
US00811753OB2 

(12) United States Patent (10) Patent No.: US 8,117,530 B2 
Matsa et al. (45) Date of Patent: Feb. 14, 2012 

(54) EXTENSIBLE MARKUP LANGUAGE 7,415.069 B2 8/2008 Winger.................. 375,240.25 
PARSING USING MULTIPLE XML PARSERS 7,586.851 B2 9/2009 Panigrahy et al. ............ 370,252 

7,619,983 B2 * 1 1/2009 Panigrahy .......... 370.252 
7,620,851 B1 * 1 1/2009 Leavy et al. .................... 714.f41 

(75) Inventors: Moshe E. Matsa, Cambridge, MA (US); 7,623.468 B2 * 1 1/2009 Panigrahy et al. . 370.252 
Eric Perkins, Boston, MA (US) 2002/0141449 A1 * 10, 2002 Johnson ........................ 370/473 

2003, OO23628 A1 1/2003 Girardot et al. 
(73) Assignee: International Business Machines 2003. O159112 A1 8/2003 Fry 

Corporation, Armonk, NY (US) 2003/01673 15 A1* 9/2003 Chowdhry et al. ........... TO9.218 
s s 2003,0196.195 A1 * 10, 2003 Sluiman ............. T17,143 

2004/0148415 A1* 7, 2004 Sikdar ............ 709/230 
(*) Notice: Subject to any disclaimer, the term of this 2005/0015676 A1 1/2005 Zatloukal et al. ............... T14? 38 

patent is extended or adjusted under 35 2005/0238010 A1* 10/2005 Panigrahy et al. ............ 370/389 
U.S.C. 154(b) by 775 days. 2005/0238011 A1* 10/2005 Panigrahy .......... 370,389 

2005/0238.012 A1* 10/2005 Panigrahy etal 370,389 
(21) Appl. No.: 11/676,344 2005/0238022 A1* 10/2005 Panigrahy ..................... 370,392 

22) Filed Feb. 19, 2007 FOREIGN PATENT DOCUMENTS 
(22) Filed: eD. 19, CN 1545665 11, 2004 

(65) Prior Publication Data * cited by examiner 

US 2008/O2O1697 A1 Aug. 21, 2008 Primary Examiner — Stephen Hong 
(51) Int. Cl Assistant Examiner — Gregory JVaughn 

G06F 3/048 (2006.01) (74) Attorney, Agent, or Firm — Jose Gutman; Fleit Gibbons 
(52) U.S. Cl. ......... 715/203: 715/201715/234; 715/237 Gutman Bongini & Bianco PL 
(58) Field of Classification Search .................. 715/200, 

715/201, 203,234, 237,272,273, 277 (57) ABSTRACT 
See application file for complete search history. Disclosed are a method, information processing system, and 

a computer readable medium for parsing a hierarchical 
(56) References Cited markup document. The method includes initializing a first 

U.S. PATENT DOCUMENTS 

5,276,880 A 1/1994 Platoffet al. 
5,687,378 A 11/1997 Mulchandani et al. 
6,512,775 B1* 1/2003 Eleftheriades et al. ....... 370,428 
6,950,866 B1 9/2005 Lowry et al. 
6,990.442 B1* 1/2006 Davis ................................ TO4/9 
7,185,232 B1* 2/2007 Leavy et al. . ... 714/41 
7,188,168 B1* 3/2007 Liao ......... 709,224 
7.391,735 B2 * 6/2008 Johnson ........................ 370,246 

Common ParsingState 
Monitor 

parser for parsing a hierarchical markup document. The first 
parser parses the hierarchical markup document. A shared 
parsing state associated with a set of parsers including the first 
parser is monitored. The parsing control is passed to at least a 
second parser. The at least second parser parses the hierarchi 
cal markup document. The shared parsing state is also moni 
tored during the parsing by the at least second parser. 

20 Claims, 12 Drawing Sheets 

Common Parsing State 
Monor 

128 

s aper 
Hardware 

  

  

  



U.S. Patent Feb. 14, 2012 Sheet 1 of 12 US 8,117,530 B2 

Main Memory 106 

Common Parsing State 
N Monitor 

Parsing Monitor 
Common Parsing State Updater 

Tag Stack Updater 
State IDUpdater 
Pointer Updater 

Parsing 
Common Control 

Parsing State Table 

132 

NetWork 
Adapter 112 
Hardware 

  



U.S. Patent Feb. 14, 2012 Sheet 2 of 12 US 8,117,530 B2 

208 132 
Parser Parsable items/Non-Parsable items 

item A 

E item B.1 

FIG.2 

210 

202 

204 

206 

  



US 8,117,530 B2 U.S. Patent 

  

  



US 8,117,530 B2 U.S. Patent 

908 

  

  

  



US 8,117,530 B2 Sheet 5 of 12 Feb. 14, 2012 U.S. Patent 

    

  

  



US 8,117,530 B2 Sheet 6 of 12 Feb. 14, 2012 U.S. Patent 

8I7—i? ============================================================[] 
Z07 

8I7-i' =================================================================| | 
  

    

  

    

  



US 8,117,530 B2 Sheet 7 of 12 Feb. 14, 2012 U.S. Patent 

8??-i' ============================================================= 
Z07 

g?ff-~i)============================================================ 
II '50|| 

    

  

  

  

  

  



US 8,117,530 B2 Sheet 8 of 12 Feb. 14, 2012 U.S. Patent 

  

  



US 8,117,530 B2 U.S. Patent 

  

  

  



U.S. Patent Feb. 14, 2012 Sheet 10 of 12 US 8,117,530 B2 

Control is given to an initial parser and 1704 
the shared parsing states are initialized. 

First parser begins to parse the document. 

Parser reads in a starttag. 1708 
1710 1712 

fE. Yes Continue parsing 

Place starttagon top of tag stack, 

1716 

No-GB) Can parsing be 
Continued? 

Yes 
Continue to parse. 1718 

1720 
ls a data 

attribute abOut 
to be readin? 

1728 1730 

Update State 
NO Pers ID and pointer position. 

Update State 
ID and pointer Yes 

position. 1722 GA) 
Can parsing 
Continue 

1724 1726 
Yes 

Parse the Attribute and update 
State ID and pointer position. 

Continuet sy" FIG.17 

  

  

  

  

    

  

  

  

  

  



U.S. Patent Feb. 14, 2012 Sheet 11 of 12 US 8,117,530 B2 

Parse any Optional character data until next tag is reached. 1802 

1804 

No-GB) 
Yes 1806 

ls the next 
item an end 

tag 
Yes 

Match end tag with Corresponding tag 1808 
On stack and pop the tag from the stack. 

1812 
1810 

NOGC) 

NO Parse any Optional 
character data until next 

tag is reached. 
ls the tag 

stack empty? 

Yes 

Parse trailing miscellaneous data. 1814 CC) 

1816 Update star 1824 
Has the end parsing State 

of the input buffer been No y SN C Eit) 
reached found in the 

input. 1818 
Yes 

Update State ID and 
pointerpOsition. 1820 

Exit 1822 FIG. 18 

  

  

  

    

  

  

  

      

  

  

  

  

  



U.S. Patent Feb. 14, 2012 Sheet 12 of 12 US 8,117,530 B2 

1902 Transfer parsing Control to the 
appropriate parser. 

Newparser Continues to parse the 
document updating the tag stack 

and pointer as necessary. 
1904 

Can the new 
parserparse a particular 

item? 

Continue to parse. 

Has the end of 
the item where control Was 

transferred from been 
reached? 

Yes 

Update State ID 
pointer position. 

Transfer Control back to the 
previous partner. 

1916 

1912 

1914 

FIG. 19 

    

    

  

  

    

    

    

  

  

  

  

    

  



US 8,117,530 B2 
1. 

EXTENSIBLE MARKUPLANGUAGE 
PARSING USING MULTIPLE XML PARSERS 

FIELD OF THE INVENTION 

The present invention generally relates to the field of hier 
archical markup document parsing, and more particularly 
relates to parsing a hierarchical markup instance using mul 
tiple parsers. 

