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AUTOMATON LOOP CONSTRUCT (ALC) 
AND METHOD OF PERFORMING PROGRAM 

OPTIMIZATION USING THE ALC 

BACKGROUND 

There are a large number of components involved in mod 
ern enterprise applications. This large number of components 
require many traversals of the data set for the data to flow from 
one component to the next—on the order of a constant times 
in traversals for n components—and this time often dominates 
over the time spent on the actual business logic of the appli 
cation in terms of time spent by the CPU. Most enterprise 
application environments do nothing to eliminate unneces 
sary traversals, because for Such a system to consolidate 
traversals today, components, which are usually written in 
procedural languages, must be recoded to be aware of one 
another, reducing the reusability of these components. The 
only way to keep the benefits of componentization and 
remove the drawbacks of the many recodings of the data, 
would be to pass the components to a compiler and then 
compile the recodings away—this process is known as defor 
estation. We know of no system today that has a generic 
mechanism for eliminating redundant and unneeded travers 
als. 
A large class of real-world enterprise business applications 

are written in components which require reformulating all of 
the data that flows through them a number of times. Each time 
requires time to do the reformulation as well as memory to 
store the reformulated data. 

Deforestation is the process of program optimization to 
remove intermediate trees. Finite state automata have long 
been knows as a general purpose computing construct, well 
known by computer Scientists, and easy to understand. Also 
known are ways to turn general functions into finite State 
automata, and then collapse any sequence of successive finite 
state automata into a single automata, which accomplishes 
Some more deforesting. 

Extensible Markup Language (XML) processing is one 
field where there is low performance resulting from many 
disparate components, and the many resulting data recodings. 
XML has begun to work its way into the business computing 
infrastructure and underlying protocols such as the Simple 
Object Access Protocol (SOAP) and Web services. In the 
performance-critical setting of business computing, however, 
the flexibility of XML becomes a liability due to the poten 
tially significant performance penalty. XML processing is 
conceptually a multitiered task, an attribute it inherits from 
the multiple layers of specifications that governits use includ 
ing: XML, XML namespaces, XML Information Set (In 
foset), and XML Schema, followed by transformation 
(XSLT), query (XOuery), etc. Traditional XML processor 
implementations reflect these specification layers directly. 
Bytes are converted to some known form. Attribute values 
and end-of-line sequences are normalized. Namespace dec 
larations and prefixes are resolved, and the tokens are then 
transformed into some representation of the document 
Infoset. The Infoset is optionally checked against an XML 
Schema grammar (XML Schema, schema) for validity and 
rendered to the user through some interface. Such as Simple 
API for XML (SAX) or Document Object Model (DOM) 
(API stands for application programming interface). Finally, 
higher-level processing is done. Such as transformation, 
query, or other Web Services processing. 

With the widespread adoption of SOAP and Web services, 
XML-based processing, and parsing of XML documents in 
particular, is becoming a performance-critical aspect of busi 
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2 
ness computing. In Such scenarios, XML is usually being 
processed by languages Such as XSLT and XQuery, etc. In 
total, this leaves processing at many independent levels: 
XML parsing, validation, deserialization, transformation, 
query, etc. This division into separate layers of processing fits 
well with current Software engineering practices which 
encourage reusable pieces of code to be packaged into com 
ponents. To create a complete application, a number of com 
ponents—often written by different authors or under different 
circumstances—must be assembled. Enterprise applications 
typically process data in high Volumes, and as such, large 
quantities of data pass through the components that make up 
the application. Most components, as part of their normal 
function, will have to make at least one traversal through this 
data. In addition, because of the diversity of their origin, each 
component often requires data to be packaged in a very spe 
cific form, and a considerable amount of time is also spent 
traversing the data set to convert it from one form to another 
as it is sent through the various components. 

SUMMARY 

Conventional mechanisms such as those explained above 
suffer from a variety of deficiencies. One of the mechanisms 
was to turn general functions into finite state automata and 
combine them. One deficiency for this mechanism is that this 
approach does not lend itself to removing much of the work 
involved, just the intermediate data structures. Furthermore, 
while removing the intermediate data structures, it does not 
remove the need for the parts of the initial data structure 
which might not be needed, and it does not pre-compute the 
parts of the output data structure that can be known at compile 
time. Thus, deforestation of generic automata leaves a lot of 
extra computation in the runtime program. Thus, separate 
components and many recodings of data are a current prob 
lem for many modern enterprise applications, including XML 
processing. 

