
USOO8621475B2

(12) United States Patent (10) Patent No.: US 8,621.475 B2
Matsa et al. (45) Date of Patent: Dec. 31, 2013

(54) RESPONSIVE TASK SCHEDULING IN 2006/0212874 A1* 9, 2006 Johnson et al. 718/107
2006/0265712 A1* 11, 2006 Zhou et al. 718, 102

COOPERATIVE MULT-TASKING 2007/0136729 A1* 6/2007 Neuman T18, 102
ENVIRONMENTS

OTHER PUBLICATIONS

(75) Inventors: Moshe Morris Emanuel Matsa, Efficient User-S Protocol Impl tati ith QoS G CC ser-Space Protocol Implementations W1 O Ulaa

WSA W S.th tees Using Real-Time Upcalls R. Gopalakrishnan and Gurudatta M.
cIVanus, Warren, (US); S Parulkar IEEE/ACM Transactions on Networking, Vol. 6, No. 4

R. Morgan, Topsfield, MA (US) Published: Aug. 1998.*
Bringing Real-time Scheduling Theory and Practice Closer for Mul

(73) Assignee: International Business Machines timedia Computing R. Gopalakrishnan and Gurudatta M. Parulkar
Corporation, Armonk, NY (US) Published: 1996.

Windows Multitasking Jeff Prosise PC Magazine vol. 13, Num.9, p.
c - r 261-264 May 1994.*

(*) Notice: Subject to any disclaimer, the term of this Jikes Research Virtual Machine Design and Implementation of a
patent is extended or adjusted under 35 64-bit PowerPC Port Sergiy Kyrylkov The University of New
U.S.C. 154(b) by 1505 days. Mexico, pp. vi. vii. 1-10 Published: Dec. 2003.*

(21) Appl. No.: 11/952,042 * cited by examiner

(22) Filed: Dec. 6, 2007 Primary Examiner — Emerson Puente
Assistant Examiner — Paul Mills

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Steven L. Nichols; Van
US 2009/0150891 A1 Jun. 11, 2009 Cott, Bagley, Cornwall & McCarthy P.C.

(51) Int. Cl. (57) ABSTRACT
G06F 9/46 (2006.01) Task Scheduling in cooperative multi-tasking environments is

(52) U.S. Cl. accomplished by a task scheduler that evaluates the relative
USPC .. 718/103 priority of an executing task and tasks in a queue waiting to be

(58) Field of Classification Search executed. The task scheduler may issue a suspend request to
None lower priority tasks So that high priority tasks can be
See application file for complete search history. executed. Tasks are written or compiled with checks located

at opportune locations for Suspending and resuming the given
(56) References Cited task. The tasks under a suspend request continue operation

U.S. PATENT DOCUMENTS

5,247,677 A * 9/1993 Welland et al. T18, 103
5,850,536 A * 12/1998 McLain, Jr. 703/21
6,052,707 A * 4/2000 D’Souza 718, 106
6,971,091 B1 * 1 1/2005 Arnold et al. 717/145

2006/0085793 A1* 4/2006 McKenney T18, 100

YES

SENDSUSPEND
REOUEST TOTASK

13a

TASKCOMPLIED
WITH REQUEST

SUSPENDTASK

RESUMENEXT
TASK

15

TASK SCHEDUERDLE .
SUSPENDTASK

until they reach a check, at which point the task will Suspend
operation depending on specific criteria. By allowing both the
task and the task scheduler to assist in determining the precise
timing of the Suspension, the multi-tasking environment
becomes highly efficient and responsive.

15 Claims, 4 Drawing Sheets

TIMELIMIT
EXPRED

YES

FORCESUSPEND
TASK 14

U.S. Patent Dec. 31, 2013 Sheet 1 of 4 US 8,621.475 B2

1O

TASK
SCHEDULERDLE

SUSPEND TASK2

YES

SEND SUSPEND
REQUEST TO TASK

TIMELIMIT
EXPRED2

TASK COMPLIED
WITH REQUEST

SUSPEND TASK

RESUMENEXT
TASK

15

FORCE SUSPEND
TASK 14-2

F.G. 1

U.S. Patent Dec. 31, 2013 Sheet 2 of 4

16 TASK OPERATIONS

INPUT DATA
AVAILABLE

CONTINUE
OPERATIONS

OUTPUT BUFFER
FULL2

MORE
OPERATIONS

SUSPEND
REQUEST?

YELD TO
SCHEDULER

22

FG. 2

US 8,621.475 B2

U.S. Patent Dec. 31, 2013 Sheet 3 of 4 US 8,621.475 B2

START COMPLIATION

EXAMINE CODE

24
CODES COMPUTE

INTENSIVE2

INSERT PERIODIC
CHECKS

COMPLE 26

END COMPLIATION

FG. 3

U.S. Patent Dec. 31, 2013 Sheet 4 of 4

27-N DO PROCESSING

26NINCREMENTTERATIONS

TERATIONS
= LIMIT?