BACKGROUND OF THE INVENTION 

Extensible markup language (XML) is a markup lan 
guage that allows information to be shared between different 
systems and applications. XML provides a facility to describe 
and apply a hierarchical structure to information. The pro 
cessing of XML data requires an XML parser, which gener 
ally parses the entire XML document or a portion of the 
document. While parsing, an XML parser extracts the data 
out of a textual representation. In other words, an XML parser 
takes as input a raw serialized by testream and performs vari 
ous operations on the bytestream. For example, the XML 
parser can create new data structures or events from the raw 
serialized bytestream. 
An XML parser also checks the well-formedness of the 

XML data. For example, the XML parser determines if start 
tags have matching end tags. XML parsers also validate an 
XML document to ensure that the document conforms to a 
Document Type Definition or a XML schema. 
One concern with XML parsers is the efficiency and speed 

of the parsing. For example, inefficient parsing can result in 
excessive memory usage and processing times. One problem 
with current XML parsing techniques is that only a single 
XML parser can parse an XML document. The XML docu 
ment may include data that can be parsed faster and more 
efficiently by one parser as compared to another. However, 
because current parsing techniques do not allow for the joint 
parsing of an XML document, a general parser is usually 
selected to parse the data. The general parser in most situa 
tions does not parse particular data as fast and as efficiently as 
a parser written specifically for the particular data. 

Therefore a need exists to overcome the problems with the 
prior art as discussed above. 

SUMMARY OF THE INVENTION 

Briefly, inaccordance with the present invention, disclosed 
are a method, information processing system, and computer 
readable medium for parsing a hierarchical markup docu 
ment. The method includes initializing a first parser for pars 
ing a hierarchical markup document. The first parser parses 
the hierarchical markup document. A current parsing position 
of the first parser is monitored. The parsing control is passed 
to at least a second parser. The at least second parser parses 
the hierarchical markup document. A current parsing position 
of the at least second parser is monitored. 

In another embodiment of the present invention, an infor 
mation processing system is disclosed. The information pro 
cessing system includes a memory and a processor that is 
communicatively coupled to the memory. A plurality of pars 
ers is included for parsing at least a portion of a hierarchical 
markup document residing in the memory. The information 
processing system also includes a parsing controller that is 
communicatively coupled to the plurality of parsers. The 
parsing controller is for initializing a first parser in the plu 
rality of parsers for parsing the hierarchical markup docu 
ment. The first parser parses at least a first portion of the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
hierarchical markup document. A current parsing position of 
the first parser is monitored. Parsing control is passed to at 
least a second parser in the plurality of parsers. The second 
parser parses at least a second portion of the hierarchical 
markup document. A current parsing position of the at least 
second parser is monitored. 

In yet another embodiment, a computer readable medium 
for parsing a hierarchical markup document is disclosed. The 
computer readable medium includes instructions for initial 
izing a first parser for parsing a hierarchical markup docu 
ment. The first parser parses the hierarchical markup docu 
ment. A current parsing position of the first parser is 
monitored. The parsing control is passed to at least a second 
parser. The at least second parser parses the hierarchical 
markup document. A current parsing position of the at least 
second parser is monitored. 
One advantage of the present invention is that parsing 

performance is enhanced by having multiple parsers parse an 
XML document. The present invention allows for more spe 
cialized parsers to parse data in an XML document that they 
are designed to parse. A single parser may not be able to parse 
particular data as fast or as efficient as a more specialized 
parser. Therefore, by allowing control to be transferred from 
one parser to another more specialized parser can be sued to 
yield faster, more efficient parsing. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying figures where like reference numerals 
refer to identical or functionally similar elements throughout 
the separate views, and which together with the detailed 
description below are incorporated in and form part of the 
specification, serve to further illustrate various embodiments 
and to explain various principles and advantages all in accor 
dance with the present invention, in which: 

FIG. 1 is a diagram illustrating an information processing 
system according to an embodiment of the present invention; 

FIG. 2 illustrates an exemplary parsing control table 
according to an embodiment of the present invention; 

FIG.3 illustrates an exemplary XML instance according to 
an embodiment of the present invention; 

FIGS. 4-16 illustrate one example of parsing the XML 
instance of FIG. 3 using multiple parsers according to an 
embodiment of the present invention; 

FIG. 17 is an operational flow diagram illustrating an 
exemplary process of jointly parsing an XML instance using 
multiple parsers according to an embodiment of the present 
invention; 

FIG. 18 is an operational flow diagram continuing the 
process of FIG. 17 according to an embodiment of the present 
invention; and 

FIG. 19 is an operational flow diagram further illustrating 
the process of FIG. 17 where parsing control is transferred to 
another parser according to an embodiment of the present 
invention. 

DETAILED DESCRIPTION 

As required, detailed embodiments of the present invention 
are disclosed herein; however, it is to be understood that the 
disclosed embodiments are merely exemplary of the inven 
tion, which can be embodied in various forms. Therefore, 
specific structural and functional details disclosed herein are 
not to be interpreted as limiting, but merely as a basis for the 
claims and as a representative basis for teaching one skilled in 
the art to variously employ the present invention in virtually 
any appropriately detailed structure. Further, the terms and 



US 8,117,530 B2 
3 

phrases used herein are not intended to be limiting; but rather, 
to provide an understandable description of the invention. 

The terms 'a' or “an', as used herein, are defined as one or 
more than one. The term “plurality’, as used herein, is defined 
as two or more than two. The term “another, as used herein, 5 
is defined as at least a second or more. The terms “including 
and/or "having, as used herein, are defined as comprising 
(i.e., open language). The term "coupled, as used herein, is 
defined as connected, although not necessarily directly, and 
not necessarily mechanically. The terms “program”, “soft- 10 
ware application', and the like as used herein, are defined as 
a sequence of instructions designed for execution on a com 
puter system. A program, computer program, or Software 
application may include a Subroutine, a function, a procedure, 
an object method, an object implementation, an executable 
application, an applet, a servlet, a source code, an object code, 
a shared library/dynamic load library and/or other sequence 
of instructions designed for execution on a computer system. 

Exemplary Information Processing System 
According to an embodiment of the present invention, as 

shown in FIG. 1, an exemplary information processing sys 
tem 100 is shown. The information processing system 100 is 
based upon a Suitably configured processing system adapted 
to implement one or more embodiments of the present inven 
tion. Any suitably configured processing system is similarly 
able to be used as the information processing system 100 by 
embodiments of the present invention, for example, a per 
Sonal computer, workstation, or the like. The information 
processing system 100 includes a computer 102. The com 
puter 102 has a processor 104 that is connected to a main 
memory 106, mass storage interface 108, terminal interface 
110, and network adapter hardware 112. A system bus 114 
interconnects these system components. The mass storage 
interface 108 is used to connect mass storage devices, such as 
data storage device 116, to the information processing system 
100. One specific type of data storage device is a computer 
readable medium such as a CD/DVD drive, which may be 
used to store data to and read data from a CD/DVD 118 or 
floppy diskette (not shown). Another type of data storage 
device is a data storage device configured to Support, for 
example, NTFS type file system operations. 
The main memory 106, in one embodiment, comprises a 

plurality of parsers 120, 122. Each of the parsers 120, 122, in 
one embodiment, is a hierarchical markup document parser 
capable of parsing hierarchical markup (documents) 126 Such 
as XML instances. It should be noted that the hierarchical 
markup document parser 120, 122 according to the present 
invention is not limited to parsing only XML documents. 
Data comprising variations of XML and/or other languages 
that behave substantially similar to XML can also be parsed 
by the XML parsers 120, 122 of the present invention. It 
should also be noted that the XML instance 126 can be parsed 
while being streamed or while residing in the memory 106. In 
other words, an input buffer 418 (FIG. 4) from which the 
parsers 120, 122 parse the XML instance 126 can be a stream 
ing input buffer and/or a local memory buffer Such as main 
memory 106. 
The parsers 120, 122, in one embodiment, are independent 

of each other and can jointly parse an XML instance 126. For 
example, a single XML instance 126 can comprise data that 60 
requires different types of processing that can benefit from 
using multiple parsers. In other words, as compared to using 
a general parser for the entire XML instance 126, the parsers 
120, 122 can be for parsing specific data within the XML 
instance 126. Take for example a SOAP message, instead of 65 
using a general parser to parse the entire message, one XML 
parser can parse the envelope, another parser can parse the 

15 

25 

30 

35 

40 

45 

50 

55 

4 
body, and other parsers can parse each header. A parser spe 
cializing in parsing particular data can parse the data in a more 
efficient manner than a general parser resulting in fasterpars 
ing times. 