Embodiments of the invention significantly overcome Such 
deficiencies and provide mechanisms and techniques that 
provide an Automaton Loop Construct (ALC) and method of 
performing program optimization using the ALC. 
The present invention utilizes an optimization framework 

which can remove many unnecessary data recoding steps, 
thus improving performance and decreasing memory usage. 
The key benefit of the automaton deforestation technique is 
that the program made up of all of the components is optimi 
Zable, and a novel compiler can take advantage of that 
through deforestation and partial deforestation to precompute 
as much of the output as possible at compile time, and remove 
as many extra forms of the data as possible. 

In a particular embodiment the ALC comprises an initial 
state for the ALC to start in and a plurality of transitions, each 
transition including: a state number, a pattern against which to 
match a potential source object, a target state number, and a 
sequence of output objects. 

In a particular embodiment of a method of performing 
program optimization using Automaton Loop Construct 
(ALC), the method includes defining at least one ALC and 
constructing a program utilizing the at least one ALC. The 
method further comprises optimizing the program, the opti 
mizing including pre-computing as much output as possible 
using said at least one ALC, the optimizing resulting in opti 
mized program code. 

Other embodiments include a computer readable medium 
having computer readable code thereon for performing pro 
gram optimization using Automaton Loop Construct (ALC). 
The medium includes instructions for defining at least one 
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ALC and instructions for constructing a program utilizing the 
at least one ALC. The computer readable medium further 
includes instructions for optimizing the program, the opti 
mizing including pre-computing as much output as possible 
using said at least one ALC, the optimizing resulting in opti 
mized program code. 

Still other embodiments include a computerized device, 
configured to process all the method operations disclosed 
herein as embodiments of the invention. In such embodi 
ments, the computerized device includes a memory system, a 
processor, communications interface in an interconnection 
mechanism connecting these components. The memory sys 
tem is encoded with a process for performing program opti 
mization using Automaton Loop Construct (ALC) as 
explained herein that when performed (e.g. when executing) 
on the processor, operates as explained herein within the 
computerized device to perform all of the method embodi 
ments and operations explained herein as embodiments of the 
invention. Thus any computerized device that performs or is 
programmed to perform up processing explained herein is an 
embodiment of the invention. 

Other arrangements of embodiments of the invention that 
are disclosed herein include Software programs to perform 
the method embodiment steps and operations Summarized 
above and disclosed in detail below. More particularly, a 
computer program product is one embodiment that has a 
computer-readable medium including computer program 
logic encoded thereon that when performed in a computer 
ized device provides associated operations for performing 
program optimization using Automaton Loop Construct 
(ALC) as explained herein. The computer program logic, 
when executed on at least one processor with a computing 
system, causes the processor to perform the operations (e.g., 
the methods) indicated herein as embodiments of the inven 
tion. Such arrangements of the invention are typically pro 
vided as Software, code and/or other data structures arranged 
or encoded on a computer readable medium such as an optical 
medium (e.g., CD-ROM), floppy or hard disk or other 
medium such as firmware or microcode in one or more ROM 
or RAM or PROM chips or as an Application Specific Inte 
grated Circuit (ASIC) or as downloadable software images in 
one or more modules, shared libraries, etc. The software or 
firmware or other such configurations can be installed onto a 
computerized device to cause one or more processors in the 
computerized device to perform the techniques explained 
herein as embodiments of the invention. Software processes 
that operate in a collection of computerized devices, such as 
in a group of data communications devices or other entities 
can also provide the system of the invention. The system of 
the invention can be distributed between many software pro 
cesses on several data communications devices, or all pro 
cesses could run on a small set of dedicated computers, or on 
one computer alone. 