SUSPEND REQUEST?

31N YED TO SCHEDUER

FG. 4

US 8,621.475 B2

US 8,621,475 B2
1.

RESPONSIVE TASK SCHEDULING IN
COOPERATIVE MULT-TASKING

ENVIRONMENTS

BACKGROUND OF THE INVENTION

In modern computing environments, computer systems are
generally required to multi-task, meaning that the computer
systems can handle a number of different tasks or processes at
the same time. Additionally, the various tasks and processes
to be completed may each have a different relative priority
based on a number of different factors.
More of the computing environment's resources should be

made available Sooner for higher priority tasks. Ideally com
puter systems in these multi-tasking environments can effi
ciently switch between lower priority tasks to higher priority
tasks to deliver maximum utility to the user or users. When a
high priority task is waiting to be executed, the time spent
waiting for a computer to perform a task that is low priority
results in an inefficient use of resources.

BRIEF SUMMARY OF THE INVENTION

A computer program product for a task that is to execute
within a cooperative multi-tasking environment includes a
computer usable medium having computer usable program
code embodied therewith, the computer usable program code
comprising computer useable program code configured to
perform a desired task; and computer useable program code,
within the code configured to perform the task, that is con
figured to check for a suspend request from a scheduler based
on what action the task is currently performing.
A computer program product for scheduling tasks within a

cooperative multi-tasking environment includes a computer
usable medium having computer usable program code
embodied therewith, the computerusable program code com
prising computer usable program code configured to act as a
task scheduler, the task Scheduler being configured to monitor
a relative priority of tasks currently in operation or in a queue.
The task scheduler is further configured to make a Suspend
request to a lower priority task so that a higher priority task
can be performed. The task scheduler is configured to allow
the lower priority task to continue running until the lower
priority task yields to the Suspend request.
A method of handling multiple tasks in a cooperative

multi-tasking environment includes issuinga Suspend request
with a scheduler to an executing task when a higher priority
task is waiting in a queue; and allowing the executing task to
comply with or temporarily ignore the Suspend request based
on an action occurring in the task.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings illustrate various embodi
ments of the principles described herein and are a part of the
specification. The illustrated embodiments are merely
examples and do not limit the Scope of the claims.

FIG. 1 is an illustrative flow chart which depicts one exem
plary process by which a task scheduler may interact with a
running process to efficiently suspend the running process,
according to principles described herein.

FIG. 2 is an illustrative flow chart which depicts one exem
plary process by which various checks that a task or function
called by a task may use to ensure that the task yields to the
task scheduler within a specific time limit, according to prin
ciples described herein.

10

15

25

30

35

40

45

50

55

60

65

2
FIG.3 is an illustrative flow chart which depicts one exem

plary process by which a compiler could add checks to a
computationally intensive function during compilation,
according to principles described herein.

FIG. 4 is an illustrative flow chart which depicts one exem
plary process by which a computationally intensive function
which does not read in any new data or output any new data
for numerous cycles is written so that it Suspends the repeti
tive calculations periodically to check for a suspend request,
according to principles described herein.
The drawings are only intended to clarify the function of

the invention in light of one particular example. They are not
intended to represent any particular order in which specific
functions of the invention should occur. Further, the drawings
are not intended to imply that certain events within the draw
ings can occur only a limited number of times. The drawings
are only meant to illustrate a particular example. Identical
reference numbers in various figures represent similar, but not
necessarily identical, elements.

DETAILED DESCRIPTION OF THE INVENTION

The present specification describes systems and methods
for deciding when to Suspend and resume competing, differ
ently prioritized tasks in a real-time operating environment
where stringent time performance requirements are specified,
for example, an extensible stylesheet language transforma
tions (XSLT) Web Services server. The present specification
describes systems and methods that increase the efficiency of
task execution by minimizing timing consumed by Suspend
ing and resuming tasks, thus allowing for more stringent
requirements to be met by the system. More specifically, the
present specification describes methods and system in which
tasks or processes are written so as to periodically check for a
Suspend request from a scheduler and yield to the Suspend
request, if made, at particular points within the task when it
would be efficient to accept a Suspend request. Because the
check for the Suspend request is based on what is occurring
with the task, the task can be written, including the Suspend
request checks, without knowledge of a particular computing
environment, scheduler or Quality of Service (QoS). Thus,
the present specification describes ways to cause a task to
yield to a suspend request at few enough points to maintain
high-performance while at the same time appropriately plac
ing those yield points to provide quick yielding from any QoS
request. With this invention, all of this can be done even in the
context of compiled XSLT and Web Services processing.
As will be appreciated by one skilled in the art, the present