In one embodiment, the main memory 106 also includes a 
common shared parsing state 128, which facilitates the joint 
parsing of an XML instance 126 by multiple parsers 120, 122. 
The common shared parsing state 128 indicates the current 
state of the parsing process. The common shared parsing state 
128, in one embodiment, includes a tag-stack 402 (FIG. 4) 
that includes each start-tag read in by a parser 120, 122 so that 
it can be later matched by a corresponding end-tag, a pointer 
404 (FIG. 4) into the current position in the input buffer 418 
(FIG.4), and a parsing State ID 406 (FIG. 4) that indicates the 
type of location in the processing at which the parsing control 
is transferred or can be transferred. 

Other states that can be included in the common shared 
parsing state 126 are an end pointer (not shown) and a prefix 
mapping environment (not shown) and the stack of changes 
(not shown) to this environment. The endpointer (not shown) 
indicates how far the input buffer 418 (FIG. 4) goes to make 
sure that a parser 120, 122 does not read past the end of the 
input. The prefix mapping environment (not shown) allows 
discovery of all in-scope prefix mappings, and the stack of 
changes (not shown) to this environment allows less-nested 
environments to be reconstructed upon seeing end tags. 

In one embodiment, each parser 120, 122 communicates 
with a parsing controller 124 for jointly parsing an XML 
instance. For example, the parsing controller 124, in one 
embodiment, determines when the parsing control should be 
transferred from one parser to another. The parsing controller 
124 comprises a parsing monitor 130 that monitors the pars 
ing of the XML instance 126. For example, the parsing moni 
tor 130 keeps track of which parser is currently parsing the 
XML instance 126 and the current position of the parser. The 
parsing controller 124, in one embodiment, identifies the 
available parsers for a specific XML instance 126 from a 
parsing control table 132. The parsing control table 132 
includes a list of parsers such as Parser 1202, Parser 2204. 
and Parser 3 206, as shown in FIG. 2. 
The parsing control table 132, in one embodiment, also 

includes for each listed parser the items 208,210 that can and 
cannot be parsed by the parser. For example, FIG. 2 shows 
that Parser 1 202 can parse item A, but not item B. In the 
example of a SOAP message comprising an envelope (item 
A) and Universal Description, Discovery, and Integration 
(“UDDI) element which is the contents of the body (item B), 
Parser 1202 might only be able to parse the envelope and not 
the contents of the body of the Soap message. Parser 2204 can 
parse item B (e.g., the UDDI element), but not item A (e.g., 
the envelope) and item B.1, which is an item within item B 
(e.g., an attribute of type UUID, such as a tModelKey 
attribute). Parser 3 206 can parse item B.1 (e.g., the tMod 
elKey attribute of type UUID which is within the body), but 
cannot parse anything else. It should be noted that the parsing 
control table 132 is not limited to the configuration shown in 
FIG. 2. For example, one or more columns and/or rows may 
be added and/or deleted from the parsing control table 132. 

In one embodiment, the parsing control table 132 is created 
and populated as an XML instance 126 and is received in the 
input buffer 418 (FIG. 4). Alternatively, the parsing control 
table 132 can be created and populated as parsers are gener 
ated for an XML instance 126. Returning now to FIG. 1, the 
parsing controller 124 uses the parsing control table 132 to 
determine which parser 120, 122 to transfer control to. For 
example, the parsing monitor 130 determines, based on the 
parsing control table 132, if the parser 120, 122 has reached 



US 8,117,530 B2 
5 

an item in the XML instance 126 that the parser 120, 122 is 
notable to parse. If so, the parsing controller 124 searches the 
parsing control table 132 to determine which parser 120,122 
is able to parse the particular item. The parsing controller 124 
then via the control-handoff interface 134 transfers control to 
the appropriate parser 120, 122. 

The parsing controller 124 also comprises a shared parsing 
state updater 136. The shared parsing state updater 136, in one 
embodiment, includes a tag stack updater 138, a State ID 
updater 140, a pointer updater 142, and the like. The tag stack 
updater 138, in one embodiment, places start-tags on the tag 
stack 402 (FIG. 4) as they are read in by a parser 120, 122 and 
pops the tags from the tag stack 402 (FIG. 4) as the corre 
sponding end-tag is read in by a parser 120, 122. The State ID 
updater 140 updates the parsing State ID 406 (FIG. 4) to 
indicate the location in processing at which the parsing con 
trol is transferred or can be transferred from. As each parser 
120, 122 progresses through the XML instance 126, the 
pointer updater 142 updates the pointer 404 (FIG. 4) to reflect 
the current parsing position in the XML instance 126. 

In one embodiment, the parsing controller 124 communi 
cates the shared parsing state information 128 to the parser 
120, 122 that it transfers parsing control to. The parser 120, 
122 monitors each of the shared parsing states via a shared 
parsing State monitor 144, 146. The shared parsing State 
monitor 144, 146, in one embodiment, includes a tag stack 
monitor 150, 152, a parsing State ID monitor 154, 156, and a 
pointer monitor 158, 160. The parser 120, 122, in one 
embodiment, uses this information, for example, to determine 
where to start parsing via the pointer 404 (FIG. 4). The shared 
parsing state information 128 also includes the State ID 406 
(FIG. 4), which allows the parser 120, 122 to determine the 
type of parsing to perform next. For example the parser 120, 
122, based on the State ID, can determine that it next needs to 
parse an XML element, an XML attribute, or trailing miscel 
laneous data at the end of an XML document. The tag stack 
information passed on to the parser 120, 122 by the parsing 
controller 124 allows the parser 120, 122 to add start tags to 
the tag stack 402 (FIG. 4) if it parses start tags. The tag stack 
information also allows the parser 120, 122 to pop tags from 
the tag stack 402 (FIG. 4) and validate well-formedness 
against them when the parser 120, 122 parses end tags. In one 
embodiment, the parsers 120, 122 communicate shared pars 
ing state information (e.g., tag stack, State ID, pointer infor 
mation) back to the parsing controller 124 so that it may 
update the shared parsing state 128. For example, if a start-tag 
needs to be placed onto or taken off of the tag stack 402 (FIG. 
4), the parser 120, 122 can communicate this information to 
the parsing controller 124. 

In another embodiment, an external parsing controller 124 
is optional as denoted by the dashed lines 148. In other words, 
each parser 120, 122 can have its own internal parsing con 
troller (not shown) similar to the parsing controller 124 
described above. In this embodiment, each parser 120, 122 
comprises its own shared parsing state updater (not shown). 
In this embodiment, each parser 120,122., determines when to 
transfer control to another parser and which parser to transfer 
control to. For example, in one embodiment, each parser 120, 
122 recognizes what it can and cannot parse. If a parser 120, 
122 reaches an item in the XML instance 126 that it cannot 
parse it searches the parsing control table 132 for the parser 
that can parse the item. In one embodiment, parsers advertise 
which types of XML they parse in an ideal way, which types 
of XML they can parse in a generic way, and which types of 
XML they do not know how to parse at all. Since this infor 
mation is known at the time the parser was written or gener 
ated, it can be included with the parser. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
In an alternative embodiment, a parsing control table 132 is 

not used. Each of the parsers 120, 122 are self aware of the 
other parsers required to parse the XML instance 126. For 
example, an application associated with the XML instance 
126 that initiates the parsing process can pass parameters to 
each required parser. These parameters notify each parser of 
the identity of the other parsers and their parsing abilities. For 
example, in one embodiment a SOAP parser knows that a 
UDDI body can be parsed by a UDDI parser. In another 
embodiment, a UDDI application runs a SOAP parser and as 
part of the call to start the SOAP parser the application passes 
the SOAP parser the UDDI namespace. The UDDI applica 
tion can also pass the SOAP parser the UDDI parser which 
can parse, validate, and deserialize any tag in the UDDI 
namespace in an ideal manner. As stated above, each parser 
120, 122 recognizes items in the XML instance 126 that it can 
and cannot parse. When a parser 120, 122 reaches an item it 
cannot parse it transfers control to the appropriate parser via 
a control-handoff interface (not shown). Once the “sub-con 
tracted parser is finished, the parsing control is transferred 
back to the previous parser. 
One advantage of the present invention is that parsing 

performance is enhanced by having multiple parsers parse an 
XML document. The present invention allows for more spe 
cialized parsers to parse data in an XML document that they 
are designed to parse. A single parser may not be able to parse 
particular data as fast or as efficient as a more specialized 
parser. Therefore, transferring control from one parser to 
another more specialized parser can yield faster, more effi 
cient parsing. 