It is to be understood that the embodiments of the invention 
can be embodied strictly as a software program, as Software 
and hardware, or as hardware and/or circuitry alone. Such as 
within a data communications device. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing will be apparent from the following more 
particular description of preferred embodiments of the inven 
tion, as illustrated in the accompanying drawings in which 
like reference characters refer to the same parts throughout 
the different views. The drawings are not necessarily to scale, 
emphasis instead being placed upon illustrating the principles 
of the invention. 
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4 
FIG. 1 comprises a diagram of optimizing an ALC in 

accordance with embodiment of the present invention; and 
FIGS. 2A and 2B depicts flow diagrams of a method for 

performing program optimization using Automaton Loop 
Construct (ALC) in accordance with embodiments of the 
invention. 

DETAILED DESCRIPTION 

The present method and apparatus performing program 
optimization using Automaton Loop Construct (ALC) 
defines a ALC and further includes rewriting key parts of 
enterprise business applications using finite state automata, 
and includes ways to use the knowledge contained in these to 
have a compiler remove the extra reformulations of the data. 

Presented is a new automaton loop construct, and a way to 
partially deforest a program with it, which can be used to 
Solve the problem. This construct is simple, functional, easy 
to deforest against and partially deforest against, and is also 
quite familiar and intuitive to computer scientists. While this 
construct can be generally straightforward for computer sci 
entists to reason about and write, and for a compiler to par 
tially evaluate, deforest, and partially deforest, for a wide 
range of problems, the ALC will be explained in reference to 
the particular problem of XML serialization as part of an 
XML processing scenario. Note that the present invention is 
not intended to be limited to an XML serialzier, the XML 
serializer example is used for explanation purposes. 

Functional XML processing code can be written around an 
ALC which can be optimized using classical functional lan 
guage techniques, in order to precompute more of the output 
of XML processing, such as transformation, query, etc. Since 
this construct is a well-understood abstraction, it can be easy 
to use for computer Scientists, and the increased optimizabil 
ity can bring Substantial speedups to this performance-critical 
aca. 

Computer scientists are quite familiar with the finite state 
automaton. The present “Automaton Loop Construct’ (ALC) 
is basically a finite state automatontailored to be easily defor 
estable and partially deforestable. The ALC works as follows: 

1. The automaton starts in an initial state. 
2. A sequence of objects is consumed one at a time. 
3. A consumed object is matched to the first possible state 

transition given the current state. The state transition consists 
of four parts: (1) a state number, (2) a pattern against which to 
match a potential source object, (3) a target state, and (4) a 
sequence of output objects. The automaton outputs the output 
object sequence associated with the state transition and 
changes to the associated target State. Steps 2-3 are repeated 
until all objects are consumed from the input. 

Automatons are very well suited for use in deforestation 
optimizations. One of the important things about our limited 
automata is that all transitions are on a known constant state, 
so that a compiler can make deductions using this informa 
tion. Consider the following example of a simplified XML 
serializer: 

XML. Event = 
Begin Tag(name) | /* Output an XML tag <food */ 
End Tag (name) | * Output a closing XML tag </food */ 
Add Attribute(name, value) | f* Output an attribute 
pair bar="baz' */ 
Add Text(text) 

automaton Initial State 1 
State 1, Begin Tag (name) -> 
State 2, Begin Tag (name) -> 

/* Output text */ 

State 2, “K” & name & “” 
State 2, “>< & name & “” 
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-continued 

State 1, End Tag (name) -> State 1, “K? & name & “> 
State 2, End Tag (name) -> State 1, “s</ & name & “s' 
State 2, Add Attribute(name, value) -> State 2, name & 

=X& valle & X 
State 1, Add Text(text) -> 
State 2, Add Text(text) -> 

State 1, text 
State 1, “s' & text 

The automaton has two states—state 2 indicates that the 
closing ">'' on a start tag has not been yet outputted, and state 
1 indicates that the closing'>'' on the last start tag (if any) has 
already been outputted. 

