
US00799.1799B2

(12) United States Patent (10) Patent No.: US 7,991,799 B2
Heifets et al. (45) Date of Patent: * Aug. 2, 2011

(54) SCHEMA SPECIFIC PARSER GENERATION 7,200,805 B2 4/2007 Carlson
2001/0047385 A1* 11/2001 Tuatini TO9,203
2001/0054172 A1 12/2001 Tuatini

(75) Inventors: Abraham Heifets, Cambridge, MA 2002/011 1965 A1 8, 2002 Kutter
(US); Margaret G. Kostoulas, Veroia 2004/OO73870 A1 4, 2004 Fuh
(GR); Moshe Morris Emanuel Matsa, 2004/0216086 A1 10, 2004 Bau
Cambridge, MA (US); Eric Perkins, 2005/003881.6 A1 2/2005 Easton
Boston, MA (US) 2005/00974.55 A1* 5/2005 Zhou et al. 715,513

2006/0129605 A1 6/2006 Doshi
ck

(73) Assignee: International Business Machines 3988: A. 1838: shardt . 717/124

Corporation, Armonk, NY (US) 2007/0282894 A1 12/2007 Schneider
2008. O104095 A1 5.2008 Heifets

(*) Notice: Subject to any disclaimer, the term of this 2008. O104592 A1 5.2008 Heifets
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 1062 days.

This patent is subject to a terminal dis- Primary Examiner — Sathyanarayan Pannala
claimer. (74) Attorney, Agent, or Firm — Cuenot, Forsythe & Kim,

(21) Appl. No.: 11/758,047 LLC

(22) Filed: Jun. 5, 2007 (57) ABSTRACT

(65) Prior Publication Data A computer-implemented method of creating a schema spe
US 2008/O104105 A1 May 1, 2008 cific parser for processing Extensible Markup Language

ay 1, (XML) documents can include identifying a plurality of
Related U.S. Application Data XML processing templates, wherein each of the plurality of

XML processing templates performs a specific task of pro
(60) Provisional application No. 60/803,912, filed on Jun. cessing an XML document against an XML Schema compo

5, 2006. nent. An XML schema including a plurality of components
can be received. A hierarchy of the plurality of components of

(51) Int. Cl. the XML schema can be determined. An execution plan
G06F 7700 (2006.01) specifying a hierarchy of XML processing instructions can be
GO6F 17/30 (2006.01) created, wherein each XML processing instruction is associ

(52) U.S. Cl. 707/803; 717/100; 717/124; 717/149 ated with an XML processing template from the plurality of
(58) Field of Classification Search None XML processing templates. The hierarchy of the XML pro

See application file for complete search history. cessing templates can be determined according to the hierar
chy of components of the XML schema. The execution plan

(56) References Cited can be compiled to generate the schema specific parser. The

U.S. PATENT DOCUMENTS

6,782.379 B2 * 8/2004 Lee 707,999.OO2
6,789,252 B1* 9/2004 Burke et al. 717/1OO

100

schema specific parser can be output.

20 Claims, 6 Drawing Sheets

Parser-Generator
105

XML Processing
emplate Libra

110

U.S. Patent Aug. 2, 2011 Sheet 1 of 6 US 7,991,799 B2

Parser-Generator
105

XML Processing
emplate Libra

11 ()

F.G. 1

U.S. Patent Aug. 2, 2011

XML Processing Templates /
Instructions

READ TAG ISMIXED

READ TAG WITH QNAME ISMIXED
ONAME

READ END TAG ISMIXED

READ EMPTY

READ SIMPLE CONTENT TYPEID

READ EOF

Sheet 2 of 6 US 7,991,799 B2

Functionality

Read forward to the end of the next tag in either mixed mode
(allowing both tcxt characters and clemcnts) or clement-only
mode. The tag to be consumed may be any start or end tag.
End tags are checked for well-formedness against matching or
corresponding Start tags.

Read forward to the end of the next tag in either mixed mode or
element-only mode. While scanning, validate that the name of
the tag matches the given QName. The input stream can be
directly compared against a fixed tag name. Symbol table
lookup is avoided since the identifier is already known.

Read forward to the end of the next tag in either mixed mode or
element-only mode. While Scanning, verify that the tag is an
end tag, and match the end tag lexically against the balancing
start tag. Compares the input buffer against a known string, in
this case the balancing Start tag.