Although illustrated as concurrently resident in the main 
memory 106, it is clear that respective components of the 
main memory 106 are not required to be completely resident 
in the main memory 106 at all times or even at the same time. 
In one embodiment, the information processing system 100 
utilizes conventional virtual addressing mechanisms to allow 
programs to behave as if they have access to a large, single 
storage entity, referred to herein as a computer system 
memory, instead of access to multiple, Smaller storage enti 
ties such as the main memory 106 and data storage device 
116. Note that the term “computer system memory” is used 
herein to generically refer to the entire virtual memory of the 
information processing system 100. 

Although only one CPU 104 is illustrated for computer 
102, computer systems with multiple CPUs can be used 
equally effectively. Embodiments of the present invention 
further incorporate interfaces that each includes separate, 
fully programmed microprocessors that are used to off-load 
processing from the CPU 104. Terminal interface 110 is used 
to directly connect one or more terminals 162 to computer 
102 to provide a user interface to the computer 102. These 
terminals 162, which are able to be non-intelligent or fully 
programmable workstations, are used to allow system admin 
istrators and users to communicate with the information pro 
cessing system 100. The terminal 162 is also able to consist of 
user interface and peripheral devices that are connected to 
computer 102 and controlled by terminal interface hardware 
included in the terminal I/F 110 that includes video adapters 
and interfaces for keyboards, pointing devices, and the like. 
An operating system (not shown) included in the main 

memory is a Suitable multitasking operating system such as 
the Linux, UNIX, Windows XP, and Windows Server 2003 
operating system. Embodiments of the present invention are 
able to use any other Suitable operating system. Some 
embodiments of the present invention utilize architectures, 
Such as an objectoriented framework mechanism, that allows 
instructions of the components of operating system (not 



US 8,117,530 B2 
7 

shown) to be executed on any processor located within the 
information processing system 100. The network adapter 
hardware 112 is used to provide an interface to a network 164. 
Embodiments of the present invention are able to be adapted 
to work with any data communications connections including 
present day analog and/or digital techniques or via a future 
networking mechanism. 

Although the exemplary embodiments of the present 
invention are described in the context of a fully functional 
computer system, those skilled in the art will appreciate that 
embodiments are capable of being distributed as a program 
product via floppy disk, e.g. CD 118 and its equivalents, 
floppy disk (not shown), or otherform of recordable media, or 
via any type of electronic transmission mechanism. 
An Example of Transferring Parsing Control Between 

Multiple Parsers 
FIGS. 3-16 illustrate one example of jointly parsing an 

XML instance by multiple parsers. This example uses a 
SOAP message as the XML instance 126. It should be noted 
that the following discussion is only one example of an XML 
instance and related parsers for parsing the XML instance. 
The present invention is not limited to a SOAP message and 
parsers for parsing a SOAP message. As stated above, any 
document based on XML and its variations along with rel 
evant parsers is encompassed by the present invention. 
The XML instance 126 of FIG.3 makes use of the SOAP 

protocol and comprises UDDI information in the contents 
section of the message body. The Envelope tags 302,304 and 
the Body tags 306, 308 in this example can be understood by 
any SOAP engine, whereas the contents of the Body tag 306 
can be understood by an application that knows about UDDI 
in particular. 

The SOAP Envelope 302 and Body 306 are needed for 
processing by the SOAP engine, and the details for these tags 
302,306 are specified in a schema in the SOAP specification. 
The application receiving the message is not concerned with 
the SOAP Envelope, but is concerned with the reception of a 
valid SOAP message and with the contents of the message. In 
particular, the UDDI application wants the message contents 
in a UDDI-specific form such as JAX-RPC objects that are 
derived from the UDDI schema. 

Additionally, there are some parts of the XML instance 126 
that can be better parsed by specialized parsers. For example, 
a schema-specific parser might defer to a generic scanner in 
the case of wildcard content in the schema. Also, any parser 
might defer to a specialized integer scanner when it deter 
mines that it is about to read in an integer. The parser might 
determine that an integer is next because of a schema that 
requires the next value to be an integer or because the instance 
explicitly tags the next value as being of type integer via the 
Xsi:type attribute. 

In this case, a specialized scanner can be used that parses 
the Universally Unique Identifier (“UUID) 310, and stores 
the value in a special UUID structure in the form of tMod 
elKeys required by the UDDI application. While integers 
might be able to be translated by a generic parser or normal 
generated parser, the ability to turn this UUID into the struc 
ture required in this particular application is likely not part of 
any generic functionality. Thus, this functionality can be 
added as a simple specialized scanner that only handles read 
ing in UUID values such as tModelKey attributes and is 
invoked by the general parser of UDDI segments when it is 
about to read an attribute that is typed in the schema as being 
of a tModelKey type. 

FIG. 3 shows the XML instance 126 being broken into 
three sections for illustration purposes. The first section 312 is 
of interest to a parser generated for the SOAP engine. The 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
second section 314 is of interest to a parser generated for the 
UDDI application. The third section, which is “UUID: 
8609C81 E-EE1 F-4D5A-B202-3EB13AD01823, can be 
handled by a specialized scanner written for the UDDI appli 
cation to parse UUID values such as tModelKeys. Therefore, 
an illustrative example of jointly parsing of the XML instance 
126 is discussed below with respect to three parsers, a SOAP 
parser. A UDDI parser, and a UUID parser. 
As stated above, joint parsing is enabled through the shared 

parsing state 128. The control-handoff interface 134 that 
resides within the parsing controller 124 or the parsers 120, 
122 themselves ensures that control returns to the current 
parser at an appropriate (balanced) point in the document 
once the expected parsing has been done by other 'Sub 
contracted parsers. In the example of the SOAP message 
126, a virtual stack of parsers 120,122 is used. In other words, 
each parser 120, 122 can pass its own pointer to the next 
parser when it starts up the next parser with the current state. 

In one embodiment, each parser 120, 122 returns blocking 
calls from its caller with the new State ID. Alternatively, the 
State ID is passed in a blocking call to the next parser. In one 
embodiment, a strict nesting of parser executions is assumed 
and thus the parsing control does not make use of certain 
kinds of shared State. For example, in a strict nesting, each 
parser still needs to know the active prefix mappings, but does 
not need to know the stack of previous prefix mappings. 
Additionally, in a strict nesting, each parser still needs to 
share the pointer into the input buffer, but does not need to 
share the tag stack. In another embodiment, the shared State is 
used to aid in non-strictly-nested parser control flows. In 
these cases, more shared State is required, for example, the 
stack of prefix mapping changes and the tag stack are both 
required shared State in non-strictly-nested scenarios. 

In the current example, the SOAP message 126 was 
received by the information processing system 100, which, in 
one embodiment, is running a SOAP server on a givenport via 
an internet connection. The SOAP engine, in one embodi 
ment, determines that the SOAP message 126 is intended for 
one of the currently running web services on the information 
processing system. Given the port that the message 126 came 
in on, a SOAP application can determine that the SOAP 
message 126 is intended for the UDDI server. 

FIG. 4 shows the SOAP message 126 at an initial parsing 
state. The SOAP application initiates a generated SOAP 
XML-parser, which starts on SOAP message 126 by setting 
up an empty shared parsing state 128. This includes an empty 
tag stack 402, an input buffer 418 for the SOAP message 126, 
a pointer 404 to the first byte of the SOAP message 126 as the 
current pointer, and a State ID 406 of -2. The State ID 406, in 
one embodiment, is an identifier that indicates which of sev 
eral types of parsing must be performed next. For example, 
one State ID indicates that parsing should continue by iden 
tifying an XML element, another State ID indicates that pars 
ing should continue by identifying an XML attribute. Yet 
another State ID indicates that parsing should continue by 
identifying the beginning of an XML document, possibly 
with an XML declaration. A State ID 406 of -2, in this 
example, indicates that the parsing process is at the beginning 
of the document. The initial State ID 406 of -2 can also 
indicate that the first data segment may contain an XML 
header and that there can be white space but no CDATA 
sections before the first tag. It should be noted that the present 
invention is not limited to the State ID 402 being a specific 
number, symbol, text string, or the like. The numbers used in 
this example are for illustrative purposes only. 
The SOAP parser parses through the first data-tag 302, 

where the data happens to be empty in this example but can 



US 8,117,530 B2 

have the prologue of the document. The first data-tag 302 is of 
QName http://schemas.xmlsoap.org/soap/envelope?, Enve 
lope}, which is valid according to the SOAP specification and 
schema. Thus, the parser validates the tag 302 and continues 
to parse through the SOAP message 126. The SOAP parser 
pushes the start-tag 302 on the top of the tag stack 402, as 
shown in FIG. 5. The exact syntax of the start-tag 302 is used 
because this exact syntax needs to be matched by the end-tag 
304, which can be matched by a different parser. 