To produce this fragment:<foobar="baz'>fluff-/food, the 
following subroutine could be used: 

Subroutine Output Foo: 
Begin Tag (“foo) 
Add Attribute(“bar, “baz') 
Add Text("fluff) 
End Tag (“foo') 

The advantage of the automaton representation of the ALC 
arises when used with partial evaluation and deforestation. 
For example, suppose the Output Foo subroutine is called in 
the middle of a program in which XML is outputted. At any 
given invocation of Output Foo, it is unknown whether the 
XML serializer is in state 1 or 2. However, regardless of 
whether the serializer is in state 1 or 2 at the beginning of the 
invocation of Output Foo, after the first Begin Tag event is 
processed, the serializer will deterministically be in state 2. 
The important part is that the compiler can determine this 
statically with relative ease by simply looking at the definition 
of the automaton. Therefore, at runtime, instead of requiring 
a switch to be executed before every event which is processed 
by the automaton, only the first event requires an if statement; 
the rest of the event stream, from the Add Attribute(“bar, 
“baz') portion on, can be partially evaluated, or precomputed, 
at compile time. For example, code for the sample Subroutine 
can always be generated as: 

if (state == 1) { 
output “Kfoo 
else { 
output “c-foo 

output “bar="baz's fluff-/food 
state = 1; 

Building up a more complicated case, consider the follow 
ing Subroutine: 

Subroutine Second Level: 
Begin Tag ("one 
Begin Tag (“blue') 
End Tag (“blue') 
Begin Tag (red) 
End Tag (red) 
End Tag (“one 
Call-Subroutine Unknown 
Begin Tag (“two') 
Add Attribute(“a”, “2) 
Call-Subroutine Output Foo 
Call-Subroutine Output Foo 
End Tag (“two') 
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6 
Using the kind of compilation discussed above, the com 

piler can generate code like the following for this subroutine: 

Second Level: 
if (state == 1) { 

output <one 

else { 
output-Kone 

output “skblue-></blue-><red></redd <?oned 
state = (call Unknown state=1) 
if (state == 1) { 

output <two 

else { 
output --two 

output “a="2" 
state = (call Output Foo state=2) 
state = (call Output Foo state=state) 
if (state == 1) { 

Output."</two 

Output “c-Kitwo 

state = 1; 

Since Output Foo, as seen above, always leaves in state 1, 
this code can be optimized as follows: 

Second Level: 
if (state == 1) { 

output <one 

else { 
output-Kone 

output “skblue-></blue-><red></redd <?oned 
state = (call Unknown state=1) 
if (state == 1) { 

output <two 

else { 
output --two 

output “a="2" 
call Output Foo state=2 
call Output Foo state=1 
output “K/two-> 
state = 1; 

By specializing the Output Foo code to the specific values 
of the initial state, the results are: 

Output Foo Initial State 1: 
but “Kfoo bar="baz'>fluff-foo 

state = 1; 
put Foo Initial State 2: 
but “c-Kfoo bar-baz'-fluff-ffoo 

state = 1; 
Second Level: 
if (state == 1) { 

but <one 

else { 
but --one 

Output “c-Kblue-K/blues.<red-Kredo-Konec 
state = (call Unknown state=1) 
if (state == 1) { 

output <two 

else { 
O utput --two 

Ol 

cal 
but a-2 
Output Foo Initial State 2 
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-continued 

call Output Foo Initial State 1 
output “K/two-> 
state = 1; 

If appropriate, the two called subroutines can then be 
inlined, producing the following code: 

Second Level: 
if (state == 1) { 

output."<one 

output"><one 

output “skblue-></blue-><red></redd <?oned 
state = (call Unknown state=1) 
if (state == 1) { 

output “Ktwo 
else { 
output “sktwo 

output “a="2"><foo bar="baz's fluff-/food-foo 
bar="baz'>fluff-food-Kitwo 
state = 1; 

The straightforward deforestation and partial deforestation 
of the ALC enables other well-known functional optimiza 
tions in order to precompute exactly the parts of the output of 
the XML processing which could be known at compile time, 
while leaving the other parts uncalculated until runtime. For 
example, it is unknown what exactly to do with the “one' 
begin tag. Then, a large segment of the output is precomputed. 
Then, given the opaque “Unknown call, it is unknown what 
to do for it or after it for the “two begin tag, but then the rest 
of the output is precomputed. 

In contrast, if the serializer had been written using a more 
general construct, such as a fold construct from ML or Lisp, 
the compiler would have to do more complex data flow analy 
sis to determine that the second event and on would result in 
deterministic output. Obviously, if it was written in an 
imperative style, with state, then this analysis would be even 
more difficult. 

