
USO080 15555B2

(12) United States Patent (10) Patent No.: US 8,015,555 B2
Quan, Jr. et al. (45) Date of Patent: Sep. 6, 2011

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

AUTOMATON LOOP CONSTRUCT (ALC)
AND METHOD OF PERFORMING PROGRAM
OPTIMIZATION USING THE ALC

Inventors: Dennis A. Quan, Jr., Quincy, MA (US);
Moshe Morris Emanuel Matsa,
Cambridge, MA (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1430 days.

Appl. No.: 11/500,583

Filed: Aug. 7, 2006

Prior Publication Data

US 2008/OO34358A1 Feb. 7, 2008

Int. C.
G06F 9/45 (2006.01)
U.S. Cl. ... T17/151

to
DEFININGATEAST ONE ALC 2

FENING ANAc conAINING ANNASTATE FOR
The Alcro STARTIN; AND A PLURALITY OF

TRANSiTIONS, eACHTRANSiTIONINCLUDING: A STATE
NUMBER, A PATTERNAGAINST WHChto MATCHA
PoTNTIAL SOURCE OBJECT, ATARGET STAT

NUMBER, AND A sequence of ouTPUT objects

04

constructing ANAc WHERNWHNTHE Acis los
APPLIEd. To A Top-level construct, THE Results
YELA SAMERESULTAS coMPUTING THEALCON
Achloop of THTOP-LVELCONSTRUCT, USING

PARAAUTOMATONFORSAN
o

constructing ANAc whern When the Alcis
APPllo To A Top-level CoNSTRUCT, The results
YELA SAM result As copytnGHAC on

EACH CASE OF AMACH

CONSTRUCTING ANACWHERENEWHENTHEACS
APPLIED to A ToP-LVE construct, the results
YELA SAME RESULTAS COMPUING THAcN

1.

soueNCONAchMMBER of ASEQUENCE,
PASSING STATESBETWEENTHE ACEXECUTIONS
using PARTIAL AutoMAtondorsation

CONSTRUCNGANACWHERENWHENTHALCS
Applied To A TOP-LVELCONSTRUCT, THE RESULTs
YoAsAM result AscANGANW function

112

which does the same WORKASANOld FUNCTION,
suit Aso calls the AcAt the Ndons results

BEFORE PASSING THE RESULTsACK

constructinia APROGRAMUTIZING THE ALAST ONE
ALC

114

(58) Field of Classification Search 717/151
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0097652 A1* 5/2003 Roediger et al. 717/16O
2003/0200539 A1* 10, 2003 Fu et al. T17, 161
2006/0080645 A1 4/2006 Miranda et al. 717/137

* cited by examiner

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Chapin IP Law, LLC; Barry
W. Chapin, Esq.

(57) ABSTRACT
A method, apparatus and computer program product for per
forming program optimization using Automaton Loop Con
struct (ALC) is presented. At least one ALC is defined and a
program is constructed utilizing the at least one ALC. The
program is optimized, the optimizing including pre-comput
ing as much output as possible using the at least one ALC, the
optimizing resulting in optimized program code.

17 Claims, 3 Drawing Sheets

OPTIMIZING THE PROGRAM, the optM2ING INCLUDING PRE- s
CoMPUING AS MUCHOUTPASPOSSEUSING THEAT
LEASTONE Alc, The OPTIMIZING resulting fN optiMIZEd

ProgRAM coo 1s
checKENGTop-LEVE PROGRAM constructs AN

MACHINGALAST ONE OF THOP-WELPROGRAM
CONSTRUCTSTAEASONALc

THEATEAST ONEACEN PROWIEWTHA
SEQUENCE of Objects WCHARE PROCESS Nis
ATA TIME, AND WHEREIN THE currNTSTATSTARTs
AS THE NITIAL STATE FORTHE ALEAST ONEALCAN

WHErm. As Acosucts processed the
Processo OscTSMATCHEOAFIRST POSSIBLE
STATRANSiTION OF THE ACSUCTHAT THE STATE
NUMER OF TRANSCNMATCHES cirrin 20
STATAND THEPATRNMATCHES THE PROCESSED

oBJECT:
HAEASONAc PTS THE OUTPUT

oJct souncinth Atcho stat
TRANSiTIONAN CANGESTO THE TARGETSATEN

THE MATCheo TRANSiTION; ANd
WHERENPrior to ProcessNG, THoscT

is copio ANo optiMizdeas onAir Aston
OF THE GROUP COMPRISING PARTAVAlATION,
DEFORESTATION, PARTIALDEForsTATIONAND

LANGUAGE COMPANTECHNUS

122
ExcuTING THE TIMIZED PROGRAM coo

He progral coprSSANXTNSLMARKUP 124
LANGUAGE (XML) PROCESSING PROGRAMAND WHEREINThe

Accoprises A corxMSRIAZER

HopTiMao PRGRAMCODESSUsTo ADTONA
PROCESSING, The AdditionAli PROCESSING INCLUDING AT

LEAstoNs of THE Group coprisNestorms the 126
optimized PROGRAM code, coMPILING THE oPTIMIZED

PROGRAM code To NATIVE code, compliNG THe opTIMIZEd
ProGraM code to YTE code, AND COMPLING THE
oPTIMIZED ProGram code TowirTUAL MEMORY (VM)