For example, a parser can be used that only wants to handle 
sub-content in the SOAP message 126. This parser might not 
be able to determine if there is more of that sub-content until 
it reads in the </Enveloped end tag 304 and might read in that 
end tag 304 prior to determining that it was not interested in 
it. At this point, the parser can back up the current pointer 404 
or compare the tag 304 (that was just readin) against the top 
of the tag stack 402. The parser finds that the start-tag 302 in 
the tag stack 402 matches the end-tag 304 just read in. There 
fore, the parser pops the tag stack 402 and indicates in the 
return that it had parsed an extra valid end-tag 304. 
As shown in FIG.5, when the SOAP parser reaches the end 

of the start-tag 302, it updates the current pointer 404 to show 
the parsing position. The State ID 406 is updated, either by the 
SOAP parser or the parsing controller 124, to have the value 
0. The State ID 406 after a parser reaches the end of a tag 
indicates, in one embodiment, that “next should come 
optional data followed by a start or end tag. In other words, 
the pointer 404 is between data-tag tokens. 
A data-tag token, in one embodiment, is a representation of 

a part of an XML document, including a preceding segment 
of character data followed by an XML tag, which can be a 
start tag, an end tag, or a self-closing tag. This transition point, 
indicated by the State ID value of 0, of being between two 
data-tag tokens, is a good place to leave the pointer between 
major steps of a parser's work, and between parsers transfer 
ring control of the parse while working on the same docu 
ment. Due to XML namespaces and Xsi:type information 
from XML Schema, parts of a start tag can not be conclu 
sively validated until the end of the start tag, yet everything 
that has been parsed can be unambiguously validated at the 
end of the start tag. For this and other reasons, this transition 
point is useful for the exemplary embodiment of the present 
invention. 
The next data to be read in by the SOAP parser is legal 

white space, followed by a valid <Body tag 306, which gets 
added onto the tag stack, as shown in FIG. 6. Note that again 
the tag of QName http://schemas.xmlsoap.org/soap/enve 
lope?, Body is what is legal at this point and validates against 
the schema. However, the syntax of “Body', in one embodi 
ment, is what needs to get matched by a corresponding end 
tag 308 and is added on the top of the stack 402. If this XML 
instance 126 has bound the SOAP namespace to the prefix 
'soap” using an “Xmlins: Soap' attribute instead of binding 
that namespace to the default empty prefix, then the tag stack 
402 would get the syntax “soap: Body’. This is still syntax 
directly from the SOAP message 126 and not a QName. Once 
again, the State ID 406 is 0, because pointer 404 is left 
between data-tag tokens. Note that the SOAP parser main 
tains this state even while the SOAP parser is working and 
does not expect to have control transferred to another parser. 
This enables scenarios where control is transferred at points 
that the parsers do not initially expect. 

After reaching the end of the “Body’ start-tag 306, the 
SOAP engine determines that the body of the SOAP message 
126 is understood by the UDDI engine and that the UDDI 
application desires to view the body in some specific deseri 
alization that is most useful to it. As mentioned above, the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
SOAP engine has determined that this is a UDDI message 
because of the port that the SOAP message 126 came in on. 
However, in one embodiment, the SOAP engine does not 
hand over control of the parse to a UDDI parser just yet. The 
SOAP engine, in one embodiment, does not want any data 
(mixed content) in the body element before its children. So, 
first the SOAP parser reads in white space and advances the 
current pointer 404 beyond the white space to the point of the 
next start-tag 702, as shown in FIG. 7. The SOAP parser 
updates the State ID 406, e.g., to 1, to indicate that the data 
portion of the next data-tag token 702 has already been read in 
and the pointer 404 is pointing to the beginning of the next tag 
702. This prevents the next parser from having to skip pos 
sible white space and is guaranteed that there is no white 
space before the next tag 702. 
The SOAP parser is now ready to transfer control flow to a 

UDDI-parser. The UDDI parser, in one embodiment, is auto 
generated based on the UDDI v2 schema. The UDDI parser, 
in one embodiment, checks the State ID 406 from the current 
state and begins parsing the first tag 702 at the current pointer 
404. The UDDI parser recognizes tag 702 as a parsable item. 
Note that this example redefines the prefix mapping on this 
element, but even if it had been defined above, the UDDI 
parser can still understand it because of prefix mappings (not 
shown) defined in the shared parsing state 128. The UDDI 
parser adds the tag 702 name at the top of the tag stack 404, as 
shown in FIG.8. The UDDI parser then updates the State ID 
406 (e.g., to 0) to indicate that the parsing process is between 
data-tag tokens and advances the current pointer 404. 

Processing continues and the UDDI parser recognizes that 
the add publisher Assertions tag 702 legally takes an authInfo 
child 802 followed by a publisher Assertion child 804, and so 
on. The UDDI parser validates all complex and simple types 
along the way, as well as well-formedness checking, and 
deserializing all needed information into appropriate data 
structures for the UDDI application. The UDDI parser vali 
dates, but does not deserialize any data that is not needed by 
this UDDI server. Eventually, The UDDI parser reaches the 
end of the toKey end tag 902 as shown in FIG.9. The UDDI 
parser updates the State ID 406 (e.g. to 0) to indicate that the 
parsing process is between two data-tag tokens and updates 
the pointer 404 accordingly. 
The next tag processed by the UDDI parser is the keye 

dReference tag 1002, as shown in FIG. 10. In this tag 1002, 
the UDDI parser recognizes the tModelKey attribute 1004, 
which is of type tModelKey in the UDDI v2 schema. The 
rules of XML can not guarantee at this point of the parse that 
the element really is {urn:uddi-org:api V2, keyedReference 
because there could be a later Xmlins attribute that redefined 
the default prefix mapping. Similarly, the rules of XML 
Schema can not guarantee that Such a tag can be validated 
against type {urn:uddi-orgapi V2, keyedReference because 
there can be a later Xsi:type attribute that redefined the type of 
this element. Nonetheless, the UDDI parser optimistically 
determines that this tag 1002 of local name keyedReference is 
the tag {urn:uddi-orgapi V2, keyedReference} which is 
legal at this point in the schema and that it does not have an 
Xsi:type attribute on it which changes the type to validate. 
Therefore, the UDDI parser optimistically determines that 
the {, tModelKey} attribute is the legal optional attribute in 
the assumed complex type, which itself can then be validated 
against the simple type {urn:uddi-org:api V2, tvodelKey}. 

In one embodiment, the UDDI server's code can be such 
that an application-specific hand-written specialized scanner 
fortModelKey attributes is generated. This tModelKey parser 
can determine that the tModelKey attributes are UUIDs and 
determines the exact data structure that is required for use of 



US 8,117,530 B2 
11 

them by the application. The general UDDI parser can call 
this specialized scanner to parse, validate, and deserialize this 
attribute value. The State ID 406 is set (e.g., to 2) to indicate 
that an attribute value is about to be readin, as shown in FIG. 
10. The UDDI parser then transfer control to the tModelKey/ 
UUID parser. 