One of the keys to this optimization is partial automaton 
deforestation, which is accomplished using the act of splitting 
one ALC which has an initial state, into repeatedly executing 
a similar automaton that takes as an input argument its initial 
state and returns its final state. For example, consider any 
general ALC: 

ALC(initial-state-i, transitions=t, input=x) 
For partially deforested automaton, a generic version of 

this ALC can be written as: 

Generic(state-arg, input-arg) ALC(initial-state State-arg, 
transitions—t, input input-arg), and after the sequence of 
input is exhausted, it returns the then current state. 
A call to the ALC can be rewritten as a call to the generic 

version with passing the ALCS initial state to it, and ignoring 
the result state: 

junk-Generic(i. x) 
This has the exact same behavioras the initial ALC did, and 

thus this process can be accomplished for rewriting any ALC. 
This is then useful for “splitting up' the ALC, as can be seen 
in the examples above where as much as possible was pre 
computed and the “Generic ALC's were left to compute the 
rest at runtime. As an illustrative example, consider the 
sequence case which is in FIG. 1: 
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8 
ALC(initial-state-i, transitions=t, 

c. . . . . Z)) 
can be rewritten as: 
Generic(transitions t) called on i and sequence(a,b,c,..., 

Z) 
Which, using the rewrite for sequence given in FIG. 1, can 

be rewritten as: 
iai 
ib=Generic(transitions=t) called on ia and a 
ic-Generic(transitions=t) called on ib and b 
id=Generic(transitions=t) called on ic and c 

input sequence(a,b, 

ifinal=Generic(transitions=t) called on iz and Z 
junk ifinal 
After this rewrite, or any other rewrite or “splitting up', we 

can continue this recursive process by repeatedly rewriting 
each ALC (Generic) in turn, using each input (a, b, c, ... Z. 
respectively, in the example). Whatever is precomputable at 
compile time will be precomputed, thus removing the need 
for extra objects and conversion passes at runtime. This can 
dramatically improve the performance of XML processing, 
as an example, and many kinds of computer processing, in 
general. 

These analyses can lead to precomputation of much of the 
output, based on just the operations, even before any input is 
seen. However, these optimizations come at a cost: All main 
parts of the computation must be functional, and must be easy 
to deforest against. In particular, for XML processing, all data 
goes through the XML serializer before output, and to get 
these benefits the serializer must be functional and easy to 
deforest against. 
Most XML processing today is implemented in imperative 

C or Java programs, and their serializers are imperative, and 
thus not at all amenable to straightforward partial evaluation 
or deforestation. Other current alternatives use functional 
languages, which are amenable to classical functional lan 
guage analysis and optimizations in general. Unfortunately, 
these serializers use constructs such as folds which, while 
easier to deal with than imperative code for some partial 
evaluation, are not at all Straightforward to deforest against. 
Even the conversion to automata and then deforesting them to 
produce a single automata, produces a final automata that will 
not be straightforward to deforest, and is not easy to partially 
deforest. Thus, no current solutions can be compiled to elimi 
nate all the recodings for compile-time-computable parts of 
the output, and highly-optimized processing for the unknown 
parts. By contrast, partial deforestation and implementation 
of key parts of a program with our limited automata, while 
easy to understand and program, can dramatically improve 
performance of many enterprise applications and XML pro 
cessing performance as one particular example. 
A flow chart of the presently disclosed method is depicted 

in FIGS. 1 and 2. The rectangular elements are herein denoted 
“processing blocks” and represent computer Software 
instructions or groups of instructions. Alternatively, the pro 
cessing blocks represent steps performed by functionally 
equivalent circuits such as a digital signal processor circuit or 
an application specific integrated circuit (ASIC). The flow 
diagrams do not depict the syntax of any particular program 
ming language. Rather, the flow diagrams illustrate the func 
tional information one of ordinary skill in the art requires to 
fabricate circuits or to generate computer software to perform 
the processing required in accordance with the present inven 
tion. It should be noted that many routine program elements, 
Such as initialization of loops and variables and the use of 
temporary variables are not shown. It will be appreciated by 
those of ordinary skill in the art that unless otherwise indi 
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cated herein, the particular sequence of steps described is 
illustrative only and can be varied without departing from the 
spirit of the invention. Thus, unless otherwise stated the steps 
described below are unordered meaning that, when possible, 
the steps can be performed in any convenient or desirable 
order. 