invention may be embodied as a method, system, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
Software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining Software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module' or “system.” Furthermore, the
present invention may take the form of a computer program
product on a computer-usable storage medium having com
puter-usable program code embodied in the medium.
Any suitable computer usable or computer readable

medium may be utilized. The task Scheduler and Suspend
checks described herein, which are included in various task
code, typically execute while stored in Random Access
Memory (RAM). However, prior to actual implementation,
the instructions, Software or code may be stored on any com
puter-usable or computer-readable medium. The computer
usable or computer-readable medium may be, for example,
but not limited to, an electronic, magnetic, optical, electro

US 8,621,475 B2
3

magnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
non-exhaustive list) of the computer-readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a transmis
sion media such as those Supporting the Internet or an intra
net, or a magnetic storage device. Note that the computer
usable or computer-readable medium could even be paper or
another Suitable medium upon which the program is printed,
as the program can be electronically captured, via, for
instance, optical scanning of the paper or other medium, then
compiled, interpreted, or otherwise processed in a Suitable
manner, if necessary, and then stored in a computer memory.
In the context of this document, a computer-usable or com
puter-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device. The computer-usable medium may
include a propagated data signal with the computer-usable
program code embodied therewith, either in baseband or as
part of a carrier wave. The computer usable program code
may be transmitted using any appropriate medium, including
but not limited to the Internet, wireline, optical fiber cable,
RF, etc.
The present specification describes operations that occurat

the machine instruction level by the insertion of instructions,
e.g., checks for Suspend requests, into the programming for a
particular task or process. As described herein, these checks
may be written into the task or process code or may be
inserted by a compiler. The tasks and process program code
may be written in an object oriented programming language
such as Java, Smalltalk, C++ or the like. However, the com
puter program code for carrying out operations of the present
invention may also be written in conventional procedural
programming languages, such as the 'C' programming lan
guage or similar programming languages. The program code
may execute entirely on the user's computer, partly on the
user's computer, as a stand-alone software package, partly on
the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce
nario, the remote computer may be connected to the user's
computer through a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter
nal computer (for example, through the Internet using an
Internet Service Provider).
The present invention is described below with reference to

flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus
trations and/or block diagrams, can be implemented by com
puter program instructions. These computer program instruc
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in

10

15

25

30

35

40

45

50

55

60

65

4
a particular manner, Such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instruction means which implement the func
tion/act specified in the flowchart and/or block diagram block
or blocks.
The computer program instructions may also be loaded

onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
The present invention will now be described in detail with

reference to the various drawings. The descriptions within the
specification are merely examples used to explain various
aspects of the invention. The examples are intended only as
one specific embodiment of the invention and are not meant to
limit the scope of the invention. It will be apparent to one
skilled in the art that the present apparatus, systems, and
methods may be practiced without these specific details. Ref
erence in the specification to “an embodiment,” “an example'
or similar language means that a particular feature, structure,
or characteristic described in connection with the embodi
ment or example is included in at least that one embodiment,
but not necessarily in other embodiments. The various
instances of the phrase “in one embodiment' or similar
phrases in various places in the specification are not neces
sarily all referring to the same embodiment.

In computer systems operating in a real time environment
where users expect a certain level of performance, the deci
sion of which process to run at a particular time and how long
that process should run impacts the overall performance of
the system. These decisions can be made by a scheduler. The
scheduler, for example, may interrupt the processor at speci
fied intervals to switch from the execution of a lower priority
task to a highest priority task currently waiting in the queue.

This is often the schedule method used in desktop com
puter systems. However, there are computing environments
where greater performance is required, such as Web Services
and extensible stylesheet language transformations (XSLT).
In such environments, Service Level Agreements (SLAs)
may be in place to establish Quality of Service (QoS) stan
dards. QoS sets the requirements for the behavior of a com
puter system. In Web Services, the QoS standards specified in
the Service Level Agreement (SLA) guarantee a certain rate
of responsiveness for traffic through a Web Services proxy or
a Web Services server.
To ensure that the QoS standards defined by the SLA are

met, the operator of the Web Services engine typically uses a
scheduler to schedule tasks. Frequently, however, a scheduler
that merely interrupts the processor at a specified interval and
Switches the task to the current highest priority task cannot
meet QoS standards. The scheduler needs to be able to flex
ibly suspend and resume work on various tasks and processes
in an efficient manner in order to meet the SLA requirements.