The tModelKey/UUID parser verifies that the State ID 406 
is 2, since this is the only state that it understands how to 
proceed with. The tModelKey/UUID parser finds the initial 
double quote character and recognizes that the attribute value 
must be matched by a closing double quote character. Then 
the tModelKey/UUID parser verifies that the first five char 
acters are “UUID:” as required, and parses the rest of the 
UUID into the application-specific UUID data structure 
which it desires for tModelKey values. Note that the type of 
this attribute value according to the UDDI v2 schema is a 
generic XSd:String (actually, the trivial restriction thereof). 
One advantage of the present invention is that limitations 

do not exist for how this deserialization is composed with 
deserializations from other parsers. In one embodiment, the 
tModelKey/UUID parser can pass an event at this point with 
the tModelKey directly to the UDDI application and never 
inform the other parsers about it. In another embodiment, the 
tModelKey/UUID parser can return a pointer associated with 
this data structure to the UDDI parser. This allows the UDDI 
parser to incorporate this structure into its own data structure 
which it is deserializing into for the UDDI application. In yet 
another embodiment, the shared State can be used in a more 
generic way to compose the pieces of the deserialization. For 
example, the shared parsing state could include a stack of 
objects currently being deserialized into; a place to deserial 
ize the next sub-object; and away to find the place for the next 
sub-object after that. It should be noted that these are non 
limiting examples of cooperatively deserializing an object 
using shared State. Additionally, any of these embodiments 
can be used in any combination thereof. 
Upon completing a successful parse, validation, deserial 

ization, and confirming the end double quote, the tModelKey/ 
UUID parser updates the State ID 406 (e.g., to 3) to indicate 
that the parsing process is positioned just after an attribute 
value, as shown in FIG. 11. The pointer 404 is also updated to 
reflect the current position of the parsing process. The tMod 
elKey/UUID parser returns control flow to the UDDI parser. 
The UDDI parser determines that the State ID 406 is 3 (e.g., 

that the parsing processing process is at a position just after an 
attribute value) and searches for white space. The UDDI 
parser also searches for optional attributes and continues to 
parse and validate against the complex type that it was work 
ing on before. In one embodiment, each parser retains a local 
state (not shown) for retaining local information such as what 
type it was validating when it transferred control to another 
parser. However, in another embodiment, this information 
can be kept in the shared parsing state 128. 
Upon completion of parsing the keyedReference tag 1002, 

the UDDI parser updates the State ID 406 (e.g., to 0) to reflect 
that the parsing is between data-tag tokens, as shown in FIG. 
12. The pointer 404 is also positioned at the end of the keyed 
Reference tag 1002. Since the previous start tag 1002 was 
self-closing, the tag name keyedReference is not left on top of 
the stack. In another embodiment, the start tag 1002 (keye 
dReference) can be placed on top of the stack 404 while the 
keyedReference tag 1002 was being processed. This enables 
the tag to be removed from the stack 402 at a time when the 
parse of the self-closing tag is completed by another parser. 
As each end tag is reached, it is compared against the start 

tag at the top of the tag stack 402 and popped from the tag 
stack 402. The UDDI parser continues parsing, validating, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
and deserializing while possibly passing events to the UDDI 
server as it goes. The UDDI parser can also build up the 
deserialized state for later transfer to the application. The 
UDDI parser reaches the end-tag 1302 of the publisher Asse 
tion start tag 804. Therefore, the UDDI parser updates the 
State ID 406 (e.g., to 0) to indicate that the parsing process is 
positioned between data-tag tokens, as shown in FIG. 13. The 
UDDI parser also updates the pointer 404 to point to directly 
after the end-tag 1302. 

FIG. 14 shows the UDDI parser reaching the end-tag 1402 
of the tag 702 add publisher Assertions that it started with. 
The UDDI parser determines that parsing control should be 
transferred back to the SOAP parser. The UDDI parser 
updates the State ID 406 (e.g., to 0) to reflect that the parsing 
processing is between data-tag tokens. The UDDI parser also 
updates the position of the pointer 404 to point to the end of 
the publisher Assertion tag 1402. 

In one embodiment, another parser can parse more than 
one element, possibly not knowing how many elements are at 
this level. In this situation the parser may actually parse the 
close tag for the Body element before it recognized that it was 
done. In one embodiment, such a situation results in the parser 
backing up and then passing control to the other parser. In 
another embodiment, such a situation results in the parser 
recording that it went a little further and what it found in the 
shared parsing state 128. In this embodiment, the parser does 
not back up and transfer control to the other parser. In the 
current example, the UDDI parser determines that it is fin 
ished parsing. If it has been building up a deserialized data 
structure for the UDDI server, it can send the entire data 
structure to the server at this time. Then the UDDI parser 
transfers control back to the SOAP parser. The SOAP parser 
recognizes that the parse is still valid at this point. If it has 
been given back a deserialized data structure then it can hold 
onto it until it is later ready to pass it to the UDDI server. The 
SOAP parser then continues to parse the document, checking 
end tags against the tag stack 402 as it goes, and popping those 
tag names from the tag stack. When the SOAP parser reaches 
the end of the Body tag 308 it updates the State ID 406 (e.g., 
to 0) to indicate that the parsing processing is between data 
tags, as shown in FIG. 15. The SOAP parser also updates the 
pointer 404 to point to the end of the Body tag 308. 

Finally, as shown in FIG. 16, the SOAP parser reaches the 
end of the top-level element of the document, the Envelope 
tag 304. Although the SOAP parser is at the end of the data 
tag token Envelope 304, it updates the State ID 406 (e.g., to 
-1) to indicate that only trailing miscellaneous data is per 
mitted and then an end of buffer is expected and not any 
CDATA sections or any other tags as per the XML specifica 
tion. Once any optional trailing white space, etc. has been 
parsed, and the current pointer has reached the end of buffer 
pointer, then the SOAP parser has finished with the document. 

All shared states are in an appropriate configuration for the 
end of the document, including that the current pointer 404 
has reached the end of input buffer 418 (FIG. 4), the tag stack 
402 is empty, the State ID 406 is -1, etc. As a team, the three 
parsers have ensured that the entire document is well-formed, 
and valid against several schemas as well as Some extra 
requirements made by the UDDI server in addition to the 
schema requirements. If there is a data structure that the 
SOAP parser has been saving, then it can pass it back to the 
SOAP engine which passes it on to the UDDI server, with full 
knowledge that a legal and valid UDDI SOAP message has 
been received by the server. This data structure is optimized to 
be the data structure that the UDDI processor can use best 
with even the long UUID already being encoded into the form 
in which the UDDI server can use it. 



US 8,117,530 B2 
13 

As can be seen from the discussion above, the parsers 
worked together. Each parser was written only for its purpose, 
in a clean, maintainable, and extensible manner. Each one 
does a much faster job of parsing its part of the document than 
any other parser would. Each parser produces the ideal dese 
rialization for the particular application that is using this 
parse. Thus, together, the three parsers are extremely main 
tainable, much faster than any current alternative, and pro 
duce the ideal deserialization. 

Exemplary Processing of Parsing an XML Instance with 
Multiple Parsers 

FIGS. 17-19 show an exemplary process of parsing an 
XML instance 126 using multiple parsers. The operational 
flow diagram of FIG. 17 begins at step 1702 and flows directly 
to step 1704. An initial parser 120, 122, at step 1704, is given 
parsing control and the shared parsing states are initialized. 
For example, the pointer 404 is positioned at the beginning of 
the input buffer, an empty tag stack 402 is created, and the 
State ID 406 is set to indicate that parsing is at the beginning 
of the document. 
The first parser 120, 122, at step 1706, begins to parse the 

document. The parser 120, 122, at step 1708, reads in a 
start-tag. The parser 120, 122, at step 1710, determines if the 
tag is self closing. If the result of this determination is posi 
tive, the parser 120, 122, at step 1712, continues to parse. In 
other words, the start-tag is not placed on the tag stack 402. If 
the result of this determination is negative, the parser 120, 
122, at Step 1714, places the start-tag on the top of the tag 
stack 402. It should be noted that the determination of 
whether the start tag is self closing can be performed after step 
1724 below. The parser 120, 122, at step 1716, determines if 
parsing can be continued. For example, the parser 120, 122 
can recognize items that it can and cannot parse. If the result 
of this determination is negative, the control flows to entry 
point B of FIG. 19. If the result of this determination is 
positive, the parser 120, 122, at step 1718, continues to parse 
the XML instance 126. 

The parser 120, 122, at step 1720, determines if a data 
attribute is about to be read in. If the result of this determina 
tion is negative, the parser 120, 122, at step 1728, reaches the 
end of the current data-tag. The parser 120, 122, at step 1730, 
updates the shared parsing state 128. For example, the parser 
120, 122 can update the pointer position 404 to identify that 
parsing is at the end of the data-tag. The parser 120, 122 can 
also update the State ID 406 to reflect that the parsing is 
between data tags. The control then flows to entry point A of 
FIG. 18. If the result of this determination is positive, the 
parser 120, 122, at step 1722, determines whether it can 
continue to parse. In other words, the parser 120, 122 deter 
mines whether it can read in that particular attribute. 