Referring now to FIG. 1 part of the process of deforesting 
an ALC is shown. The source sequence of objects coming into 
the ALC could be coming from any general program code. 
This figure considers the cases where the top-level program 
constructs being passed as the source of the ALC are checked 
in step 10, and found to be a for each (step 12), a match (step 
14), a sequence (step 16), and a function call (step 18). This 
certainly does not mean that these four program constructs 
are the only ones which we can easily and straightforwardly 
deforest an ALC when its source comes from them. Rather, 
these four examples should show the technique enough that 
someone skilled in the art should be able to understand in 
general how to deforest an ALC whose source comes from 
any functional language construct. Furthermore, it should be 
obvious that after one of these optimizations has been accom 
plished, the process can be repeated as many times as needed 
in order to optimize and precompute more and more of the 
program results. In FIG. 1, at processing block 12, the for 
each is rewritten by realizing that the automaton applied to the 
results of the for each will yield the same results as computing 
a slightly-modified for each that applies the partially-defor 
ested automaton to the body of the for each and passes the 
state of the automaton from each loop iteration to the next 
loop iteration. 

In processing block 14, the match is rewritten by realizing 
that the automaton applied to the results of the match will 
yield the same results as computing the automaton on each 
case of the match. This would be the same for any conditional. 

In processing block 16, the sequence is rewritten by real 
izing that the automaton applied to the sequence will yield the 
same results as computing the automaton in sequence on each 
member of the sequence, passing states between the automa 
ton executions using partial automaton deforestation. 

In processing block 18, the function call is rewritten by 
realizing that the automaton applied to the results of the 
function call will yield the same results as calling a new 
function which does the same work as the old function, but 
also calls the ALC at the end on its results before passing them 
back. 

Referring now to FIG. 2A, a method 100 of performing 
program optimization using Automaton Loop Construct 
(ALC) is shown. The method begins with processing block 
102 which discloses defining at least one ALC. As recited in 
processing block 104 the ALC includes an initial state for the 
ALC to start in, and a plurality of transitions, each transition 
including: a state number, a pattern against which to match a 
potential Source object, a target state number, and a sequence 
of output objects. The ALCs may be further defined as recited 
in processing blocks 106, 108, 110, and 112. Processing 
block 106 discloses defining an ALC comprises constructing 
an ALC wherein when the ALC is applied to a top-level 
construct, the results yield a same result as computing the 
ALC on each loop of the top-level construct, using partial 
automaton deforestation. Processing block 108 states defin 
ing an ALC comprises constructing an ALC wherein when 
the ALC is applied to a top-level construct, the results yield a 
same result as computing the ALC on each case of a match. 
Processing block 110 recites defining an ALC comprises 
constructing an ALC wherein when the ALC is applied to a 
top-level construct, the results yield a same result as comput 
ing the ALC in sequence on each member of a sequence, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
passing states between the ALC executions using partial 
automaton deforestation. Processing block 112 discloses 
defining an ALC comprises constructing an ALC wherein 
when the ALC is applied to a top-level construct, the results 
yield a same result as calling a new function which does the 
same work as an old function, but also calls the ALC at the end 
on its results before passing the results back. Processing 
continues with processing block 114 which states construct 
ing a program utilizing the at least one ALC. 

Processing block 116 recites optimizing the program, the 
optimizing including pre-computing as much output as pos 
sible using the at least one ALC, the optimizing resulting in 
optimized program code. Processing block 118 discloses that 
the optimizing comprises checking top-level program con 
structs and matching at least one of the top-level program 
constructs to at least one ALC. Processing block 120 states 
optimizing the program includes the at least one ALC being 
provided with a sequence of objects which are processed one 
at a time, and wherein the current state starts as the initial state 
for the at least one ALC and wherein as each object is pro 
cessed the processed object is matched to a first possible state 
transition of the ALC such that the state number of the tran 
sition matches the current state and the pattern matches the 
processed object, the at least one ALC outputs the output 
object sequence in the matched State transition and changes to 
the target state in the matched transition, and wherein prior to 
processing, the object is compiled and optimized based on at 
least one of the group comprising partial evaluation, defores 
tation, partial deforestation and language compilation tech 
niques. 

