated based upon the number of
threads running on a single core in the multi-core environ
ment, as well as groups of cores in the multi-core environ
ment. In embodiments, the cores that are not yet evaluated
with regard to step 360 may be those cores that are served by
the same L1 cache or L2 cache. Other criteria may be used as
well.

Tag 370 reflects that the multi-core environment may be
further configured to calculate and compare a threshold per
cent with regard to a local threshold. This calculate and com
pare configuration may include finding the difference
between the local threshold and the global threshold, divid
ing the difference by the global threshold and in determining
if that percent difference is greater than or equal to a previ
ously established threshold percent. This calculate and com
pare may be conducted Such that Small changes in threshold
values may be discounted for Subsequent determinations but
larger changes in threshold values may provide for adjust
ment in the local threshold value for Subsequent determina
tions.
As shown at 380 the multi-core environment may be con

figured such that when the calculated compare shown at 370
does exceed or equala threshold percent, a Substitution opera
tion may be conducted. The multi-core environment may be
configured such that the Substitution operation may occur if
the global threshold subtracted from the total memory is
greater than or equal to the inverse of the number of threads
running on the specific core allocated to that resource.
The multi-core environment may also be configured Such

that if the calculated compare operation of 370 is not satisfied,
then the system environment may continue to wait for the next
allocation or deallocation operation. This waiting or standby
is shown at 390.

FIG. 4 shows a device as may be employed in accord with
embodiments. As can be seen the device may include a bus
420 that may be connected to an input/output adapter 490, a
serial port interface 480, removable memory 470, a network
adapter serial interface 460, and processors 440 and 430. The

US 8,893,128 B2
7

processors 430 and 440 may each include cache and indi
vidual cores; 441 and 431 show L3 cache in this device.
As can be seen the L3 cache is hanging off the bus 420. As

can also be seen the L2 cache is connected between the L1
cache and the L3 cache. The L2 cache, 442 and 432, each
service multiple cores 445 and 435. The L1 cache is shown at
443 and 433. This L1 cache may include data cache and
instruction cache and may serve to provide memory for pro
cessing conducted by processors 444 and 434.

Programs, instructions and operating systems, as shown at
450, may be loaded into main memory 470 as well as the
processors, cores, and cache. The multi-core environment
shown in FIG. 4 may, thus, be configured by specific operat
ing systems, applications, modules, plug-ins, and various
data consistent with the embodiments and teachings provided
herein.

In embodiments, the local resource counters may be con
figured to track thread allocations resident in the cache shown
in FIG. 4. Thus, as allocations for threads resident in the cache
increase or decrease, additional threads being run by the
processors 440 and 430 may or may not be started. Whether or
not the threads may begin to be executed or may call data or
otherwise use memory, may depend on the value of a local
counteras well as the global counter that may be used to track
main memory or another resource.

In embodiments, the blocks of memory within the cache
may be addressed and indexed to facilitate searching and
accurate storage and retrieval. The blocks of memory within
the cache may also be synchronized with main memory dur
ing or after processing operations. Cache memory may be
positioned between the CPU and main memory such that all
communications to main memory from the CPU must pass
through the cache. The cache may also be positioned apart
from the main memory but still coupled to the CPU.

In embodiments, two levels of memory status counters
may be employed and each thread may have its own local
counter which may be updated when memory allocation/
deallocation is undertaken on the applicable thread. The glo
bal counters may be externally accessible and, as explained
elsewhere, may be incremented/decremented with the value
of local counter when the value of the local counter reaches or
exceeds a threshold.

In embodiments, the threshold can be set to a specific value
or calculated based on the global counter and the total amount
of memory. For example, as explained in FIG. 3, the follow
ing formula can be used ((Total memory-Used memory)/2)/
the number of threads. When devices are configured in this
fashion, the reduction or increase in the threshold may move
exponentially based on the amount of free memory. For
example, the precision associated with the value of the global
counter may be determined by the value of the threshold.
Should the threshold be imprudently set to 0, the global
counter will be updated on each memory allocation/deallo
cation.

In embodiments, the local counters may intercept all calls
that make memory allocation/deallocation operation. For
Linux/Unix systems wrapper functions for standard C-library
malloc, free and realloc routines may employed to make these
intercepts. Still further, in embodiments, the local counters
may be implemented as either thread-local variables or as an
element of a data structure, for example:

10

15

25

30

35

40

45

50

55

60

65

8

#define MAX THREADS NUM 32 maximum number of threads
/* !!!. Up to MAX THREADS NUM worker threads, each 64 byte

to fill a cache line *
int local counters MAX THREADS NUM);

In embodiments, the global counter may be defined as
Volatile, and its value may not be stored in the register, so that
changes to it being visible across all the threads.