If the result of this determination is negative, the parser 
120, 122, at step 1732, updates the shared parsing state. For 
example, the parser 120, 122 can update the pointer 404 to 
point to the beginning of the attribute. The parser 120,122 can 
also update the State ID 406 to indicate that an attribute is 
about to be read in. The control then flows to entry point B of 
FIG. 19. If the result of this determination is positive, the 
parser 120, 122, at step 1724, updates the shared parsing state 
128. For example, the parser 120, 122 reads in the attribute 
and can update the pointer 404 to point to the end of the 
attribute and update the State ID 406 to indicate that parsing 
is at the end of an attribute. The parser 120, 122, at step 1726, 
continues to parse and the control flows back to step 1720 
where the parser 120, 122 determines if a data attribute is 
about to be read in, as discussed above. 
The control then flows to entry point A of FIG. 18 where the 

parser 120, 122, at step 1802, parses any optional characters 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
until the next tag is reached. If optional character data does 
not exist, the control flows directly to step 1804 from entry 
point A. The parser 120, 122, at step 1804, determines if the 
next item in the XML instance 126 can be parsed. If the result 
of this determination is negative, the control flows to entry 
point B of FIG. 19. If the result of this determination is 
positive, the parser 120, 122, at step 1806, determines if the 
next item in the XML instance 126 is an end tag. If the result 
of this determination is negative, the control flows to entry 
point C of FIG. 17 where the parser 120, 122, at step 1708, 
reads in a start-tag. The process continues as described above 
for FIG. 17. If the result of this determination is positive, the 
parser 120, 122, at step 1808, matches the end-tag to a tag in 
the stack and pops the corresponding start-tag from the tag 
stack 402. 
The parser 120, 122, at step 1810, determines if the tag 

stack is empty. If the result of this determination is negative, 
the parser 120, 122, at step 1812, parses any optional charac 
ters until the next tag is reached. The control then flows to 
entry point C of FIG. 17. If the result of this determination is 
positive, the parser 120, 122, at step 1814, parses any trailing 
miscellaneous data. The parser 120, 122, at step 1816, deter 
mines if the end of the input buffer 418 has been reached. If 
the result of this determination is negative, the shared parsing 
state is updated to indicate that a problem was identified in the 
input. The control flow then exits at step 1824. If the result of 
this determination is positive, the parser 120, 122, at step 
1820, updates the shared parsing state. For example, the State 
ID 406 can be updated to show that the parsing has reached 
the end of the XML instance 126 and that the pointer 404 is at 
the end of the input buffer. The control then exits at step 1822. 

FIG. 19 shows the process discussed with respect to FIGS. 
17 and 18 when the control is transferred to another parser 
120,122. The control enters at entry point B where the current 
parser 120, 122, at step 1902, transfers parsing control to the 
appropriate parser 120, 122. The new parser 120, 122, at step 
1904, checks the shared paring State and continues to parse 
the document and updates shared parsing State as necessary. 
For example, the new parser 120, 122 checks the shared 
parsing state (e.g. the pointer 404 and State ID 406) to deter 
mine where to start parsing. As the new parser 120, 122 parses 
the document the shared state is updated to track the state of 
the parsing and the position of the parsing. 
The new parser 120, 122, at step 1906, checks the item it is 

about to parse in order to determine if it can parse the item. If 
the result of this determination is negative, the control returns 
to step 1902 where control is handed off to a new parser 120, 
122. If the result of this determination is positive, the parser 
120, 122, at step 1908, continues parsing. For example, if the 
current parser 120, 122 determines that an attribute is about to 
be read it and cannot correctly parse the attribute, the current 
parser 120, 122 hands off parsing control to the appropriate 
parser 120, 122. The current parser 120, 122, at step 1910, 
determines if the end of the item where control was handed off 
from has been reached. For example, if control was handed 
off at the beginning of an attribute, the parser 120, 122 deter 
mines if the end of the attribute has been reached. 

If the result of this determination is negative, the control 
returns to step 1906 where the parser 120, 122 determines if 
the next item can be parsed. If the result of this determination 
is positive, the parser 120, 122, at step 1912, updates the 
shared parsing state. For example, the State ID 406 can be 
updated to show that parsing is at the end of an attribute, 
between data-tags, and the like. The pointer 404 can also be 
updated to indicate the current position of the parsing process. 
The current parser 120, 122, at step 1914, transfers parsing 



US 8,117,530 B2 
15 

control back to the parser 120, 122 from which it received the 
control. The control flow then exits at step 1916. 

Non-Limiting Examples 
The present invention as would be known to one of ordi 

nary skill in the art could be produced in hardware or soft 
ware, or in a combination of hardware and software. However 
in one embodiment the invention is implemented in Software. 
The system, or method, according to the inventive principles 
as disclosed in connection with one embodiment, may be 
produced in a single computer system having separate ele 
ments or means for performing the individual functions or 
steps described or claimed or one or more elements or means 
combining the performance of any of the functions or steps 
disclosed or claimed, or may be arranged in a distributed 
computer system, interconnected by any Suitable means as 
would be known by one of ordinary skill in the art. 

According to the inventive principles as disclosed in con 
nection with one embodiment, the invention and the inventive 
principles are not limited to any particular kind of computer 
system but may be used with any general purpose computer, 
as would be known to one of ordinary skill in the art, arranged 
to perform the functions described and the method steps 
described. The operations of Such a computer, as described 
above, may be according to a computer program contained on 
a medium for use in the operation or control of the computer, 
as would be known to one of ordinary skill in the art. The 
computer medium, which may be used to hold or contain the 
computer program product, may be a fixture of the computer 
Such as an embedded memory or may be on a transportable 
medium Such as a disk, as would be known to one of ordinary 
skill in the art. 
The invention is not limited to any particular computer 

program, logic, language, or instruction but may be practiced 
with any Such Suitable program, logic, language, or instruc 
tions as would be known to one of ordinary skill in the art. 
Without limiting the principles of the disclosed invention any 
Such computing system can include, inter alia, at least a 
computer readable medium allowing a computer to read data, 
instructions, messages or message packets, and other com 
puter readable information from the computer readable 
medium. The computer readable medium may include non 
volatile memory, such as ROM, Flash memory, floppy disk, 
Disk drive memory, CD-ROM, and other permanent storage. 
Additionally, a computer readable medium may include, for 
example, Volatile storage such as RAM, buffers, cache 
memory, and network circuits. 

Furthermore, the computer readable medium may include 
computer readable information in a transitory state medium 
Such as a network link and/or a network interface, including a 
wired network or a wireless network that allows a computer to 
read Such computer readable information. 

Although specific embodiments of the invention have been 
disclosed, those having ordinary skill in the art will under 
stand that changes can be made to the specific embodiments 
without departing from the spirit and scope of the invention. 
The scope of the invention is not to be restricted, therefore, to 
the specific embodiments, and it is intended that the appended 
claims cover any and all Such applications, modifications, and 
embodiments within the scope of the present invention. 

What is claimed is: 
1. A method, with an information processing system, for 

parsing a hierarchical markup document, the method com 
prising: 

parsing, by a first parser, at least a first part of a hierarchical 
markup document, the first parser being one of a set of 
parsers for jointly parsing the hierarchical markup docu 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
ment, wherein each parser in the set of parsers is an 
independent and different parser from every other parser 
in the set of parsers; 

updating by the first parser a shared parsing state associ 
ated with the set of parsers during the parsing by the first 
parser, the first parser updating the shared parsing state 
with at least a current parsing position of the first parser 
and an indication of a specific parsing type that is 
required to be subsequently performed, and wherein the 
shared parsing state is accessible and updatable by a 
parsing controller and by individual parsers in the set of 
parsers independent of each other; 

monitoring, by the parsing controller, the shared parsing 
state associated with the set of parsers during the parsing 
by the first parser, wherein the parsing controller is sepa 
rate, distinct, and external from each parser in the set of 
parsers; 

identifying, by the parsing controller based on the shared 
parsing state, a data item type that is to be parsed next; 

identifying, by the parsing controller, at least a second 
parser that is capable of parsing the data item type that 
has been identified; and 

passing, by the parsing controller in response to identifying 
the at least a second parser, parsing control to the at least 
a second parser, in the set of parsers; 

parsing, by the at least second parser, at least a second part 
of the hierarchical markup document, the second part 
being parsed differently than the first part; and 

monitoring, by the parsing controller, the shared parsing 
state during the parsing by the at least second parser. 