Processing block 122 recites comprising executing the 
optimized program code. In a particular embodiment, as 
recited in processing block 124 the program comprises an 
extensible markup language (XML) processing program and 
wherein the ALC comprises a core XML serializer. 

Processing block 126 discloses the optimized program 
code is subject to additional processing, the additional pro 
cessing including at least one of the group comprising storing 
the optimized program code, compiling the optimized pro 
gram code to native code, compiling the optimized program 
code to byte code, and compiling the optimized program code 
to Virtual Memory (VM) instructions. 
By way of the above described ALC and method of per 

forming program optimization using Automaton Loop Con 
struct (ALC), instead of construction programs as they are 
today, mostly functional programs are constructed including 
the new ALC constructs in key places. A compiler partially 
evaluates the entire programs, where possible, deforests as 
much as possible, including all of the techniques that have 
been described to precompute as much of the output as pos 
sible. The resulting code is executed, in any form that code 
can be executed in, including the ALCs. There is less refor 
mulating of data, and less processing, and thus the program 
runs much faster and use less memory. 

Having described preferred embodiments of the invention 
it will now become apparent to those of ordinary skill in the 
art that other embodiments incorporating these concepts may 
be used. Additionally, the software included as part of the 
invention may be embodied in a computer program product 
that includes a computer useable medium. For example, Such 
a computer usable medium can include a readable memory 
device, such as a hard drive device, a CD-ROM, a DVD 
ROM, or a computer diskette, having computer readable pro 
gram code segments stored thereon. Accordingly, it is Sub 
mitted that that the invention should not be limited to the 
described embodiments but rather should be limited only by 
the spirit and scope of the appended claims. 
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What is claimed is: 
1. A computer implemented method of performing pro 

gram optimization using Automaton Loop Construct (ALC), 
the method comprising: 

defining at least one ALC, the ALC comprising: 
an initial state for the ALC to start in; and 
a plurality of transitions, each transition including: a 

state number, a pattern against which to match a 
potential source object, a target state number, and a 
sequence of output objects; 

constructing a program utilizing the at least one ALC; and 
optimizing the program, the optimizing including pre 

computing output using said at least one ALC, the opti 
mizing resulting in optimized program code. 

2. The method of claim 1 further comprising executing said 
optimized program code. 

3. The method of claim 1 wherein said optimizing com 
prises checking top-level program constructs and matching at 
least one of said top-level program constructs to at least one 
ALC. 

4. The method of claim 1 wherein said optimizing the 
program includes said at least one ALC being provided with 
a sequence of objects which are processed one at a time, and 
wherein the current state starts as the initial state for said at 
least one ALC and wherein as each object is processed the 
processed object is matched to a first possible state transition 
of the ALC such that the state number of the transition 
matches the current state and the pattern matches the pro 
cessed object; 

the at least one ALC outputs the output object sequence in 
the matched State transition and changes to the target 
state in the matched transition; and 

wherein prior to processing, said object is compiled and 
optimized based on at least one of the group comprising 
partial evaluation, deforestation, partial deforestation 
and language compilation techniques. 

5. The method of claim 1 wherein said defining an ALC 
comprises one of the group consisting of: 

constructing an ALC wherein when said ALC is applied to 
a top-level construct, the results yield a same result as 
computing the ALC on each loop of the top-level con 
struct, using partial automaton deforestation; 

constructing an ALC wherein when said ALC is applied to 
a top-level construct, the results yield a same result as 
computing the ALC on each case of a match; 

constructing an ALC wherein when said ALC is applied to 
a top-level construct, the results yield a same result as 
computing the ALC in sequence on each member of a 
sequence, passing states between the ALC executions 
using partial automaton deforestation; and 

constructing an ALC wherein when said ALC is applied to 
a top-level construct, the results yield a same result as 
calling a new function which does the same work as an 
old function, but also calls the ALC at the end on its 
results before passing the results back. 

6. The method of claim 1 wherein said program comprises 
an extensible markup language (XML) processing program 
and wherein said ALC comprises a core XML serializer. 