NSTRUCTIONS

U.S. Patent Sep. 6, 2011 Sheet 2 of 3 US 8,015,555 B2

100
Y

DEFINING AT LEAST ONE ALC 102

DEFINING AN ALC CONTAINING AN INITIAL STATE FOR
THE ALC TO START IN; AND A PLURALITY OF

TRANSiTIONS, EACHTRANSiTION INCLUDING: A STATE
NUMBER, A PATTERN AGAINST WHICH TOMATCHA
POTENTIAL SOURCE OBJECT, ATARGET STATE

NUMBER, AND A SEQUENCE OF OUTPUT OBJECTS

104

106 CONSTRUCTING AN ALC WHEREN WHEN THE ALCS
APPLIED TO A TOP-LEVEL CONSTRUCT, THE RESULTS
YELD A SAME RESULTAS COMPUTING THE ALC ON
EACH LOOP OF THE TOP-LEVEL CONSTRUCT, USING

PARTIAL AUTOMATON DEFORESTATION

108
CONSTRUCTING AN ALC WHEREN WHEN THE ALCS
APPLIED TO A TOP-LEVEL CONSTRUCT, THE RESULTS
YELD A SAME RESULTAS COMPUTING THE ALC ON

EACH CASE OF A MATCH

CONSTRUCTING AN ALC WHEREIN WHEN THE ALCS
APPLIED TO A TOP-LEVEL CONSTRUCT, THE RESULTS
YELD A SAME RESULTAS COMPUTING THE ALC N
SEQUENCE ONEACH MEMBER OF A SEQUENCE,
PASSING STATES BETWEEN THE ALC EXECUTIONS
USING PARTIAL AUTOMATON DEFORESTATION

110

CONSTRUCTING AN ALC WHEREIN WHEN THE ALCS
APPLIED TO A TOP-LEVEL CONSTRUCT, THE RESULTS
YELD A SAME RESULTAS CALLING A NEW FUNCTION
WHICH DOES THE SAME WORK AS ANOLD FUNCTION,
BUT ALSO CALLS THE ALC AT THE END ON TS RESULTS

BEFORE PASSING THE RESULTS BACK

CONSTRUCTING A PROGRAM UTILIZING THE AT LEAST ONE
ALC

112

114

FIGURE 2A

U.S. Patent Sep. 6, 2011 Sheet 3 of 3 US 8,015,555 B2

OPTIMIZING THE PROGRAM, THE OPTIMIZING INCLUDING PRE
COMPUTING AS MUCH OUTPUT AS POSSIBLE USING THE AT
LEAST ONE ALC, THE OPTIMIZING RESULTING IN OPTIMIZED

PROGRAM CODE

CHECKING TOP-LEVEL PROGRAM CONSTRUCTS AND
MATCHING AT LEAST ONE OF THE TOP-LEVEL PROGRAM

CONSTRUCTS TO AT LEAST ONE ALC

116

118

THE AT LEAST ONE ALCBEING PROVIDED WITH A
SEQUENCE OF OBJECTS WHICHARE PROCESSED ONE
ATA TIME, AND WHEREIN THE CURRENT STATE STARTS
AS THE NITIAL STATE FOR THE AT LEAST ONE ALC AND

WHEREN ASEACH OBJECT IS PROCESSED THE
PROCESSED OBJECT IS MATCHED TO A FIRST POSSIBLE
STATE TRANSiTION OF THE ALC SUCH THAT THE STATE
NUMBER OF THE TRANSiTION MATCHES THE CURRENT
STATE AND THE PATTERN MATCHES THE PROCESSED

OBJECT;
THE AT LEAST ONE ALC OUTPUTS THE OUTPUT

OBJECT SEQUENCE IN THE MATCHED STATE
TRANSiTION AND CHANGES TO THE TARGET STATE IN

THE MATCHEDTRANSiTION; AND
WHEREIN PRIOR TO PROCESSING, THE OBJECT

IS COMPLED AND OPTIMIZED BASED ON AT LEAST ONE
OF THE GROUP COMPRISING PARTIAL EVALUATION,
DEFORESTATION, PARTIAL DEFORESTATION AND

LANGUAGE COMPLATION TECHNICUES

120

122

EXECUTING THE OPTIMIZED PROGRAM CODE

124 THE PROGRAM COMPRISES AN EXTENSIBLE MARKUP
LANGUAGE (XML) PROCESSING PROGRAMAND WHEREIN THE

ALC COMPRISES A CORE XML SERIALIZER

THE OPTIMIZED PROGRAM. CODE IS SUBJECT TO ADDITIONAL
PROCESSING, THE ADDITIONAL PROCESSING INCLUDING AT
LEAST ONE OF THE GROUP COMPRISING STORING THE
OPTIMIZED PROGRAM CODE, COMPLING THE OPTIMIZED

PROGRAM CODE TO NATIVE CODE, COMPLING THE OPTIMIZED
PROGRAMCODE TO BYTE CODE, AND COMPLING THE
OPTIMIZED PROGRAM CODE TO VIRTUAL MEMORY (VM)

INSTRUCTIONS

126

FIGURE 2B

US 8,015,555 B2
1.