Read the next tag, which must be an end tag, and must match
the corresponding and balancing start tag. Validate that there is
no intervening character content. This instruction functions
similar to READ END TAG, except that it also validates that
no character content was read.

Read character data forward to the end of the next tag, which
must be an end tag, and must match its balancing Start tag.
Validate the intervening content using the built-in simple type
handler given by the type ID. Content is handled by a type
Specific scanner that can validate the content as Scanned. The
end tag can be handled as in READ END TAG.

Read forward to the end of the file, matching the XML
production for Trailing Misc, e.g., checking well-formedness of
comments, proccssing-instructions, whitc-space, ctic.

FG, 2

U.S. Patent Aug. 2, 2011 Sheet 3 of 6 US 7,991,799 B2

XML Processing Templates / Instructions Functionality

ASSERT TAG QNAME Assert that the current tag matches one of the members of the
ALLOWEDONAMES={ONAMEID ...} set of allowed QNames.

ASSERT ATTRS Assert that the attributes of the current tag obey the collective
ALLOWEDATTRIBUTESET attribute occurrence constraint as represented with two sets, one
REOUIREDATTRIBUTESET for excluded attributes and one for required attributes.

Chcck the attributes of the current tag for the given attributc
QName, and if present, validate content using the built-in
simple type handler given by the type ID.

FAIL Unconditional assertion failure.

FIG. 3

ASSERT ATTR CONTENT ONAMEID
TYPEID

4 O O

XML Processing Templates / Instructions Functionality

PUSH NEW ALL OCCURRENCE SET Push a new, empty set onto the all occurrence set stack.

TEST AND SET ENTRY ID Add the given ID to the current set, asserting that the given ID
was not already present.

Pop the current set off of the set stack and assert that the current
POPASSERT SET REOD SET set is a SuperSet of the given required IDs to check 'all group'

occurrence constraints of XML Schema.

PUSH COUNTER Push a new counter onto the Stack and initialize to Zero.

INCREMENT COUNTER Increment the top counter on the stack.

POP COUNTER Discard the top counter on the stack.

JUMP COUNTER LESS VALUE LABEL Branch to the given label if the top counter is less than the
given value.

ASSERT COUNTER GREATER OR EQAssert that the top counter is greater or equal to the given
UAL VALUE minimum value. Otherwise, fail.

FIG. 4

U.S. Patent Aug. 2, 2011 Sheet 4 of 6 US 7,991,799 B2

XML Processing Templates / Instructions Functionality

JUMP TAG NOT EQUALONAMEID Branch to thc instruction at the given label if the tag docs not
LABEL match the given QName.

JUMP UNCONDITIONAL LABEL Branch unconditionally to the given label.

Dispatch to the content model for the current start tag. The
content model is determined either by the instance value of
Xsi:type or by the supplied default type ID. The actual type ID
is checked against the type exclusions set
(EXCLUDEDTYPESET). The excluded types aggregate the
Various constraints on the runtime type of the elements as
specified by the element declaration and the type definition for
thc dcfault typc. If thc resolvcd typc is complex, the parscr
dispatches to the handler for that complex type, and resumes
processing. If the resolved type is simple, the corresponding
built-in simple type handler is used. The NIL argument tells
the complex typc which processing is allowed for Xsi:nil in this
COnteXt.

RETURN t control from the current complex type handler to its

CALL TYPE NIL DEFAULTTYPE
EXCLUDEDTYPESET

Check the attributes of the current tag for the XSinil attribute.
If present and bearing the value true, read the next tag as in
READ EMPTY, and return control from the current complex
type handler to its caller. In all other cases, continue execution.