7. The method of claim 1 wherein the optimized program 
code is subject to additional processing, the additional pro 
cessing including at least one of the group comprising storing 
the optimized program code, compiling the optimized pro 
gram code to native code, compiling the optimized program 
code to byte code, and compiling the optimized program code 
to Virtual Memory (VM) instructions. 
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12 
8. A computer readable storage medium having computer 

readable code thereon for performing program optimization 
using Automaton Loop Construct (ALC), the medium com 
prising: 

instructions for defining at least one ALC, the ALC includ 
ing: 
an initial state for the ALC to start in; and 
a plurality of transitions, each transition including: a 

state number, a pattern against which to match a 
potential Source object, a target state number, and a 
sequence of output objects; 

instructions for constructing a program utilizing the at least 
one ALC; and 

instructions for optimizing the program, the optimizing 
including pre-computing output using said at least one 
ALC, the optimizing resulting in optimized program 
code. 

9. The computer readable storage medium of claim 8 fur 
ther comprising instructions for executing said optimized 
program code. 

10. The computer readable storage medium of claim 8 
wherein said instructions for optimizing comprises instruc 
tions for checking top-level program constructs and matching 
at least one of said top-level program constructs to at least one 
ALC. 

11. The computer readable storage medium of claim 8 
wherein said instructions for optimizing the program includes 
instructions for said at least one ALC being provided with a 
sequence of objects which are processed one at a time, and 
wherein the current state starts as the initial state for said at 
least one ALC and wherein as each object is processed the 
processed object is matched to a first possible state transition 
of the ALC such that the state number of the transition 
matches the current state and the pattern matches the pro 
cessed object; 

the at least one ALC outputs the output object sequence in 
the matched State transition and changes to the target 
state in the matched transition; and 

wherein prior to processing, said object is compiled and 
optimized based on at least one of the group comprising 
partial evaluation, deforestation, partial deforestation 
and language compilation techniques. 

12. The computer readable storage medium of claim 8 
wherein said instructions for defining an ALC comprises 
instructions for one of the group consisting of 

instructions for constructing an ALC wherein when said 
ALC is applied to a top-level construct, the results yield 
a same result as computing the ALC on each loop of the 
top-level construct, using partial automaton deforesta 
tion; 

instructions for constructing an ALC wherein when said 
ALC is applied to a top-level construct, the results yield 
a same result as computing the ALC on each case of a 
match; 

instructions for constructing an ALC wherein when said 
ALC is applied to a top-level construct, the results yield 
a same result as computing the ALC in sequence on each 
member of a sequence, passing states between the ALC 
executions using partial automaton deforestation; and 

instructions for constructing an ALC wherein when said 
ALC is applied to a top-level construct, the results yield 
a same result as calling a new function which does the 
same work as an old function, but also calls the ALC at 
the end on its results before passing the results back. 

13. The computer readable storage medium of claim 8 
further comprising instructions wherein said program com 
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prises an extensible markup language (XML) processing pro 
gram and wherein said ALC comprises a core XML serializer. 

14. The computer readable storage medium of claim 8 
further comprising instructions wherein the optimized pro 
gram code is subject to additional processing, the additional 
processing including at least one of the group comprising 
storing the optimized program code, compiling the optimized 
program code to native code, compiling the optimized pro 
gram code to byte code, and compiling the optimized pro 
gram code to Virtual Memory (VM) instructions. 

15. A computer implemented method of performing pro 
gram optimization using Automaton Loop Construct (ALC), 
the method comprising: 

defining at least one ALC, the ALC comprising: 
an initial state for the ALC to start in; and 
a plurality of transitions, each transition including: a 

state number, a pattern against which to match a 
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potential Source object, a target state number, and a 
sequence of output objects; 

constructing a program utilizing the at least one ALC; and 
checking top-level program constructs and matching at 

least one of said top-level program constructs to at least 
one ALC; and 

optimizing the program, the optimizing including pre 
computing output using said at least one ALC, the opti 
mizing resulting in optimized program code. 

16. The method of claim 15, wherein said program com 
prises an extensible markup language (XML) processing pro 
gram and wherein said ALC comprises a core XML serializer. 

17. The method of claim 15, wherein constructing a pro 
gram utilizing the at least one ALC comprises using partial 
automaton deforestation. 