Scheduling decisions and execution can be performed in a
variety of ways. In a first method, the scheduler indepen
dently makes the decision about when to force a particular
process to stop. The scheduler forces the process to Suspend
and saves the state of the process So that the process can be
restarted later at the point it was halted. This method allows
processes to be written without any knowledge of the sched
uler or QoS. Although there are advantages to this approach,
Such as ease of use and universal applicability, it has perfor
mance limitations which greatly reduce its ability to meet

US 8,621,475 B2
5

stringent QoS requirements. For example, this method is
often inefficient because the scheduler forces processes to
Suspend and resume no matter what they are currently doing
or how much time it might take to finish.
The second method is called cooperative multi-tasking. In

cooperative multi-tasking, processes have predefined yield
points or parameters that allow the process to be efficiently
stopped and restarted. These points must be programmed into
the process, frequently with a knowledge beforehand of the
scheduler and other factors in the computing environment
where the process will be executed. The advantage to this
approach is performance. For example, if a process only
needs a small amount of time to finish, there is no yield point
provided so that the task finishes rather than consuming time
and resources to Suspend and later resume. The drawbacks of
cooperative multi-tasking include the significant program
ming effort required to write each process so that it will yield
at opportune points within the process when it receives a
suspend request from the task scheduler when the scheduler
requires the process to be replaced by a higher priority pro
CCSS,

The present invention describes systems and methods for
deciding when to Suspend and resume competing, differently
prioritized tasks in a real-time operating environment where
stringent time performance requirements are specified. The
present invention increases the efficiency of task execution by
minimizing timing consumed by Suspending and resuming
tasks, thus allowing for more stringent requirements to be met
by the system. More specifically, the present specification
describes methods and system in which tasks or processes are
written so as to periodically check for a suspend request from
a scheduler and yield to the Suspend request, if made, at
particular points within the task when it would be efficient to
accept a suspend request. Because the check for the Suspend
request is based on what is occurring with the task, the task
can be written, including the Suspend request checks, without
knowledge of a particular computing environment, scheduler
or QoS.

For ease of explanation, the terms below have been defined
as they will be used in the present specification and in the
appended claims.
Web Service “Web Services’ refers to Internet and intra

net-based, self-contained, modular applications that perform
specific tasks, and are initiated automatically by programs
through the use of Internet standard technologies. Web Ser
vices employ interaction (e.g., binding, finding, etc.) imple
mented by the exchange of extensible Markup Language
(XML) messages. Web Services make it possible to integrate
systems that would otherwise require extensive development
efforts. Web Services provide a simple and streamlined
mechanism for applications to communicate over the Inter
net/intranet using established Standards and technologies and
without human intervention (i.e., program to program inter
action), and without the need to know the environment at each
end point.

Scheduler—A “scheduler' is a computer program that
manages when processes are given time to run on one or more
processors.
Computer Multi-tasking Environment—A “computer

multi-tasking environment' is a computer environment in
which multiple tasks or processes are waiting for run time on
a central processor or processors. The various tasks and pro
cesses may be assigned relative priorities based on the impor
tance of the task or a user Submitting the task.

Process—A "process” is any amount of code that can be
given time to run on the processor or processors.

5

10

15

25

30

35

40

45

50

55

60

65

6
Suspend—Unless the context indicates some other inter

pretation of the word, “suspend’ means to save the state of a
running process or task so that another process or task can run.

State “State' refers to the status of a systemata particular
point in time, including system and local variables which
would be needed to completely restore a process following
Suspension.
Task—A “task” is the same as a process and the term is

used interchangeably throughout the description.
Switch. To “switch' means to suspend one task and allow

another to run.
Halt To “halt’ means to stop a task, but not necessarily

permanently.
Periodic—"Periodic' is intended to take on a more general

meaning of the term where the time between events is not
necessarily always the same length.
Cycle—A “cycle' can be a processor cycle or an iteration

of a loop.
According to one exemplary embodiment, a scheduler for

a Web Services engine, or any engine in a computer multi
tasking environment, optimizes the scheduling of processes
for response time and efficiency by allowing running pro
cesses to be cooperatively involved in the Suspension deci
Sion. With traditional preemptive multitasking, processes or
tasks running in a multi-tasking environment have no input
into when they are Suspended. In such a case, the running
process could be suspended with only a few instructions left
to execute before it finishes. Suspending this process and later
resuming it only to complete a few instructions is inefficient.
In Some instances, the time it takes to suspend and resume the
task could be significantly longer than the time it would take
to allow the task to be executed to completion.

