
US008171395 B2

(12) United States Patent (10) Patent No.: US 8,171,395 B2
Kostoulas et al. (45) Date of Patent: May 1, 2012

(54) DATA REPORTINGAPPLICATION (56) References Cited
PROGRAMMING INTERFACES IN AN XML
PARSER GENERATOR FOR XML U.S. PATENT DOCUMENTS
VALIDATION AND DESERALIZATION 7,207,002 B2 * 4/2007 Mireku T15,234

2001/0054172 A1* 12/2001 Tuatini

(75) Inventors: Margaret Gaitatzes Kostoulas, 58,83. A. ck 838. E. etal." 715,513 arge et al.
E. MySM Matsa. 2004/0167937 A1* 8, 2004 Sirois et al. 707/2O3
ambridge, MA (US); Martha A. 2005/0097.455 A1* 5, 2005 Zhou et al. T15,513

Mercaldi, Concord, MA (US); Eric 2005/0097504 A1* 5/2005 Ballinger et al. T17/100
Perkins, Boston, MA (US) 2005, 0108627 A1* 5, 2005 Mireku T15,513

2007/0050704 A1* 3, 2007 Liu 715,513

(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US)

"Generation of efficient parsera through direct comilation of XML
(*) Notice: Subject to any disclaimer, the term of this Schemagrammars' Perkins, E.; Matsa,M; Kostoulas, M. G.; Heifets,

patent is extended or adjusted under 35 A.; and Mendelsohn, N. IBM Systems Journal, vol. 45, No. 2, 2006.
U.S.C. 154(b) by 1006 days. 20 pages.

(21) Appl. No.: 12/130,208 * cited by examiner

(22) Filed: May 30, 2008 Primary Examiner — Maikhanh Nguyen
9 74) Attorney, Agent, or Firm — Cantor Colburn LLP, Derek ey, Ag

(65) Prior Publication Data Jennings

US 2008/0229.293 A1 Sep. 18, 2008 (57) ABSTRACT

Related U.S. Application Data A method for interfacing with an XML (Extensible Markup
Language) parser generator to generate deserialization infor

(63) Continuation of application No. 1 1/465,818, filed on mation interleaved with XML parsing and validation, includ
Aug. 21, 2006, now abandoned. ing: providing an XML parser generator with information

about the schema which the instance data conforms to; pro
(51) Int. Cl. viding a data reporting application programming interface

G06F 3/00 (2006.01) (API) and a generator module; providing one or more imple
G06F 9/45 (2006.01) mentations of the data reporting API; providing the XML

(52) U.S. Cl. 715/234; 715/205: 715/237; 715/762; parser generator with a selected data reporting API imple
717/115; 717/143 mentation module; generating an XML parser to parse and

(58) Field of Classification Search 715/200 203, validate instance documents conforming to the specified
715/205, 209, 226, 234, 238, 256, 273, 274, input Schema and deserializing the instance documents into
715/700, 731,760, 762; 717/100, 101, 109, the desired deserialization format during the parse.

717/110, 111, 113, 114, 115, 143
See application file for complete search history. 7 Claims, 2 Drawing Sheets

100 300
Parser generator l Generated XML parser 1
ff Wildcard validation code f/content model is a wildcard

f/matching either "xx' or "xyz

while more wildcardParticles { - if (currentioken ==XX){
- generate validation code for next particle check attributes for
- allow API module to add AP code for each attribute iXX

} atts, add("attame", attralue);
throwevent

"startElement(xx, attrs)");

else if (currentToken = = XYZ) {

API.afterChoiceopentag (...)

200
Event streamAP module l
afterChoiceopenTag (token) {

Outfile generateAttributeCodectoken);
Outfile generatevent("startElement("--token--", attrs).")

US 8,171,395 B2 Sheet 1 of 2 May 1, 2012 U.S. Patent

I ’50IJI 00800I

US 8,171,395 B2 Sheet 2 of 2 May 1, 2012 U.S. Patent

3 °5).I.H. 0I900I

US 8,171,395 B2
1.

DATA REPORTINGAPPLICATION
PROGRAMMING INTERFACES IN AN XML

PARSER GENERATOR FOR XML
VALIDATION AND DESERALIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica
tion Ser. No. 1 1/465,818, filed Aug. 21, 2006. The disclosure
of the above application is incorporated herein by reference.

TRADEMARKS

IBM(R) is a registered trademark of International Business
Machines Corporation, Armonk, N.Y., U.S.A. Other names
used herein may be registered trademarks, trademarks or
product names of International Business Machines Corpora
tion or other companies.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of data reporting

when parsing XML documents, and more particularly to how
to directly deserialize the data in an application-specific for
mat, without costly intermediate processing and representa
tions.