Volatile int global counter;
In embodiments, the total amount of memory available for

applications may be set once, but the available memory may
change if other processes running on the same system influ
ence it to make it Smaller. In circumstances where available
memory may not be frequently changed and may be safely
used with a slightly old value, the total memory variable may
be declared as non-volatile.

int total memory;
In embodiments, a variety of algorithms may be used to

calculate the value based on the amount of total memory, the
value of global counter, and the number of threads. As shown
in FIG. 3, the formula may recite ((total memory-global
counter)/2)/(the number of threads). In this embodiment, it is
presumed that the number of running threads is not changing,
if the latter isn't the case threshold may need to be recalcu
lated when a new thread starts or an existing thread finishes.

int threshold;
In embodiments, the threshold percent may be set once and

Subsequently determined towards a precision threshold value.
In embodiments, if two threads simultaneously calculate a
new threshold value, only one of them need update the vari
able. The threshold may be set locally to reduce the likelihood
of concurrent updates.

In embodiments, as explained above, when memory allo
cations or deallocations occur, the following actions may be
performed:

1. increment or decrement local counter depending on
whether memory is allocated or released;

2. if absolute value of local counter greater or equal to
threshold;

2a. update global counter with the value of local counter
using atomic increment operations;

2b. reset local counter to 0;
2c. calculate threshold using formula above; and
2d. set threshold if calculated value in Step 2c differs from

current threshold value more than threshold percent.
This is done to avoid unnecessary update and to reduce
the number of L2 cache misses; and

3. Exit.
The terminology used herein is for the purpose of describ

ing embodiments or portions of embodiments only and is not
intended to be limiting of the invention. As used herein, the
singular forms “a,” “an and “the are intended to include
plural forms as well, unless the context clearly indicates oth
erwise. It will be further understood that the terms “com
prises' and/or "comprising, when used in this specification,
specify the presence of stated features, integers, steps, opera
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operation, elements, components, and/or groups
thereof.

In embodiments, “COMPARE AND SWAP atomic incre
ment, or other concurrency primitives, can be implemented
by numerous methods of concurrency, including use of the
common main memory Compare and Swap (CAS), Load
Linked/Store-Conditional (LL/SC), or any other Read

US 8,893,128 B2
9

Modify-Write instruction, set of instructions, or constructs
based on Such instructions, or their alternatives.

Embodiments may be implemented as a computer process,
a computing system, a device, or as an article of manufacture
Such as a computer program product of computer readable
media. The computer program product may be a non-transi
tory computer storage medium readable by a computer sys
tem and encoding computer program instructions for execut
ing a computer process.

Aspects of the present invention may also be embodied as
a system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi
ment (including firmware, resident Software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir
cuit,” “module' or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod
ied thereon.
The computer readable medium may be a computer read

able storage medium. A computer readable storage medium
may be, for example, an electronic, magnetic, optical, elec
tromagnetic, infrared, or semiconductor System, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer
readable storage medium would include the following: an
electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described with refer
ence to flowchart illustrations and/or block diagrams of meth
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program

5

10

15

25

30

35

40

45

50

55

60

65

10
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro
grammable data processing apparatus to produce a machine,
Such that the instructions, which execute via the processor of
the computer or other programmable data processing appa
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowcharts and block diagrams in the Figures may

illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some implemen
tations, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown in
Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustrations, and combinations of blocks in the block
diagrams and/or flowchart illustrations, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.

While it is understood that the process software may be
deployed by manually loading directly in the client, server
and proxy computers via loading a storage medium Such as a
CD, DVD, etc., the process software may also be automati
cally or semi-automatically deployed into a computer system
by sending the process Software to a central server or a group
of central servers. The process software is then downloaded
into the client computers that will execute the process soft
ware. Alternatively, the process software is sent directly to the
client system via e-mail. The process software is then either
detached to a directory or loaded into a directory by a button
on the e-mail that executes a program that detaches the pro
cess Software into a directory. Another alternative is to send
the process software directly to a directory on the client
computer hard drive. When there are proxy servers, the pro
cess will select the proxy server code, determine on which
computers to place the proxy servers code, transmit the
proxy server code, then install the proxy server code on the
proxy computer. The process software will be transmitted to
the proxy server, then stored on the proxy server.

US 8,893,128 B2
11

What is claimed is:
1. A process comprising:
configuring a processor to monitor allocations and deallo

cations of a first processor resource and a second pro
cessor resource,
wherein monitoring the allocations and the dealloca

tions of the first processor resource and the second
processor resource comprises:
tracking requests to allocate or deallocate the first

processor resource and the second processor
resource;

for a requested allocation or deallocation of the first
processor resource, incrementing a count of a first
processor resource counter up or down with an
increment reflecting an extent of the respective
allocation or deallocation of the first processor
resource, the first processor resource counter con
figured to indicate negative values when the extent
of the requested deallocation is larger than the
existing count of the first processor resource
counter before the deallocation;

determining, after incrementing the count of the first
processor resource counter up or down, whether the
absolute value of the count of the first processor
resource counter meets or exceeds a first processor
resource counter threshold;

upon determining that the absolute value of the count
of the first processor resource counter meets or
exceeds the first processor resource counter thresh
old,

updating a count of a second counter up or down with
an increment reflecting the value of the first pro
cessor resource counter count and resetting the
count of the first processor resource counter;

before finalizing an additional request to allocate the
first or the second processor resource, comparing
the value of the second counter after updating the
count of the second counter with an increment
reflecting the value of the first processor resource
counter count with a predefined limit to determine
whether a predefined criteria can be satisfied if the
additional requested allocation of the first or sec
ond processor resource is granted; and

upon determining that a difference between the first
resource counter threshold and a second threshold
exceeds a predetermined value, updating the first
resource counter threshold with a revised first
resource counter threshold for use in Subsequent
monitoring.