With reference now to FIG. 1, the operation of an illustra
tive task scheduler is shown. As noted above, the purpose of
a task Scheduler is to allocate computing resources efficiently
based on the relative priorities of competing tasks. Conse
quently, consistent with relative task priorities, a task Sched
uler may be configured to Switch tasks at regular intervals
using a timer, or it may be configured to Switch tasks accord
ing to user input. There are various ways that a task Scheduler
can use to decide when to switch tasks. The time spent by the
scheduler not specifically Suspending and resuming tasks will
be considered idle time herein even though the scheduler may
be performing other operations. The scheduler in an idle state
is represented by the “Task Scheduler Idle' box (10).
The decision box (11) labeled “Suspend Task?' represents

the various processes that the task Scheduler could use to
determine when a task should be suspended. When a decision
is made to Suspend a currently running task, the scheduler
raises a flag, sends a message, or uses other means to com
municate to the running task that it needs to be suspended.
This step is represented by the box “Send Suspend Request to
Task” (12).
At this point, the task scheduler waits for the task to

respond to the request to Suspend. The task Scheduler may
poll for a response from the task or respond to an interrupt.
The method of monitoring the task that is under a Suspend
request can vary, but there are two parameters that the sched
uler can monitor illustrated in decision boxes (13a) and (13b).
The first parameter is compliance by the task to the Suspen
sion request as shown in box (13a). The second parameter is
the expiration of a time limit for compliance that is deter
mined by the scheduler as shown in box (13b). Thus, the
scheduler essentially waits for the task to comply with the
Suspend request until a timer has expired. If the task complies
with the suspend request before the time limit expires, which
should happen under normal conditions, then the scheduler

US 8,621,475 B2
7

proceeds to suspend the task illustrated by the "Suspend
Task’ block (14a). If the time limit expires, the scheduler then
forces the task to suspend as shown by the “Force Suspend
Task' block (14b). The final step is for the scheduler to start
or resume the next task to be run (15), after which it returns
back to the idle state (10) until a task needs to be suspended or
started.
A specific example of a computing environment where it is

advantageous to efficiently prioritize tasks is a processor con
ducting extensible stylesheet language transformations
(XSLT). XSLT is used for the transformation of extensible
markup language (XML) documents into other XML or
“human readable' documents. XSLT is most commonly used
to convert data between different XML schemas or to convert
XML data into hypertext markup language (HTML) docu
ments. XSLT is widely used and allows significant flexibility
in sharing and processing information.

Consequently, a XSLT server may be tasked with compil
ing down multiple XSLT documents. The performance
demands on such an XSLT server, such as an IBM WebSphere
server, can be significant. To fulfill the users requests in a
timely manner, the XSLT tasks would optimally be processed
in a way that allows yielding low priority tasks at very Small
time slices or whenever the scheduler requires it. Ideally, a
scheduler system for XSLT applications would intelligently
Suspend tasks at points that promote efficiency without
requiring an extensive programming effort to rewrite the
tasks.
As described above, a process that is in progress can coop

eratively contribute to the decision of when it (the process)
should be suspended. To increase the efficiency of the sched
uling procedure, the processes are written so that they yield to
the scheduler at times when saving their current state is easy
and the overhead of task switching is minimized. In the XSLT
environment, this is done by inserting checks in the XSLT
code at key places to make Sure that there is a high likelihood
of the task of yielding to the scheduler within a very short
amount of time after receiving a request to do so. As used in
this specification and appended claims, the term “check” or
“checks” refers to a decision point or points inserted into the
operation of a process at which it is most convenient for the
process to suspend its operation.

With reference now to FIG. 2, the compiled task code has
three checks shown (17), (19), and (21). The first check is the
input data check (17). The input data check (17) is performed
whenever the task needs more input. The task determines if
the required input data is available. If the required input data
is unavailable, the task will be idle until the input data
becomes available. Consequently, if the required input data is
unavailable, the task should efficiently suspend execution,
because the task would be idle waiting for input data if not
Suspended. Consequently, when the task reaches a point in its
execution that it needs input data, the task will be pro
grammed to check for a Suspend request from the scheduler
and will yields to the Suspend request if the required input
data is unavailable.

While this input check (17) will increase efficiency and
performance, it may not alone produce the checks as fre
quently as needed to meet desired QoS standards. Conse
quently, additional checks will be described that can be
implemented with the input check to further increase effi
ciency and performance. It will be understood that the input
check (17), and other checks described herein, do not need to
occur in any particular order, but rather occur as dictated by
the operation of the task in which they are implemented.
Rather, the input check (17), for example, occurs at any time
when a task needs to obtain input data. If the task does not

10

15

25

30

35

40

45

50

55

60

65

8
require any input data, an input check (17) included in the
process code may not be utilized or may be eliminated from
the code entirely.