2. Description of Background
Extensible Markup Language, or XML, parsers are

deployed in varying applications, each requiring different
application interfaces to report the data with. Sometimes this
is achieved by writing an entire application specific parser or
by writing the parser against a sufficiently general and low
level Application Programming Interface, or API, and Sup
plying transducers for application-specific data structures.
Other times, parsers are written to support several APIs, or are
written as a collection of multiple generalized components
only some of which are used each time. For example, Xerces,
an open source XML parser, Supports several versions of the
Simple API for XML, or SAX, and the Document Object
Model API, or DOM, as well as Xerces Native Interface, or
XNI, making it slower. Other XML parsers have been written
as a collection of generalized components, which the end user
has to assemble by hand. In all these cases, adding a new API
requires a lot of new code that is low-level, high-complexity,
hard-to-debug, and hard-to-maintain. The user ends up modi
fying the validation code to add support for a new data report
ing API.

Therefore, a method for generating the appropriate API
code relevant to the particular usage of an XML parser would
be highly desirable.

SUMMARY OF THE INVENTION

Exemplary embodiments include a method for interfacing
with an XML (Extensible Markup Language) parser genera
tor to generate deserialization information interleaved with
XML parsing and validation, including: configuring a parser
generator with information about the schema which the
instance data conforms to, in order to generate an XML parser
that parses and validates the instance data efficiently; provid
ing a data reporting application programming interface (API)
and a generator module; providing one or more implementa
tions of the data reporting API; providing the XML parser
generator with a data reporting API implementation module:
generating an XML parser to parse and validate instance

10

15

25

30

35

40

45

50

55

60

65

2
documents conforming to the specified input schema and
deserializing the instance documents into the desired deseri
alization format during the parse.

System and computer program products corresponding to
the above-summarized methods are also described and
claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

TECHNICAL EFFECTS

As a result of the Summarized invention, technically we
have achieved a solution, which provides a means of inter
facing with a standalone data reporting API generator module
that is interfaced with by the parser generator, to designate the
desired deserialization code into the generated parsing and
validation code.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates the interaction between the parsergen
erator and an event stream data reporting API generator mod
ule that uses SAX events to notify the application of the
instance document data, and shows the code generated in the
resulting parser, inaccordance with exemplary embodiments;
and

FIG. 2 illustrates the interaction between the parsergen
erator and a business object data reporting API generator
module for the case when deserialization into application
specific objects is needed by the application, in accordance
with exemplary embodiments.
The detailed description explains the preferred embodi

ments of the invention, together with advantages and features,
by way of example with reference to the drawings.

DETAILED DESCRIPTION OF THE INVENTION

The present invention and the various features and advan
tageous details thereof are explained more fully with refer
ence to the non-limiting embodiments that are illustrated in
the accompanying drawings and detailed in the following
description. It should be noted that the features illustrated in
the drawings are not necessarily drawn in all detail possible.
Descriptions of well-known components and processing
techniques are omitted so as to not unnecessarily obscure the
present invention in detail. The examples used herein are
intended merely to facilitate an understanding of ways in
which the invention may be practiced and to further enable
those of skill in the art to practice the invention. Accordingly,
the examples should not be construed as limiting the scope of
the invention.

In exemplary embodiments, a data reporting API module
may be implemented as an independent piece of the parser
generator. The data reporting API module is invoked during
code generation, and given context information of where the
parser is at the time of invocation. At that point, the data
reporting API module determines what code needs to be

US 8,171,395 B2
3

generated into the runtime instruction stream. The XML
Parser generated in this way contains the exact code needed to
generate the targeted event stream, business object, or other
structure, resulting in very efficient notifications or deserial
ization into objects, during the parsing phase.

Different implementations of the data reporting API object
are loaded during the code generation phase, based on infor
mation provided by the user regarding the desired deserial
ization format of the XML instance data. FIG. 1 shows an
example of an event stream API generator object that uses
SAX events to notify the application of the instance document
data. FIG. 2 shows sample API Generator code as well as the
corresponding generated code for the case where deserializa
tion into application specific objects is needed by the appli
cation. The specific deserialization API shown in the figure is
Java API for XML-Based Remote Procedure Call, or JAX
RPC.

In one embodiment, application specific operations are
inserted directly into the generated executable code, in a
context sensitive way. This is achieved by associating actions
with their context, in a way that disengages them from the
operational details of parsing and validation. Arbitrary code
can be inserted for specific contextual aspects, through the
use of a generalized data reporting API generator module,
which removes indirection layers at runtime and allows for
optimal performance. The compile-time separation of appli
cation-specific code into separate modules results in parser
generator code that is simpler and easier to maintain. For
example, adding or removing Support for a different data
reporting interface would no longer require any modification
of the parsing or validation code.