AUTOMATON LOOP CONSTRUCT (ALC)
AND METHOD OF PERFORMING PROGRAM

OPTIMIZATION USING THE ALC

BACKGROUND

There are a large number of components involved in mod
ern enterprise applications. This large number of components
require many traversals of the data set for the data to flow from
one component to the next—on the order of a constant times
in traversals for n components—and this time often dominates
over the time spent on the actual business logic of the appli
cation in terms of time spent by the CPU. Most enterprise
application environments do nothing to eliminate unneces
sary traversals, because for Such a system to consolidate
traversals today, components, which are usually written in
procedural languages, must be recoded to be aware of one
another, reducing the reusability of these components. The
only way to keep the benefits of componentization and
remove the drawbacks of the many recodings of the data,
would be to pass the components to a compiler and then
compile the recodings away—this process is known as defor
estation. We know of no system today that has a generic
mechanism for eliminating redundant and unneeded travers
als.
A large class of real-world enterprise business applications

are written in components which require reformulating all of
the data that flows through them a number of times. Each time
requires time to do the reformulation as well as memory to
store the reformulated data.

Deforestation is the process of program optimization to
remove intermediate trees. Finite state automata have long
been knows as a general purpose computing construct, well
known by computer Scientists, and easy to understand. Also
known are ways to turn general functions into finite State
automata, and then collapse any sequence of successive finite
state automata into a single automata, which accomplishes
Some more deforesting.

Extensible Markup Language (XML) processing is one
field where there is low performance resulting from many
disparate components, and the many resulting data recodings.
XML has begun to work its way into the business computing
infrastructure and underlying protocols such as the Simple
Object Access Protocol (SOAP) and Web services. In the
performance-critical setting of business computing, however,
the flexibility of XML becomes a liability due to the poten
tially significant performance penalty. XML processing is
conceptually a multitiered task, an attribute it inherits from
the multiple layers of specifications that governits use includ
ing: XML, XML namespaces, XML Information Set (In
foset), and XML Schema, followed by transformation
(XSLT), query (XOuery), etc. Traditional XML processor
implementations reflect these specification layers directly.
Bytes are converted to some known form. Attribute values
and end-of-line sequences are normalized. Namespace dec
larations and prefixes are resolved, and the tokens are then
transformed into some representation of the document
Infoset. The Infoset is optionally checked against an XML
Schema grammar (XML Schema, schema) for validity and
rendered to the user through some interface. Such as Simple
API for XML (SAX) or Document Object Model (DOM)
(API stands for application programming interface). Finally,
higher-level processing is done. Such as transformation,
query, or other Web Services processing.

With the widespread adoption of SOAP and Web services,
XML-based processing, and parsing of XML documents in
particular, is becoming a performance-critical aspect of busi

10

15

25

30

35

40

45

50

55

60

65

2
ness computing. In Such scenarios, XML is usually being
processed by languages Such as XSLT and XQuery, etc. In
total, this leaves processing at many independent levels:
XML parsing, validation, deserialization, transformation,
query, etc. This division into separate layers of processing fits
well with current Software engineering practices which
encourage reusable pieces of code to be packaged into com
ponents. To create a complete application, a number of com
ponents—often written by different authors or under different
circumstances—must be assembled. Enterprise applications
typically process data in high Volumes, and as such, large
quantities of data pass through the components that make up
the application. Most components, as part of their normal
function, will have to make at least one traversal through this
data. In addition, because of the diversity of their origin, each
component often requires data to be packaged in a very spe
cific form, and a considerable amount of time is also spent
traversing the data set to convert it from one form to another
as it is sent through the various components.

SUMMARY

Conventional mechanisms such as those explained above
suffer from a variety of deficiencies. One of the mechanisms
was to turn general functions into finite state automata and
combine them. One deficiency for this mechanism is that this
approach does not lend itself to removing much of the work
involved, just the intermediate data structures. Furthermore,
while removing the intermediate data structures, it does not
remove the need for the parts of the initial data structure
which might not be needed, and it does not pre-compute the
parts of the output data structure that can be known at compile
time. Thus, deforestation of generic automata leaves a lot of
extra computation in the runtime program. Thus, separate
components and many recodings of data are a current prob
lem for many modern enterprise applications, including XML
processing.

Embodiments of the invention significantly overcome Such
deficiencies and provide mechanisms and techniques that
provide an Automaton Loop Construct (ALC) and method of
performing program optimization using the ALC.
The present invention utilizes an optimization framework

which can remove many unnecessary data recoding steps,
thus improving performance and decreasing memory usage.
The key benefit of the automaton deforestation technique is
that the program made up of all of the components is optimi
Zable, and a novel compiler can take advantage of that
through deforestation and partial deforestation to precompute
as much of the output as possible at compile time, and remove
as many extra forms of the data as possible.

In a particular embodiment the ALC comprises an initial
state for the ALC to start in and a plurality of transitions, each
transition including: a state number, a pattern against which to
match a potential source object, a target state number, and a
sequence of output objects.

In a particular embodiment of a method of performing
program optimization using Automaton Loop Construct
(ALC), the method includes defining at least one ALC and
constructing a program utilizing the at least one ALC. The
method further comprises optimizing the program, the opti
mizing including pre-computing as much output as possible
using said at least one ALC, the optimizing resulting in opti
mized program code.