RETURN IF NIL

FGS

U.S. Patent Aug. 2, 2011 Sheet 5 of 6 US 7,991,799 B2

6 OO

Receive XML schema as input
605

ReadXML Schema
610

Identify components of the XML schema
615

Determine hierarchy of XML schema
620

Map components of XML schema to XML processing
templates and/or XML processing instructions

625

Generate execution plan specifying XML processing
templates having hierarchy corresponding to hierarchy

of XML Schema
630

Compile execution plan
635

Output schema specific parser
64()

F.G. 6

U.S. Patent Aug. 2, 2011 Sheet 6 of 6

10
11

700

<Xsd:complexType name="ExampleType">
<XSd:sequence>

<XSd: choice>

US 7,991,799 B2

<xsd:element name="Name 1" type="Type1"/>
<xsd:element name="Name2" type="Type2"/>

</XSd: choice>
<xsd:element name="Name3" type="Type3"/>

</XSd:Scqucncc>
<Xsd: attribute name="attrl" type="XSd:String" use
<xsd: attribute name="attr2" type="xsd:string"/>
<xsd: attribute name="attr3" type="xsd:string"/>
</xsd:complexTypes

required"/>

FIG 7

80

<exampleType attrl="foo" attr2="bar" attr3="baz">
<Name2> </Name2>
<Name3> </Name3>

</cxamplcTypc)

FIG. 8

ASSERT ATTRS AllowedAttributeSet={attr1, attr2, attr3; RequiredAttributeSet={attrl
ASSERT ATTR CONTENT “attr1 xsd:string
ASSERT ATTR CONTENT attr2 xsd:string
ASSERT ATTR CONTENT “attr3 xsd:string
READ TAG QNAMES element-only Allowed Names={Namel, Name2}
JUMP TAG NOT EQUAL Name 1 10
CALL TYPE non-nillable de?aultType=Type 1 AllowedTypes={Type 1:
JUMP UNCONDITIONAL 11
CALL TYPE non-nillable defaultType-Type2 AllowedTypes={Type2
READ TAG WITH QNAME element-only Name3
CALL TYPE non-nillable defaultType-Type3 AllowedTypes={Type3:
READ END TAG
RETURN

FIG. 9

US 7,991,799 B2
1.

SCHEMA SPECIFIC PARSER GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Provisional Patent
Application No. 60/803,912, filed in the United States Patent
and Trademark Office on Jun. 5, 2006, the entirety of which is
fully incorporated herein by reference.

RESERVATION OF RIGHTS IN COPYRIGHTED
MATERIAL

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

Extensible Markup Language (XML) refers to a flexible
type of data encoding. XML coded messages can be
exchanged between computer programs of a system without
concern over aspects of the system such as the type of pro
gramming language in which each respective computer pro
gram is implemented, the type of information processing
systems involved, or the manner of message transmission.
XML allows virtually any component of a system, e.g., a
UNIX program, to communicate with any other component
of the system, e.g., a program written in the C programming
language for execution within a Windows-type of computing
environment.
XML schemas specify classes of allowable XML docu

ments, or XML messages, that a system will accept. In gen
eral, an “XML schema’ refers to a type of XML document
that expresses constraints on the structure and content of
XML documents that can be accepted by a given system.
Publishing an XML schema allows a system to define the type
of messages that the system is willing to accept. A validating
parser can analyze received XML documents with respect to
an XML schema and discard non-conforming or invalid XML
documents.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to creating parsers for pro
cessing Extensible Markup Language (XML) documents
with respect to an XML schema. One embodiment of the
present invention can include a computer-implemented
method of creating a schema specific parser for processing
XML documents. The method can include identifying a plu
rality of XML processing templates, wherein each of the
plurality of XML processing templates performs a specific
task of processing, e.g., parsing and/or validating, an XML
document against an XML Schema component. The method
further can include identifying an XML Schema including a
plurality of components, determining a hierarchy of the plu
rality of components of the XML schema, and creating an
execution plan specifying a hierarchy of XML processing
instructions. Each of the XML processing instructions can be
associated with an XML processing template of the plurality
of XML processing templates. The hierarchy of the XML
processing instructions can be determined according to the
hierarchy of components of the XML schema. The execution

10

15

25

30

35

40

45

50

55

60

65

2
plan can be compiled to generate the schema specific parser.
The schema specific parser can be output.

Another embodiment of the present invention can include
a system for creating a schema specific parser for processing
XML documents. The system can include a library including
a plurality of XML processing templates. Each XML process
ing template can include Source code that, when compiled,
performs a particular task of processing an XML document
against an XML schema component. The system also can
include a parser generator that determines a hierarchy of an
XML schema and creates an execution plan specifying a
hierarchy of XML processing instructions according to the
hierarchy of the XML schema. Each XML processing
instruction can be associated with an XML processing tem
plate of the plurality of XML processing templates. The
parser generator can compile the execution plan and output
the schema specific parser.