In one embodiment, custom parsers and validators of XML
instance documents are utilized. The customization comes
from the a priori knowledge of the schema the data must
conform to, as well as information about how the target appli
cation will use the instance document data. The latter cus
tomization is used by the data reporting generator module,
which is configured at startup with information about the
target application's runtime environment.
New data reporting generator modules may be developed

as needed by the application author, with no knowledge of the
parsing and validator code, while still retaining efficient
reporting of the data. The user simply needs to provide an
implementation of the DataReportingGenerator interface.
The parser generator will invoke methods in this implemen
tation during code generation to add user-defined code into
the generated parser, which will report the instance data in the
form desirable by the application. The application can choose
to ignore parts of the input data, and this is easily imple
mented in this model by providing no actions for certain
contexts. This enables applications to easily avoid the cost of
deserializing pieces of data of no interest to them, making the
whole processing of the input data even more efficient.

The data reporting module can be used to generate code
that creates appropriate data structures to store the instance
data, assign values to Such structures, and allocate space when
needed. It can also provide an expression for accessing the
instance document data, and this information can be used by
the parser generator when generating code that needs to
access this data, withouta-priori knowledge of how the data is
being stored. The interface between the data reporting API
Generator module and the parser generator includes passing
around two types of information:

Information is passed from the parser generator to the data
reporting generator module describing the current context
that the parser generator is currently generating code for: for
example, the type of the data that the parser generator is

10

15

25

30

35

40

45

50

55

60

65

4
currently handling. Such as the particular schema component.
Additional information, Such as the particle wrapping the
current schema component as well as references to compo
nents that may appear in place of the one currently handled
may also be provided to the data reporting generator module.

In the other direction, the data reporting generator module
provides information to the parser generator regarding how
instance data may be referenced during runtime and thus how
the parser generator can refer to this same data for its parsing
and validation requirements.

In exemplary embodiments, a standalone data reporting
generator module is interfaced with the parser generator, to
designate the desired deserialization code to be executed
while parsing the instance document. Different implementa
tions of the data reporting generator module can be plugged in
at parser generation time (compile time), to generate the
desired deserialization code. It should be noted that there is a
compilation phase, during which an XML parser is generated.
The parser is used at runtime to parse an instance document,
or XML data stream, and deserialize the data found in the
instance document. As used herein, deserializing the data
means converting the data into a form that can be used by the
user application (i.e., data structures, events, etc). Typically,
the XML parser would generate generic data structures, pos
sibly conforming to Some industry standard form; the user
application needs to convert this intermediate form to the
application specific data description. With the Suggested
approach, this two-step runtime conversion is eliminated
completely: the custom XML parser generated during the
compilation phase generates at runtime the data structures
needed by the end application.

For example, given the input document

<address.>
<street-Belmont Ridk/street
<numbers-20<numbers
<city>Bethesda</city>
<zip>04792</zip>

<address>

the data may be converted to a Java object, similar to
new Address (“Belmont Rd', 20, “Bethesda”, “04792)

or a SAX event stream, similar to:

startElement ("address');
startElement(“street');
characterData (“Belmont Rd');
endElement();
startElement(number);
characterData (20');
endElement();
startElement("city);
characterData (“Bethesda');
endElement();
startElement("zip"):
characterData(“O4792);

endElement();
endElement(); // </address

Notice how in one case, when the SAX event stream dese
rialization is used, the “number field is reported as the String
value “20. When the business object deserialization is used,
the “number field is reported as the integer value20. During
the parser generation phase, code is inserted from the data
reporting generator module into the generated parser to per
form the conversion appropriate for the desired deserializa

US 8,171,395 B2
5

tion, if any is needed. The parser generator is not aware of
Such conversions itself, it is up to the specific implementation
of the data reporting generator module to determine what
conversions might need to occur to convert the instance data
into the specific deserialization format.

FIGS. 1 and 2 illustrate the interaction of the parsergen
erator 100 with the data reporting generator module 200 and
210, during compile time, and sample output code that is
generated during this interaction 300 and 310. In the specific
example, the parser generator is generating validation code
for a wildcard. From the input schema that the XML instance
data conforms to, we know that the specific wildcard matches
either “XX” or “xyz' elements.

For illustrative purposes, the parser generator generates a
comment into the output stream. Next, the parser generator
proceeds to generate validation code for each of the wildcard
particles. The first wildcard particle matches “XX', so the
following code is generated:

if currentToken ==XX) {
check attributes for XX:

At this point the parser generator invokes the data reporting
generator module that has been instantiated for this compila
tion scenario, with a call to

<data-reporting-module>.afterChoiceOpenTag (...)
The data-reporting module can generate the appropriate

code for the matched particle. In the case of the event stream
data-reporting module (FIG. 1), this results in:

i? build up attribute list
Attributes attr list = new Attributes.Impl();
for each attribute that can appear in XX

attr list.add(“attrName”, attrValue)
throw Event("startElement(“, “xx”, “xx', attr list)');

In FIG. 2, where the desired deserialization is a JaxRPC
style business object, the code generated must create a busi
ness object of the appropriate type (in this case an XX object)
and initialize it with the data in the instance document. The
generated code looks like:

Object o = new XX();
for each attribute in XX

o.setField (“attrName”, attrValue)
O.setValue(value);

This process is repeated for all other particles of the wild
card, in this case the particle for XYZ.