Other embodiments include a computer readable medium
having computer readable code thereon for performing pro
gram optimization using Automaton Loop Construct (ALC).
The medium includes instructions for defining at least one

US 8,015,555 B2
3

ALC and instructions for constructing a program utilizing the
at least one ALC. The computer readable medium further
includes instructions for optimizing the program, the opti
mizing including pre-computing as much output as possible
using said at least one ALC, the optimizing resulting in opti
mized program code.

Still other embodiments include a computerized device,
configured to process all the method operations disclosed
herein as embodiments of the invention. In such embodi
ments, the computerized device includes a memory system, a
processor, communications interface in an interconnection
mechanism connecting these components. The memory sys
tem is encoded with a process for performing program opti
mization using Automaton Loop Construct (ALC) as
explained herein that when performed (e.g. when executing)
on the processor, operates as explained herein within the
computerized device to perform all of the method embodi
ments and operations explained herein as embodiments of the
invention. Thus any computerized device that performs or is
programmed to perform up processing explained herein is an
embodiment of the invention.

Other arrangements of embodiments of the invention that
are disclosed herein include Software programs to perform
the method embodiment steps and operations Summarized
above and disclosed in detail below. More particularly, a
computer program product is one embodiment that has a
computer-readable medium including computer program
logic encoded thereon that when performed in a computer
ized device provides associated operations for performing
program optimization using Automaton Loop Construct
(ALC) as explained herein. The computer program logic,
when executed on at least one processor with a computing
system, causes the processor to perform the operations (e.g.,
the methods) indicated herein as embodiments of the inven
tion. Such arrangements of the invention are typically pro
vided as Software, code and/or other data structures arranged
or encoded on a computer readable medium such as an optical
medium (e.g., CD-ROM), floppy or hard disk or other
medium such as firmware or microcode in one or more ROM
or RAM or PROM chips or as an Application Specific Inte
grated Circuit (ASIC) or as downloadable software images in
one or more modules, shared libraries, etc. The software or
firmware or other such configurations can be installed onto a
computerized device to cause one or more processors in the
computerized device to perform the techniques explained
herein as embodiments of the invention. Software processes
that operate in a collection of computerized devices, such as
in a group of data communications devices or other entities
can also provide the system of the invention. The system of
the invention can be distributed between many software pro
cesses on several data communications devices, or all pro
cesses could run on a small set of dedicated computers, or on
one computer alone.

It is to be understood that the embodiments of the invention
can be embodied strictly as a software program, as Software
and hardware, or as hardware and/or circuitry alone. Such as
within a data communications device.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of preferred embodiments of the inven
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the invention.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 1 comprises a diagram of optimizing an ALC in

accordance with embodiment of the present invention; and
FIGS. 2A and 2B depicts flow diagrams of a method for

performing program optimization using Automaton Loop
Construct (ALC) in accordance with embodiments of the
invention.

DETAILED DESCRIPTION

The present method and apparatus performing program
optimization using Automaton Loop Construct (ALC)
defines a ALC and further includes rewriting key parts of
enterprise business applications using finite state automata,
and includes ways to use the knowledge contained in these to
have a compiler remove the extra reformulations of the data.

Presented is a new automaton loop construct, and a way to
partially deforest a program with it, which can be used to
Solve the problem. This construct is simple, functional, easy
to deforest against and partially deforest against, and is also
quite familiar and intuitive to computer scientists. While this
construct can be generally straightforward for computer sci
entists to reason about and write, and for a compiler to par
tially evaluate, deforest, and partially deforest, for a wide
range of problems, the ALC will be explained in reference to
the particular problem of XML serialization as part of an
XML processing scenario. Note that the present invention is
not intended to be limited to an XML serialzier, the XML
serializer example is used for explanation purposes.

Functional XML processing code can be written around an
ALC which can be optimized using classical functional lan
guage techniques, in order to precompute more of the output
of XML processing, such as transformation, query, etc. Since
this construct is a well-understood abstraction, it can be easy
to use for computer Scientists, and the increased optimizabil
ity can bring Substantial speedups to this performance-critical
aca.

Computer scientists are quite familiar with the finite state
automaton. The present “Automaton Loop Construct’ (ALC)
is basically a finite state automatontailored to be easily defor
estable and partially deforestable. The ALC works as follows:

1. The automaton starts in an initial state.
2. A sequence of objects is consumed one at a time.
3. A consumed object is matched to the first possible state

transition given the current state. The state transition consists
of four parts: (1) a state number, (2) a pattern against which to
match a potential source object, (3) a target state, and (4) a
sequence of output objects. The automaton outputs the output
object sequence associated with the state transition and
changes to the associated target State. Steps 2-3 are repeated
until all objects are consumed from the input.

Automatons are very well suited for use in deforestation
optimizations. One of the important things about our limited
automata is that all transitions are on a known constant state,
so that a compiler can make deductions using this informa
tion. Consider the following example of a simplified XML
serializer:

XML. Event =
Begin Tag(name) | /* Output an XML tag <food */
End Tag (name) | * Output a closing XML tag </food */
Add Attribute(name, value) | f* Output an attribute
pair bar="baz' */
Add Text(text)

automaton Initial State 1
State 1, Begin Tag (name) ->
State 2, Begin Tag (name) ->

/* Output text */

State 2, “K” & name & “”
State 2, “>< & name & “”

US 8,015,555 B2
5

-continued

State 1, End Tag (name) -> State 1, “K? & name & “>
State 2, End Tag (name) -> State 1, “s</ & name & “s'
State 2, Add Attribute(name, value) -> State 2, name &

=X& valle & X
State 1, Add Text(text) ->
State 2, Add Text(text) ->

State 1, text
State 1, “s' & text

The automaton has two states—state 2 indicates that the
closing ">'' on a start tag has not been yet outputted, and state
1 indicates that the closing'>'' on the last start tag (if any) has
already been outputted.