2. The method of claim 1, wherein the shared parsing state 
includes at least one of: 

a current parsing position of at least one parser in the set of 
parsers; 

a tag stack; 
a parsing State ID associated with at least one parser in the 

set of parsers; 
an end pointer; 
a prefix mapping environment; and 
a stack of changes to the prefix mapping environment. 
3. The method of claim 1, wherein the passing parsing 

control to the at least second parser, further comprises: 
determining that a current parsing position of the first 

parser is at a data type associated with the at least second 
parser, wherein the determining is performed by the first 
parser. 

4. The method of claim 1, wherein the hierarchical docu 
ment is an extensible markup language document. 

5. The method of claim 1, further comprising: 
determining, in response to the monitoring of the shared 

parsing state during the parsing by the at least second 
parser, that the at least second parser has completed 
parsing data in the hierarchical markup document asso 
ciated with the at least second parser; and 

passing the parsing control to one of: 
the first parser, and 
at least a third parser. 

6. The method of claim 1, wherein the passing parsing 
control to the at least second parser further comprises: 

analyzing a parser control table; and 
identifying, in response to the analyzing, a parser capable 

of parsing a data type associated with data at the current 
parsing location of the first parser. 

7. The method of claim 1, wherein the parsing by the first 
parser further comprises: 

updating the shared parsing state during the parsing by the 
first parser, wherein the shared parsing State includes 



US 8,117,530 B2 
17 

information used by a Subsequent parser for determining 
a location within the hierarchical markup document to 
begin parsing. 

8. The method of claim 1, wherein the parsing by the at 
least second parser further comprises: 5 

updating the shared parsing state during the parsing by the 
at least second parser, wherein the shared parsing state 
includes information used by a Subsequent parser for 
determining a location within the hierarchical markup 
document to begin parsing. 

9. The method of claim 1, further comprising: 
determining, by the parsing controller, the at least second 

parser parsed at least a portion of at least one additional 
data item associated with at least one other parser; 

backing up, by the parsing controller, the at least second 
parser to a location that is prior to the at least one addi 
tional data item; and 

passing control, by the parsing controller, to the at least one 
other parser to parser the at least one additional data 
item. 

10. An information processing system comprising: 
a memory; 
a processor communicatively coupled to the memory; 
a plurality of parsers for parsing at least a portion of a 

hierarchical markup document residing in the memory; 
and 

a parsing controller communicatively coupled to the plu 
rality of parsers, wherein the parsing controller is for: 
initializing a first parser in the plurality of parsers, the 

first parser parsing at least a first part of the hierarchi 
cal markup document in response to being initialized, 
the first parser being one of a set of parsers for jointly 
parsing the hierarchical markup document, wherein 
each parser in the set of parsers is an independent and 
different parser from every other parser in the set of 
parsers, wherein the parsing controller is separate, 
distinct, and external from each parser in the set of 
parsers, 

where the first parser updates a shared parsing state 
associated with the set of parsers during the parsing 
by the first parser, the first parser updating the shared 
parsing state with at least a current parsing position of 
the first parser and an indication of a specific parsing 
type that is required to be subsequently performed; 

monitoring the shared parsing state associated with the 
set of parsers during the parsing by the first parser; 

identifying, based on the shared parsing state, a data 
item type that is to be parsed next; 

identifying at least a second parser in the set of parsers 
that is capable of parsing the data item type that has 
been identified; and 

passing in response to identifying the at least a second 
parser, parsing control to the at least a second parser, 
wherein the at least second parser parses at least a 
second portion of the hierarchical markup document, 
and wherein the second parser independently obtains 
shared parsing state information from the shared pars 
ing state to parse the second portion; and 

monitoring the shared parsing state during the parsing 
by the at least second parser. 

11. The information processing system of claim 10, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

wherein the passing parsing control to the at least second 
parser by the parser controller, further comprises: 

determining that the current parsing position of the first 
parser is at a data type associated with the at least second 
parser. 

65 

18 
12. The information processing system of claim 10, 

wherein the parsing controller is further for: 
determining, in response to the monitoring of the shared 

parsing state during the parsing by the at least second 
parser, that the at least second parser has completed 
parsing data in the hierarchical markup document asso 
ciated with the at least second parser; and 

passing the parsing control to one of: 
the first parser, and 
at least a third parser. 

13. The information processing system of claim 10, 
wherein the passing parsing control to the at least second 
parser by the parsing controller further comprises: 

analyzing a parser control table; and 
identifying, in response to the analyzing, a parser capable 

of parsing a data type associated with data at the current 
parsing location of the first parser. 

14. A non-transitory computer readable storage medium 
for parsing a hierarchical markup document, the computer 
readable medium comprising instructions for: 

parsing, by a first parser, at least a first part of a hierarchical 
markup document, the first parser being one of a set of 
parsers for jointly parsing the hierarchical markup docu 
ment, wherein each parser in the set of parsers is an 
independent and different parser from every other parser 
in the set of parsers; 

updating by the first parser a shared parsing state associ 
ated with the set of parsers during the parsing by the first 
parser, the first parser updating the shared parsing state 
with at least a current parsing position of the first parser 
and an indication of a specific parsing type that is 
required to be subsequently performed, and wherein the 
shared parsing state is accessible and updatable by a 
parsing controller and by individual parsers in the set of 
parsers independent of each other; 

monitoring, by the parsing controller, the shared parsing 
state associated with the set of parsers during the parsing 
by the first parser, wherein the parsing controller is sepa 
rate, distinct, and external from each parser in the set of 
parsers; 

identifying, by the parsing controller based on the shared 
parsing state, a data item type that is to be parsed next; 

identifying, by the parsing controller, at least a second 
parser that is capable of parsing the data item type that 
has been identified; and 

passing, by the parsing controller in response to identifying 
the at least a second parser, parsing control to the at least 
a second parser, in the set of parsers; 

parsing, by the at least second parser, at least a second part 
of the hierarchical markup document, the second part 
being parsed differently than the first part; and 

monitoring, by the parsing controller, the shared parsing 
state during the parsing by the at least second parser. 

15. The non-transitory computer readable storage medium 
of claim 14, wherein the shared parsing State includes at least 
one of: 

a current parsing position of at least one parser in the set of 
parsers; 

a tag stack; 
a parsing State ID associated with at least one parser in the 

set of parsers; 
an end pointer; 
a prefix mapping environment; and 
a stack of changes to the prefix mapping environment. 



US 8,117,530 B2 
19 

16. The non-transitory computer readable storage medium 
claim 14, wherein the instructions for passing parsing control 
to the at least second parser, further comprises instructions 
for: 

determining that the current parsing position of the first 
parser is at a data type associated with the at least second 
parser. 

17. The non-transitory computer readable storage medium 
of claim 14, further comprising instructions for: 

determining, in response to the monitoring of the current 
parsing position of the at least second parser, that the at 
least second parser has completed parsing data in the 
hierarchical markup document associated with the at 
least second parser; and 

passing the parsing control to one of: 
the first parser, and 
at least a third parser. 

18. The non-transitory computer readable storage medium 
of claim 14, wherein the instructions for passing parsing 
control to the at least second parser further comprises instruc 
tions for: 

5 

10 

15 

20 
analyzing a parser control table; and 
identifying, based on the analyzing, a parser capable of 

parsing a data type associated with data at the current 
parsing location of the first parser. 

19. The non-transitory computer readable storage medium 
of claim 14, wherein the instructions for parsing by the first 
parser further comprise instructions for: 

updating the shared parsing state during the parsing by the 
first parser, wherein the parsing State includes informa 
tion used by a Subsequent parser for determining a loca 
tion within the hierarchical markup document to begin 
parsing. 

20. The non-transitory computer readable storage medium 
of claim 14, wherein the instructions for parsing by the at least 
second parser further comprise instructions for: 

updating the shared parsing state during the parsing by the 
at least second parser, wherein the parsing state includes 
information used by a Subsequent parser for determining 
a location within the hierarchical markup document to 
begin parsing. 