Another check implemented under the principles described
herein is the output buffer check (19). The output buffer check
(19) gives the task periodic chances to yield to a Suspend
request if the data being output is not yet being used. When
ever the task is generating output to a buffer, the task will be
programmed to periodically check whether the amount of
output data in the buffer exceeds a specific threshold. This
threshold is selected based on the use of the output data from
the buffer and indicates a minimum period of time before the
output data in the buffer will be exhausted. If the output buffer
check (19) determines that the output buffer is full or has an
amount of data exceeding the specified threshold, further
execution of the task at that point in time will be inefficient.
Consequently, the task could then efficiently comply with a
Suspend request rather than continuing to produce output data
for an already-full buffer. Thus, if the output buffer check (19)
determines that the output buffer is full or has an amount of
data exceeding the specified threshold, the task will check for
a Suspend request from the scheduler and comply with the
Suspend request if one has been issued. As indicated above
with respect to the input check (17), the output buffer check
(19) does not need to happen in any particular order relative to
any other checks performed. Moreover, if the task does not
generate output data to a buffer, the output buffer check (19)
can be ignored or eliminated from the task code.
The third check according to the principles described

herein is the Suspend request check (21), which is as shown as
a “Suspend Request?” box. This check (21) occurs periodi
cally within the task to see if there is a request to suspend the
task from the scheduler. According to one exemplary embodi
ment, the Suspend request check (21) in an XSLT environ
ment is inserted at the beginning of every template. In an
alternative embodiment, the Suspend request check (21) can
be done with minimal cycles of additional overhead by merg
ing it into other checks that are necessary at the beginning of
every task or template Such as checking to see if the stack is
Overrun, etc.
As indicated above, the structure of FIG. 2 is not meant to

imply that the checks must happen in any particular order nor
are the corresponding "Operations' boxes (16), (18), and (20)
meant to suggest that operations must happen between checks
or in any particular order. If any of the checks indicate that the
task needs to yield to the scheduler, the task proceeds to
“Yield to Scheduler” (22) allowing the scheduler to suspend
the current task and start or resume a higher priority task.

After implementing the three checks (17, 19, 21) described
above, a remaining issue that could leave the system prone to
slowly and inefficiently yielding to scheduler Suspend
requests is a single large template that is extremely compu
tationally intensive without reading in any additional input or
writing any additional output. In Such a case, the checks (17.
19, 21) are less effective in providing yield points to comply
with a suspend request because the computationally intensive
template does not require input data or produce output data.
Further, the Suspend request check (21) placed at the begin
ning of the computationally intensive template would be inef
fective after the process began.

However, most computationally intensive operations
inside of an XSLT template are actually done via XSLT
extension functions, XPATH functions, etc. According to one
exemplary embodiment, these functions can be written with
internal checks similar to those described above. The XSLT
extension functions would then be written to yield to the
scheduler in the same manner in as the tasks described above.

US 8,621,475 B2

Thus the problem reduces to native XSLT code, which does
not utilize extension functions and is extremely computation
ally intensive without reading in any additional input or writ
ing any additional output. In this case, the risk can be miti
gated by performing an analysis in the compiler that detects
any processing period that could be in this category (e.g. a
loop that could go for many iterations without generating any
new output), and then inserting explicit yield checks at these
points during the writing of the task. By way of example and
not limitation, in a task that includes a large number of loop
iterations without needing input data or producing output data
to be buffered, these yield checks could be inserted after a
specific number of iterations, such as every thousand itera
tions.

Accordingly, FIG.3 is an illustrative diagram showing one
exemplary embodiment of a method of compiling code which
inserts yield checks into specific categories of computation
ally intensive code. The compiler or, in the example of an
XSLT translator system, the XSLT translator, starts the com
pilation process (31) and examines the code (23) to be recom
piled or translated. The compiler then determines if the code
has computationally intensive algorithms such as a loop that
goes on for many iterations without reading or writing data
(24).

If the code is computationally intensive, the compiler
inserts a check or checks so that the scheduler periodically has
a chance to suspend the task (26). After this check is inserted,
the compiler continues with the remainder of the compilation
process as it would normally (25). At the conclusion of the
compilation process, the compilation task ends (32).

FIG. 4 is an illustrative flow chart which depicts one exem
plary process by which a computationally intensive function
which does not read in any new data or output any new data
for numerous cycles is configured such that it halts the repeti
tive calculations periodically to check for a Suspend request
from a controlling scheduler. The computationally intensive
function begins running after the insertion of a periodic check
during compilation as described above with reference to FIG.
3. The computationally intensive function performs its
designed processing operations (27).

According to one exemplary embodiment, when the com
putationally intensive function reaches an iterative loop or
otheriterative process, a counteris progressively incremented
at each iterative step (28). The computationally intensive
function periodically checks to see if the iteration counter has
reached a given limit value or values (29). If the iterations
have reached a defined limit, the task or function checks to
determine if it is under a Suspend request from the scheduler
(30). If there is a suspend request, the task or function yields
to the scheduler (31). If there is not a suspend request, the task
or function returns to its operations.