To produce this fragment:<foobar="baz'>fluff-/food, the
following subroutine could be used:

Subroutine Output Foo:
Begin Tag (“foo)
Add Attribute(“bar, “baz')
Add Text("fluff)
End Tag (“foo')

The advantage of the automaton representation of the ALC
arises when used with partial evaluation and deforestation.
For example, suppose the Output Foo subroutine is called in
the middle of a program in which XML is outputted. At any
given invocation of Output Foo, it is unknown whether the
XML serializer is in state 1 or 2. However, regardless of
whether the serializer is in state 1 or 2 at the beginning of the
invocation of Output Foo, after the first Begin Tag event is
processed, the serializer will deterministically be in state 2.
The important part is that the compiler can determine this
statically with relative ease by simply looking at the definition
of the automaton. Therefore, at runtime, instead of requiring
a switch to be executed before every event which is processed
by the automaton, only the first event requires an if statement;
the rest of the event stream, from the Add Attribute(“bar,
“baz') portion on, can be partially evaluated, or precomputed,
at compile time. For example, code for the sample Subroutine
can always be generated as:

if (state == 1) {
output “Kfoo
else {
output “c-foo

output “bar="baz's fluff-/food
state = 1;

Building up a more complicated case, consider the follow
ing Subroutine:

Subroutine Second Level:
Begin Tag ("one
Begin Tag (“blue')
End Tag (“blue')
Begin Tag (red)
End Tag (red)
End Tag (“one
Call-Subroutine Unknown
Begin Tag (“two')
Add Attribute(“a”, “2)
Call-Subroutine Output Foo
Call-Subroutine Output Foo
End Tag (“two')

10

15

25

30

35

40

45

50

55

60

65

6
Using the kind of compilation discussed above, the com

piler can generate code like the following for this subroutine:

Second Level:
if (state == 1) {

output <one

else {
output-Kone

output “skblue-></blue-><red></redd <?oned
state = (call Unknown state=1)
if (state == 1) {

output <two

else {
output --two

output “a="2"
state = (call Output Foo state=2)
state = (call Output Foo state=state)
if (state == 1) {

Output."</two

Output “c-Kitwo

state = 1;

Since Output Foo, as seen above, always leaves in state 1,
this code can be optimized as follows:

Second Level:
if (state == 1) {

output <one

else {
output-Kone

output “skblue-></blue-><red></redd <?oned
state = (call Unknown state=1)
if (state == 1) {

output <two

else {
output --two

output “a="2"
call Output Foo state=2
call Output Foo state=1
output “K/two->
state = 1;

By specializing the Output Foo code to the specific values
of the initial state, the results are:

Output Foo Initial State 1:
but “Kfoo bar="baz'>fluff-foo

state = 1;
put Foo Initial State 2:
but “c-Kfoo bar-baz'-fluff-ffoo

state = 1;
Second Level:
if (state == 1) {

but <one

else {
but --one

Output “c-Kblue-K/blues.<red-Kredo-Konec
state = (call Unknown state=1)
if (state == 1) {

output <two

else {
O utput --two

Ol

cal
but a-2
Output Foo Initial State 2

US 8,015,555 B2
7

-continued

call Output Foo Initial State 1
output “K/two->
state = 1;

If appropriate, the two called subroutines can then be
inlined, producing the following code:

Second Level:
if (state == 1) {

output."<one

output"><one

output “skblue-></blue-><red></redd <?oned
state = (call Unknown state=1)
if (state == 1) {

output “Ktwo
else {
output “sktwo

output “a="2"><foo bar="baz's fluff-/food-foo
bar="baz'>fluff-food-Kitwo
state = 1;

The straightforward deforestation and partial deforestation
of the ALC enables other well-known functional optimiza
tions in order to precompute exactly the parts of the output of
the XML processing which could be known at compile time,
while leaving the other parts uncalculated until runtime. For
example, it is unknown what exactly to do with the “one'
begin tag. Then, a large segment of the output is precomputed.
Then, given the opaque “Unknown call, it is unknown what
to do for it or after it for the “two begin tag, but then the rest
of the output is precomputed.

In contrast, if the serializer had been written using a more
general construct, such as a fold construct from ML or Lisp,
the compiler would have to do more complex data flow analy
sis to determine that the second event and on would result in
deterministic output. Obviously, if it was written in an
imperative style, with state, then this analysis would be even
more difficult.