Note that the attribute handling code will not appear in the
generated parserifthere were no attributes in the schema type
for this element, as this information is known at compile time.
Furthermore, the attrName will be hardcoded into the gener
ated parser at compile time, since it is known at that time,
while the attrValue will be generated as a variable which
points to the value in the parser validation code.
The capabilities of the present invention can be imple

mented in Software, firmware, hardware or some combination
thereof.
As one example, one or more aspects of the present inven

tion can be included in an article of manufacture (e.g., one or
more computer program products) having, for instance, com

10

15

25

30

35

40

45

50

55

60

65

6
puter usable media. The media has embodied therein, for
instance, computer readable program code means for provid
ing and facilitating the capabilities of the present invention.
The article of manufacture can be included as a part of a
computer system or sold separately.

Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa
bilities of the present invention can be provided.
The flow diagrams depicted herein are just examples.

There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per
formed in a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention has been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.
What is claimed is:
1. A method for interfacing with an XML (Extensible

Markup Language) parser generator to generate deserializa
tion information interleaved with XML parsing and valida
tion, the method comprising:

providing an XML parser generator with information
about a specified input schema which the instance data
conforms to:

providing a data reporting application programming inter
face (API) module; performing by a computer:

generating, by the XML parser generator, an XML parser
to parse and validate instance documents conforming to
the specified input Schema;

inserting, by the XML data reporting API module, user
defined code into the XML parser during the generating:
and

deserializing the instance documents into the desired dese
rialization form during the parse using the user-defined
code,

wherein two types of information is exchanged between
the data reporting API and the XML parser generator,

wherein a first type of information describes a current
context that the XML parser generator is currently gen
erating code for, and

wherein a second type of information involves how the
instance data is referenced during runtime and how the
XML parser generator refers to the referenced instance
data for parsing and validation requirements.

2. The method of claim 1, wherein the data reporting API is
used to generate code that creates appropriate data structures
to store the instance data, assign values to the data structures,
and allocate space.

3. The method of claim 1, wherein the data reporting API is
used to generate code that creates an event stream represen
tation of the instance data.

4. A computer program product for interfacing with an
XML (Extensible Markup Language) parser generator to
generate deserialization information interleaved with XML
parsing and validation, the computer program product com
prising: a non-transitory storage medium readable by a pro
cessing circuit and storing instructions for execution by the
processing circuit for performing a method comprising:

providing an XML parser generator with information
about a specified input schema which the instance data
conforms to:

US 8,171,395 B2
7

providing a data reporting application programming inter
face (API) module:

generating, by the XML parser generator, an XML parser
to parse and validate instance documents conforming to
the specified input Schema;

inserting, by the XML data reporting API module, user
defined code into the XML parser during the generating:
and

deserializing the instance documents into the desired dese
rialization form during the parse using the user-defined
code,

wherein two types of information is exchanged between
the data reporting API and the XML parser generator,

wherein a first type of information describes a current
context that the XML parser generator is currently gen
erating code for, and

wherein a second type of information involves how the
instance data is referenced during runtime and how the
XML parser generator refers to the referenced instance
data for parsing and validation requirements.

5. The computer program product of claim 4, wherein the
data reporting API is used to generate code that creates appro
priate data structures to store the instance data, assign values
to the data structures, and allocate space.

6. The computer program product of claim 4, wherein the
data reporting API is used to generate code that creates an
event stream representation of the instance data.

7. A system including at least one processor for interfacing
with an XML (Extensible Markup Language) parser genera

5

10

15

25

8
tor to generate deserialization information interleaved with
XML parsing and validation, the at least one processor is
configured to perform the steps of

providing an XML parser generator with information
about a specified input schema which the instance data
conforms to:

providing a data reporting application programming inter
face (API) module; performing by a computer,

generating, by the XML parser generator, an XML parser
to parse and validate instance documents conforming to
the specified input Schema;

inserting, by the XML data reporting API module, user
defined code into the XML parser during the generating:
and

deserializing the instance documents into the desired dese
rialization form during the parse using the user-defined
code,

wherein two types of information is exchanged between
the data reporting API and the XML parser generator,

wherein a first type of information describes a current
context that the XML parser generator is currently gen
erating code for, and

wherein a second type of information involves how the
instance data is referenced during runtime and how the
XML parser generator refers to the referenced instance
data for parsing and validation requirements.