2. The process of claim 1 wherein the processor being
configured is a multi-core processor and wherein the first
processor resource is L2 cache and the second processor
resource is main memory.

3. The process of claim 1 wherein the processor is a multi
core processor.

4. The process of claim 1 wherein the processor being
configured is a multi-core processor and wherein requests to
allocate or deallocate the first and the second processor
resource are linked to the initiation or conclusion of process
threads running on the multi-core processor.

5. The process of claim 1 wherein
the first processor resource is thread allocated memory,
the second processor resource is thread allocated memory,
requests to allocate or deallocate the first and the second

processor resource are attributable to thread allocation
or deallocation in the processor, and

10

15

25

30

35

40

45

50

55

60

65

12
the second counter is a global counter tracking every allo

cation ordeallocation of the first resource and the second
processor resource.

6. A process comprising:
configuring a processor to monitor allocations and deallo

cations of a first processor resource and a second pro
cessor resource,

wherein monitoring the allocations and the deallocations
of the first processor resource and the second processor
resource comprises:
tracking requests to allocate or deallocate the first pro

cessor resource and the second processor resource;
for a requested allocation or deallocation of the first

processor resource, incrementing a count of a local
counter up or down with an increment reflecting an
extent of the respective allocation or deallocation of
the first processor resource, the local counter config
ured to indicate negative values when the extent of the
requested deallocation is larger than the existing
count of the first processor resource counter before
the deallocation;

determining, after incrementing the count of the local
counter up or down, whether the absolute value of the
count of the local counter meets or exceeds a local
counter threshold;

upon determining that the absolute value of the count of
the local counter meets or exceeds the local counter
threshold, updating a count of a global counter up or
down with an increment reflecting the value of the
local counter count and resetting the value of the
count of the local counter;

before finalizing an additional request to allocate the
first or second processor resource, comparing the
value of the global counter after updating the count of
the global counter with the increment reflecting the
value of the local counter count with a predefined
limit to determine whether a predefined criteria can be
satisfied if the additional requested allocation of the
first or second processor resource is granted; and

upon determining that a difference between the local
counter threshold and a second threshold exceeds a
predetermined value, updating the local counter
threshold with a revised local counter threshold for
use in Subsequent monitoring.

7. The process of claim 6 wherein the processor being
configured is a multi-core processor and wherein the first
processor resource is L2 cache and the second processor
resource is main memory.

8. The process of claim 6 wherein the processor is a mul
ticore processor.

9. The process of claim 6 wherein the processor being
configured is a multi-core processor and wherein requests to
allocate or deallocate the first and the second processor
resource are linked to the initiation or conclusion of process
threads running on the multi-core processor.

10. The process of claim 6 wherein
the first processor resource is thread allocated memory,
the second processor resource is thread allocated memory,
requests to allocate or deallocate the first and the second

processor resource are attributable to thread allocation
or deallocation in the processor, and

the second counter is a global counter tracking every allo
cation ordeallocation of the first resource and the second
processor resource.

US 8,893,128 B2
13 14

11. A process for managing resources of a processor, the resetting the value of the first incremental counter after
process comprising: an absolute value of the count of the first incremental

configuring a processor to monitor allocations and deallo- counter is equal to or greater than a threshold for the
cations of resources of the processor, first incremental counter and continuing to increment

wherein monitoring the allocations and the deallocations 5 the first incremental counter up when resources are
of the resources comprises:
providing a first incremental counter, the first incremen

tal counter configured to increment up when
resources are allocated to the processor and to incre
ment down when resources are deallocated from the 10
processor, wherein the increment up or down reflects
an extent of the corresponding resource allocation or
deallocation, and the first incremental counter is con
figured to indicate negative values when the extent of
the resource deallocation is larger than the existing 15
count of the first incremental counter before the deal
location;

providing a global counter, the global counter updated
by a respective absolute value of a plurality of incre
mental counters including the first incremental 20
counter when the absolute value of any incremental
counter in the plurality of incremental counters is
equal to or greater than a respective threshold; ck k < k cic

allocated to a processor and to increment the first
increment counter down when resources are deallo
cated from the processor;

setting a new value for the threshold for the first incre
mental counter using currently available processor
memory allocations;

further updating the threshold value for the first incre
mental counter or a global threshold for the global
counter if the new threshold value of the first incre
mental counter is outside of an established tolerance:
and

receiving a request for an additional allocation of
resources, and before finalizing the request, compar
ing the value of the global counter with a predefined
limit to determine whether a predefined criteria can be
satisfied if the request is granted.