One of the keys to this optimization is partial automaton
deforestation, which is accomplished using the act of splitting
one ALC which has an initial state, into repeatedly executing
a similar automaton that takes as an input argument its initial
state and returns its final state. For example, consider any
general ALC:

ALC(initial-state-i, transitions=t, input=x)
For partially deforested automaton, a generic version of

this ALC can be written as:

Generic(state-arg, input-arg) ALC(initial-state State-arg,
transitions—t, input input-arg), and after the sequence of
input is exhausted, it returns the then current state.
A call to the ALC can be rewritten as a call to the generic

version with passing the ALCS initial state to it, and ignoring
the result state:

junk-Generic(i. x)
This has the exact same behavioras the initial ALC did, and

thus this process can be accomplished for rewriting any ALC.
This is then useful for “splitting up' the ALC, as can be seen
in the examples above where as much as possible was pre
computed and the “Generic ALC's were left to compute the
rest at runtime. As an illustrative example, consider the
sequence case which is in FIG. 1:

5

10

15

25

30

35

40

45

50

55

60

65

8
ALC(initial-state-i, transitions=t,

c. Z))
can be rewritten as:
Generic(transitions t) called on i and sequence(a,b,c,...,

Z)
Which, using the rewrite for sequence given in FIG. 1, can

be rewritten as:
iai
ib=Generic(transitions=t) called on ia and a
ic-Generic(transitions=t) called on ib and b
id=Generic(transitions=t) called on ic and c

input sequence(a,b,

ifinal=Generic(transitions=t) called on iz and Z
junk ifinal
After this rewrite, or any other rewrite or “splitting up', we

can continue this recursive process by repeatedly rewriting
each ALC (Generic) in turn, using each input (a, b, c, ... Z.
respectively, in the example). Whatever is precomputable at
compile time will be precomputed, thus removing the need
for extra objects and conversion passes at runtime. This can
dramatically improve the performance of XML processing,
as an example, and many kinds of computer processing, in
general.

These analyses can lead to precomputation of much of the
output, based on just the operations, even before any input is
seen. However, these optimizations come at a cost: All main
parts of the computation must be functional, and must be easy
to deforest against. In particular, for XML processing, all data
goes through the XML serializer before output, and to get
these benefits the serializer must be functional and easy to
deforest against.
Most XML processing today is implemented in imperative

C or Java programs, and their serializers are imperative, and
thus not at all amenable to straightforward partial evaluation
or deforestation. Other current alternatives use functional
languages, which are amenable to classical functional lan
guage analysis and optimizations in general. Unfortunately,
these serializers use constructs such as folds which, while
easier to deal with than imperative code for some partial
evaluation, are not at all Straightforward to deforest against.
Even the conversion to automata and then deforesting them to
produce a single automata, produces a final automata that will
not be straightforward to deforest, and is not easy to partially
deforest. Thus, no current solutions can be compiled to elimi
nate all the recodings for compile-time-computable parts of
the output, and highly-optimized processing for the unknown
parts. By contrast, partial deforestation and implementation
of key parts of a program with our limited automata, while
easy to understand and program, can dramatically improve
performance of many enterprise applications and XML pro
cessing performance as one particular example.
A flow chart of the presently disclosed method is depicted

in FIGS. 1 and 2. The rectangular elements are herein denoted
“processing blocks” and represent computer Software
instructions or groups of instructions. Alternatively, the pro
cessing blocks represent steps performed by functionally
equivalent circuits such as a digital signal processor circuit or
an application specific integrated circuit (ASIC). The flow
diagrams do not depict the syntax of any particular program
ming language. Rather, the flow diagrams illustrate the func
tional information one of ordinary skill in the art requires to
fabricate circuits or to generate computer software to perform
the processing required in accordance with the present inven
tion. It should be noted that many routine program elements,
Such as initialization of loops and variables and the use of
temporary variables are not shown. It will be appreciated by
those of ordinary skill in the art that unless otherwise indi

US 8,015,555 B2

cated herein, the particular sequence of steps described is
illustrative only and can be varied without departing from the
spirit of the invention. Thus, unless otherwise stated the steps
described below are unordered meaning that, when possible,
the steps can be performed in any convenient or desirable
order.

Referring now to FIG. 1 part of the process of deforesting
an ALC is shown. The source sequence of objects coming into
the ALC could be coming from any general program code.
This figure considers the cases where the top-level program
constructs being passed as the source of the ALC are checked
in step 10, and found to be a for each (step 12), a match (step
14), a sequence (step 16), and a function call (step 18). This
certainly does not mean that these four program constructs
are the only ones which we can easily and straightforwardly
deforest an ALC when its source comes from them. Rather,
these four examples should show the technique enough that
someone skilled in the art should be able to understand in
general how to deforest an ALC whose source comes from
any functional language construct. Furthermore, it should be
obvious that after one of these optimizations has been accom
plished, the process can be repeated as many times as needed
in order to optimize and precompute more and more of the
program results. In FIG. 1, at processing block 12, the for
each is rewritten by realizing that the automaton applied to the
results of the for each will yield the same results as computing
a slightly-modified for each that applies the partially-defor
ested automaton to the body of the for each and passes the
state of the automaton from each loop iteration to the next
loop iteration.

In processing block 14, the match is rewritten by realizing
that the automaton applied to the results of the match will
yield the same results as computing the automaton on each
case of the match. This would be the same for any conditional.

In processing block 16, the sequence is rewritten by real
izing that the automaton applied to the sequence will yield the
same results as computing the automaton in sequence on each
member of the sequence, passing states between the automa
ton executions using partial automaton deforestation.