Because only computationally intensive sections of a task
are modified by the insertion of a check as described herein,
the amount of extra computation is negligible compared to the
overall amount of computation. Thus, the task that has
entered a computationally intensive routine can still coopera
tively contribute in a decision of whether to suspend, thereby
increasing the efficient operation of the multi-tasking envi
rOnment.
The preceding description has been presented only to illus

trate and describe embodiments and examples of the prin
ciples described. This description is not intended to be
exhaustive or to limit these principles to any precise form
disclosed. For example, there may be many types of compute
intensive functions, besides XSLT systems, that do not read or
write data for an extended period of time. These functions
could also be identified and an appropriate check inserted to

10

15

25

30

35

40

45

50

55

60

65

10
allow the process to yield to a Suspend request from the
scheduler in a timely fashion as described above. By way of
example and not limitation, the appropriate check may be
time or resource based instead of iteration based.

In Sum, a scheduler system when configured as described
in FIGS. 1 through 4 and the accompanying text, will have
increased capability to meet quality of service standards con
tained within service level agreements. The task scheduler is
designed in Such a way that it allows tasks that the scheduler
is trying to Suspend to continue running until the task yields to
the scheduler based on what is occurring within the execution
of that task. By allowing a currently executing task to coop
eratively make the decision about when to yield, the Suspen
sion and resumption of tasks can be more efficiently per
formed. The tasks are designed such that when they reach
periodical points where yielding to the scheduler would be
more efficient, the tasks check to determine if the scheduler
has requested that the tasks Suspend their operation. The tasks
then yield to the scheduler, allowing the scheduler to execute
tasks according to the relative order of their priority. These
checks can be advantageously written into the task by a pro
grammer or inserted by a compiler without any specific
knowledge of the scheduler or QoS.

For example, a task which requires input data may check to
see if there is any new data available to it and yields to the
scheduler if there is no new data available or after a particular
amount of input has been received. A task that is generating
new data will check the output buffer where the output data is
being stored and yield to the scheduler when the amount of
output data has reached a set limit. Tasks also periodically
check to see if they are receiving a request to suspend from the
task scheduler and yield to the scheduler at that time. Addi
tionally, if the tasks do not reach a yield point within a rea
sonable time, the task scheduler will force a task to Suspend.
Functions used by a task are implemented in a similar manner
as the tasks themselves.

Computationally intensive functions used by a task that do
not consume any new data or output any new data for many
cycles are written in a way that they periodically pause and
check to see if they need to be suspended by the task scheduler
and yield to the scheduler if there is a request to Suspend. A
compiler compiles code to be executed in a multi-tasking
environment in Such a way that it searches for computation
ally intensive functions described above and inserts into them
the required periodic checks to allow it to yield to the sched
uler within a set time limit.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

US 8,621,475 B2
11

The terminology used herein is for the purpose of describ
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Having thus described the invention of the present appli
cation in detail and by reference to embodiments thereof, it
will be apparent that modifications and variations are possible
without departing from the scope of the invention defined in
the appended claims.

What is claimed is:
1. A method of handling multiple tasks in a cooperative

multi-tasking extensible stylesheet language transformations
(XSLT) server, the method comprising:

preparing XSLT code of a XSLT task by aXSLT translator,
said preparing including inserting a plurality of suspend
checks into said XSLT code, wherein a suspend check
comprises an instruction which when executed causes
said XSLT task to determine whether a scheduler has
issued a suspend request to said XSLT task and to yield
to said scheduler when said determination is positive,
said inserting including said XSLT translator:
identifying one or more input portions of said XSLT

code which consume input data when executed and
inserting an input Suspend check at each identified
input portion;

identifying one or more output portions of said XSLT
code which produce output data when executed and
inserting an output Suspend check at each identified
output portion;

identifying each template of said XSLT code and insert
ing a template Suspend check at the beginning of each
identified template; and

identifying one or more iterative portions of said XSLT
code which do not include any non-native XSLT code
and any of said inserted input, output, and template
Suspend checks, and inserting, into each identified
iterative portion, a periodic suspend check configured
to be executed periodically during execution of the
identified iterative portion;

executing said prepared XSLT code of said XSLT task on a
computer processor, and

5

10

15

25

30

35

40

45

50

55

60

65

12
issuing, by said Scheduler, said Suspend request to said

executing XSLT task when a task with a priority higher
than that of the executing XSLT task is waiting in a
queue ready to execute.

2. The method of claim 1, wherein said output suspend
check is configured to be executed when an amount of output
data in a buffer receiving the output data exceeds a threshold.