Yet another embodiment of the present invention can
include a computer program product including a computer
usable medium having computer-usable code that, when
executed, causes a machine to perform the various steps and/
or functions described herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a system that auto
matically generates an Extensible Markup Language (XML)
schema specific parser in accordance with one embodiment
of the present invention.

FIG. 2 is a table illustrating XML processing instructions
and functionality of associated XML processing templates
(templates) of the XML processing template library of FIG. 1
in accordance with another embodiment of the present inven
tion.

FIG. 3 is a table illustrating XML processing instructions
and functionality of associated templates of the XML pro
cessing template library of FIG. 1 in accordance with another
embodiment of the present invention.

FIG. 4 is a table illustrating XML processing instructions
and functionality of associated templates of the XML pro
cessing template library of FIG. 1 in accordance with another
embodiment of the present invention.

FIG. 5 is a table illustrating XML processing instructions
and functionality of associated templates of the XML pro
cessing template library of FIG. 1 in accordance with another
embodiment of the present invention.

FIG. 6 is a flow chart illustrating a method of creating a
schema specific parser in accordance with another embodi
ment of the present invention.

FIG. 7 is an example of an XML schema fragment which is
useful for understanding embodiments of the present inven
tion.

FIG. 8 is an example of an XML document that is to be
validated against the XML schema fragment of FIG. 7.

FIG.9 is an example of a fragment of an execution plan that
can be automatically generated by the system of FIG. 1 in
accordance with another embodiment of the present inven
tion.

DETAILED DESCRIPTION OF THE INVENTION

As will be appreciated by one skilled in the art, the present
invention may be embodied as a method, system, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
Software embodiment, including firmware, resident software,

US 7,991,799 B2
3

micro-code, etc., or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit.” “module.” or “system.”

Furthermore, the invention may take the form of a com
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by, or in connection with, a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer-readable medium can be any
apparatus that can contain or store the program for use by, or
in connection with, the instruction execution system, appara
tus, or device.
Any suitable computer-usable or computer-readable stor

age may be utilized. For example, the storage can include an
electronic, magnetic, optical, electromagnetic, or semicon
ductor System (or apparatus or device). A non-exhaustive list
of exemplary computer-readable storages can include mag
netic storage devices Such as magnetic tape, a removable
computer diskette, a portable computer diskette, a hard disk,
a rigid magnetic disk, an optical storage medium, Such as an
optical disk including a compact disk-read only memory
(CD-ROM), a compact disk-read/write (CD-R/W), or a DVD,
or a semiconductor or solid state memory including, but not
limited to, a random access memory (RAM), a read-only
memory (ROM), or an erasable programmable read-only
memory (EPROM or Flash memory), or other data storage
devices.

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro
gramming language Such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera
tions of the present invention may also be written in conven
tional procedural programming languages. Such as the “C”
programming language or similar programming languages,
or in functional programming languages, such as Haskell,
Standard Meta Language (SML) or other similar program
ming languages. The program code may execute entirely on
the user's computer, partly on the user's computer, as a stand
alone software package, partly on the user's computer and
partly on a remote computer, or entirely on the remote com
puter or server. In the latter scenario, the remote computer
may be connected to the user's computer through a local area
network (LAN) or a wide area network (WAN), or the con
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the cur
rently available types of network adapters.
The present invention is described below with reference to

flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord
ing to embodiments of the invention. It will be understood

10

15

25

30

35

40

45

50

55

60

65

4
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus
trations and/or block diagrams, can be implemented by com
puter program instructions. These computer program instruc
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, Such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instruction means which implement the func
tion/act specified in the flowchart and/or block diagram block
or blocks.
The computer program instructions may also be loaded

onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
The embodiments disclosed herein relate to the automatic

creation of a schema specific parser. A parser-generator can
be configured to analyze an Extensible Markup Language
(XML) schema. With reference to the XML schema, the
parser-generator can create an execution plan specifying
XML processing templates. The XML processing templates
refer to high level functions suited for parsing and/or validat
ing an XML document against an XML Schema. The struc
ture of the execution plan can correspond to the structure
and/or arrangement of components of the XML schema. The
execution plan can be compiled to generate the schema spe
cific parser.