In processing block 18, the function call is rewritten by
realizing that the automaton applied to the results of the
function call will yield the same results as calling a new
function which does the same work as the old function, but
also calls the ALC at the end on its results before passing them
back.

Referring now to FIG. 2A, a method 100 of performing
program optimization using Automaton Loop Construct
(ALC) is shown. The method begins with processing block
102 which discloses defining at least one ALC. As recited in
processing block 104 the ALC includes an initial state for the
ALC to start in, and a plurality of transitions, each transition
including: a state number, a pattern against which to match a
potential Source object, a target state number, and a sequence
of output objects. The ALCs may be further defined as recited
in processing blocks 106, 108, 110, and 112. Processing
block 106 discloses defining an ALC comprises constructing
an ALC wherein when the ALC is applied to a top-level
construct, the results yield a same result as computing the
ALC on each loop of the top-level construct, using partial
automaton deforestation. Processing block 108 states defin
ing an ALC comprises constructing an ALC wherein when
the ALC is applied to a top-level construct, the results yield a
same result as computing the ALC on each case of a match.
Processing block 110 recites defining an ALC comprises
constructing an ALC wherein when the ALC is applied to a
top-level construct, the results yield a same result as comput
ing the ALC in sequence on each member of a sequence,

10

15

25

30

35

40

45

50

55

60

65

10
passing states between the ALC executions using partial
automaton deforestation. Processing block 112 discloses
defining an ALC comprises constructing an ALC wherein
when the ALC is applied to a top-level construct, the results
yield a same result as calling a new function which does the
same work as an old function, but also calls the ALC at the end
on its results before passing the results back. Processing
continues with processing block 114 which states construct
ing a program utilizing the at least one ALC.

Processing block 116 recites optimizing the program, the
optimizing including pre-computing as much output as pos
sible using the at least one ALC, the optimizing resulting in
optimized program code. Processing block 118 discloses that
the optimizing comprises checking top-level program con
structs and matching at least one of the top-level program
constructs to at least one ALC. Processing block 120 states
optimizing the program includes the at least one ALC being
provided with a sequence of objects which are processed one
at a time, and wherein the current state starts as the initial state
for the at least one ALC and wherein as each object is pro
cessed the processed object is matched to a first possible state
transition of the ALC such that the state number of the tran
sition matches the current state and the pattern matches the
processed object, the at least one ALC outputs the output
object sequence in the matched State transition and changes to
the target state in the matched transition, and wherein prior to
processing, the object is compiled and optimized based on at
least one of the group comprising partial evaluation, defores
tation, partial deforestation and language compilation tech
niques.

Processing block 122 recites comprising executing the
optimized program code. In a particular embodiment, as
recited in processing block 124 the program comprises an
extensible markup language (XML) processing program and
wherein the ALC comprises a core XML serializer.

Processing block 126 discloses the optimized program
code is subject to additional processing, the additional pro
cessing including at least one of the group comprising storing
the optimized program code, compiling the optimized pro
gram code to native code, compiling the optimized program
code to byte code, and compiling the optimized program code
to Virtual Memory (VM) instructions.
By way of the above described ALC and method of per

forming program optimization using Automaton Loop Con
struct (ALC), instead of construction programs as they are
today, mostly functional programs are constructed including
the new ALC constructs in key places. A compiler partially
evaluates the entire programs, where possible, deforests as
much as possible, including all of the techniques that have
been described to precompute as much of the output as pos
sible. The resulting code is executed, in any form that code
can be executed in, including the ALCs. There is less refor
mulating of data, and less processing, and thus the program
runs much faster and use less memory.

Having described preferred embodiments of the invention
it will now become apparent to those of ordinary skill in the
art that other embodiments incorporating these concepts may
be used. Additionally, the software included as part of the
invention may be embodied in a computer program product
that includes a computer useable medium. For example, Such
a computer usable medium can include a readable memory
device, such as a hard drive device, a CD-ROM, a DVD
ROM, or a computer diskette, having computer readable pro
gram code segments stored thereon. Accordingly, it is Sub
mitted that that the invention should not be limited to the
described embodiments but rather should be limited only by
the spirit and scope of the appended claims.

US 8,015,555 B2
11

What is claimed is:
1. A computer implemented method of performing pro

gram optimization using Automaton Loop Construct (ALC),
the method comprising:

defining at least one ALC, the ALC comprising:
an initial state for the ALC to start in; and
a plurality of transitions, each transition including: a

state number, a pattern against which to match a
potential source object, a target state number, and a
sequence of output objects;

constructing a program utilizing the at least one ALC; and
optimizing the program, the optimizing including pre

computing output using said at least one ALC, the opti
mizing resulting in optimized program code.

2. The method of claim 1 further comprising executing said
optimized program code.

3. The method of claim 1 wherein said optimizing com
prises checking top-level program constructs and matching at
least one of said top-level program constructs to at least one
ALC.

4. The method of claim 1 wherein said optimizing the
program includes said at least one ALC being provided with
a sequence of objects which are processed one at a time, and
wherein the current state starts as the initial state for said at
least one ALC and wherein as each object is processed the
processed object is matched to a first possible state transition
of the ALC such that the state number of the transition
matches the current state and the pattern matches the pro
cessed object;

the at least one ALC outputs the output object sequence in
the matched State transition and changes to the target
state in the matched transition; and

wherein prior to processing, said object is compiled and
optimized based on at least one of the group comprising
partial evaluation, deforestation, partial deforestation
and language compilation techniques.