3. The method of claim 1, wherein said input suspend
check is configured to be executed when said XSLT task
needs input data that is not currently available.

4. The method of claim 1, wherein said input suspend
check is configured to be executed when said XSLT task has
consumed a threshold amount of input data.

5. The method of claim 1, wherein said periodic suspend
check being configured to be executed periodically com
prises:

incrementing a counter at each iteration of the correspond
ing iterative portion; and

when the counter reaches a predefined limit, executing said
periodic Suspend check.

6. The method of claim 1, further comprising said sched
uler forcing said executing XSLT task to Suspend if said
executing XSLT task has not responded to an issued Suspend
request within a time limit.

7. A cooperative multi-tasking extensible stylesheet lan
guage transformations (XSLT) system for handling multiple
tasks, the system comprising:

at least one processor,
a computer-readable medium accessible to said processor

and storing code including instructions which, when
executed by said processor, cause said system to imple
ment a method comprising:
preparing XSLT code of a XSLT task by a XSLT trans

lator, said preparing including inserting a plurality of
Suspend checks into said XSLT code, wherein a Sus
pend check comprises an instruction which, when
executed by said processor, causes said XSLT task to
determine whether a scheduler has issued a Suspend
request to said XSLT task and to yield to said sched
uler when said determination is positive, said insert
ing including said XSLT translator:
identifying one or more input portions of said XSLT

code which consume input data when executed and
inserting an input Suspend check at each identified
input portion;

identifying one or more output portions of said XSLT
code which produce output data when executed and
inserting an output Suspend check at each identified
output portion;

identifying each template of said XSLT code and
inserting a template Suspend check at the beginning
of each identified template; and

identifying one or more iterative portions of said
XSLT code which do not include any non-native
XSLT code and any of said inserted input, output,
and template Suspend checks, and inserting, into
each identified iterative portion, a periodic Suspend
check configured to be executed periodically dur
ing execution of the identified iterative portion;

executing said prepared XSLT code of said XSLT task:
and

issuing, by said scheduler, said Suspend request to said
executing XSLT task when a task with a priority
higher than that of the executing XSLT task is waiting
in a queue ready to execute.

US 8,621,475 B2
13

8. The system of claim 7, wherein said output suspend
check is configured to be executed when an amount of output
data in a buffer receiving the output data exceeds a threshold.

9. The system of claim 7, wherein said input suspend check
is configured to be executed when said XSLT task needs input
data that is not currently available.

10. The system of claim 7, wherein said input suspend
check is configured to be executed when said XSLT task has
consumed a threshold amount of input data.

11. The system of claim 7, wherein said periodic suspend
check being configured to be executed periodically com
prises:

incrementing a counter at each iteration of the correspond
ing iterative portion; and

when the counter reaches a predefined limit, executing said
periodic Suspend check.

12. The system of claim 7, further comprising said sched
uler forcing said executing XSLT task to Suspend if said
executing XSLT task has not responded to an issued Suspend
request within a time limit.

13. A computer program product comprising a non-transi
tory computer-readable medium storing code including
instructions which, when executed by a processor, perform a
method of handling multiple tasks in a cooperative multi
tasking extensible stylesheet language transformations
(XSLT) server, the method comprising:

preparing XSLT code of a XSLT task by aXSLT translator,
said preparing including inserting a plurality of suspend
checks into said XSLT code, wherein a suspend check
comprises an instruction which when executed causes
said XSLT task to determine whether a scheduler has
issued a suspend request to said XSLT task and to yield
to said scheduler when said determination is positive,
said inserting including said XSLT translator:

10

15

25

30

14
identifying one or more input portions of said XSLT

code which consume input data when executed and
inserting an input Suspend check at each identified
input portion;

identifying one or more output portions of said XSLT
code which produce output data when executed and
inserting an output Suspend check at each identified
output portion;

identifying each template of said XSLT code and insert
ing a template Suspend check at the beginning of each
identified template; and

identifying one or more iterative portions of said XSLT
code which do not include any non-native XSLT code
and any of said inserted input, output, and template
Suspend checks, inserting, into each identified itera
tive portion, a periodic Suspend check configured to
be executed periodically during execution of the iden
tified iterative portion;

executing said prepared XSLT code of said XSLT task on a
computer processor; and

issuing, by said Scheduler, said Suspend request to said
executing XSLT task when a task with a priority higher
than that of the executing XSLT task is waiting in a
queue ready to execute.

14. The computer program product of claim 13, wherein
said output Suspend check is configured to be executed when
an amount of output data in a buffer receiving the output data
exceeds a threshold.

15. The computer program product of claim 13, wherein
said input suspend check is configured to be executed when
said XSLT task needs input data that is not currently available.

k k k k k