5. The method of claim 1 wherein said defining an ALC
comprises one of the group consisting of:

constructing an ALC wherein when said ALC is applied to
a top-level construct, the results yield a same result as
computing the ALC on each loop of the top-level con
struct, using partial automaton deforestation;

constructing an ALC wherein when said ALC is applied to
a top-level construct, the results yield a same result as
computing the ALC on each case of a match;

constructing an ALC wherein when said ALC is applied to
a top-level construct, the results yield a same result as
computing the ALC in sequence on each member of a
sequence, passing states between the ALC executions
using partial automaton deforestation; and

constructing an ALC wherein when said ALC is applied to
a top-level construct, the results yield a same result as
calling a new function which does the same work as an
old function, but also calls the ALC at the end on its
results before passing the results back.

6. The method of claim 1 wherein said program comprises
an extensible markup language (XML) processing program
and wherein said ALC comprises a core XML serializer.

7. The method of claim 1 wherein the optimized program
code is subject to additional processing, the additional pro
cessing including at least one of the group comprising storing
the optimized program code, compiling the optimized pro
gram code to native code, compiling the optimized program
code to byte code, and compiling the optimized program code
to Virtual Memory (VM) instructions.

5

10

15

25

30

35

40

45

50

55

60

65

12
8. A computer readable storage medium having computer

readable code thereon for performing program optimization
using Automaton Loop Construct (ALC), the medium com
prising:

instructions for defining at least one ALC, the ALC includ
ing:
an initial state for the ALC to start in; and
a plurality of transitions, each transition including: a

state number, a pattern against which to match a
potential Source object, a target state number, and a
sequence of output objects;

instructions for constructing a program utilizing the at least
one ALC; and

instructions for optimizing the program, the optimizing
including pre-computing output using said at least one
ALC, the optimizing resulting in optimized program
code.

9. The computer readable storage medium of claim 8 fur
ther comprising instructions for executing said optimized
program code.

10. The computer readable storage medium of claim 8
wherein said instructions for optimizing comprises instruc
tions for checking top-level program constructs and matching
at least one of said top-level program constructs to at least one
ALC.

11. The computer readable storage medium of claim 8
wherein said instructions for optimizing the program includes
instructions for said at least one ALC being provided with a
sequence of objects which are processed one at a time, and
wherein the current state starts as the initial state for said at
least one ALC and wherein as each object is processed the
processed object is matched to a first possible state transition
of the ALC such that the state number of the transition
matches the current state and the pattern matches the pro
cessed object;

the at least one ALC outputs the output object sequence in
the matched State transition and changes to the target
state in the matched transition; and

wherein prior to processing, said object is compiled and
optimized based on at least one of the group comprising
partial evaluation, deforestation, partial deforestation
and language compilation techniques.

12. The computer readable storage medium of claim 8
wherein said instructions for defining an ALC comprises
instructions for one of the group consisting of

instructions for constructing an ALC wherein when said
ALC is applied to a top-level construct, the results yield
a same result as computing the ALC on each loop of the
top-level construct, using partial automaton deforesta
tion;

instructions for constructing an ALC wherein when said
ALC is applied to a top-level construct, the results yield
a same result as computing the ALC on each case of a
match;

instructions for constructing an ALC wherein when said
ALC is applied to a top-level construct, the results yield
a same result as computing the ALC in sequence on each
member of a sequence, passing states between the ALC
executions using partial automaton deforestation; and

instructions for constructing an ALC wherein when said
ALC is applied to a top-level construct, the results yield
a same result as calling a new function which does the
same work as an old function, but also calls the ALC at
the end on its results before passing the results back.

13. The computer readable storage medium of claim 8
further comprising instructions wherein said program com

US 8,015,555 B2
13

prises an extensible markup language (XML) processing pro
gram and wherein said ALC comprises a core XML serializer.

14. The computer readable storage medium of claim 8
further comprising instructions wherein the optimized pro
gram code is subject to additional processing, the additional
processing including at least one of the group comprising
storing the optimized program code, compiling the optimized
program code to native code, compiling the optimized pro
gram code to byte code, and compiling the optimized pro
gram code to Virtual Memory (VM) instructions.

15. A computer implemented method of performing pro
gram optimization using Automaton Loop Construct (ALC),
the method comprising:

defining at least one ALC, the ALC comprising:
an initial state for the ALC to start in; and
a plurality of transitions, each transition including: a

state number, a pattern against which to match a

10

15

14
potential Source object, a target state number, and a
sequence of output objects;

constructing a program utilizing the at least one ALC; and
checking top-level program constructs and matching at

least one of said top-level program constructs to at least
one ALC; and

optimizing the program, the optimizing including pre
computing output using said at least one ALC, the opti
mizing resulting in optimized program code.

16. The method of claim 15, wherein said program com
prises an extensible markup language (XML) processing pro
gram and wherein said ALC comprises a core XML serializer.

17. The method of claim 15, wherein constructing a pro
gram utilizing the at least one ALC comprises using partial
automaton deforestation.