FIG. 1 is a block diagram illustrating a system 100 that
automatically generates an XML Schema specific parser in
accordance with one embodiment of the present invention. As
shown, the system 100 can include a parser-generator 105 and
an XML processing template library 110. In general, the
parser-generator 105, given an XML schema, such as XML
schema 115, as input, can generate and output a schema
specific parser, e.g., parser 120.
The XML processing template library 110 can include a

plurality of XML processing templates (templates) relating to
the processing of XML documents. More particularly, each
template can perform a function or task for parsing and/or
validating an XML document. Each template can be imple
mented as a source code template, e.g., a listing of code, that,
when compiled, performs a particular task of XML document
parsing and/or validation. Each template can be written at a
high level of granularity. In illustration, each template can
perform a particular function that is needed or related to
parsing and/or validating an XML document against a given
XML schema or particular XML schema component.

For example, one template can read a tag of the XML
document being processed. Another template can check
attributes allowed for the component corresponding to that
tag. A "component, as used herein, can refer to a component
as defined in section 3 of "XML Schema Part 1: Structures
Second Edition, W3C,” and “XML Schema Part 2: Datatypes
Second Edition.” which are incorporated herein by reference.

US 7,991,799 B2
5

In one embodiment, templates can be organized or com
bined to form handlers. As such, each handler can include one
or more templates. For example, a handler that will be tasked
with, among other things, validating a date can include a
template, or function, for validating dates. The template may
or may not be passed one or more parameters that can be
extracted from the XML schema. Other templates can be
included within different handlers as may be required. In
another embodiment, a handler can refer to a collection of one
or more templates that collectively process a component.

Without Such "coarse-grained procedures, parsing and/or
validating an XML document would be implemented using
much lower level primitives, e.g., on the order of using many
individual programming statements rather than XML pro
cessing tasks directed to the component level, element level.
and/or directed to processing sections of an XML document
as the case may be. Using low level primitives to synthesize
the tasks needed for XML document processing can compli
cate automatic code generation as each XML processing task
is formulated from a significant number of low level primi
tives, rather than from several higher level templates. Use of
low level primitives also complicates code generation across
different Software environments, e.g., generating schema spe
cific parsers in C, Java, or other programming languages.

In operation, the parser-generator 105 can receive an XML
schema 115 as input. In general, the parser-generator 105 can
analyze the XML schema 115 on a component-by-compo
nent basis and determine the hierarchy of the XML schema
115. For example, the parser-generator 105 can determine the
arrangement of components of the XML schema 115 as well
as the structure of such components. In one embodiment, the
parser-generator 105 can perform a mapping of components
of the XML schema 115 to templates in the XML processing
template library 110. Through this mapping process, an
execution plan specifying a hierarchy of templates can be
generated. The hierarchy of templates can mirror the hierar
chy of the XML schema 115. For example, the execution plan
can specify a hierarchy of XML processing instructions. Each
XML processing instruction can be associated with a tem
plate. The XML processing instructions can be organized into
one or more handlers.

Conventional XML parser generators typically translate an
XML schema into an abstract form called "Deterministic
Finite Automata' (DFA) or other forms of grammars. The
DFA or other grammars are a collection of states, with tran
sitions between each state specified on different possible
inputs. Such grammars are representations of the XML
schema that does not explicitly encode any portion of the
XML Schema semantics.

In accordance with the embodiments disclosed herein, a
Substantial portion, if not all, of the execution plan can be
mapped directly to the XML schema components. That is, the
execution plan can explicitly encode one or more portions, if
not all, of the XML schema. The parser-generator 105 can
compile the execution plan to produce a native code imple
mentation of the parser 120, e.g., an implementation that does
not require an interpreter or other virtual machine for execu
tion by a central processing unit (CPU) of an information
processing System.

It should be appreciated that the XML processing template
library 110 can include templates written in any of a variety of
different programming languages. In one embodiment, the
XML processing template library 110 can include a plurality
of sets oftemplates, wherein each set oftemplates is coded in
and available in different programming languages. In that
case, the parser-generator 105 can be instructed to create the

10

15

25

30

35

40

45

50

55

60

65

6
parser 120 in a specified programming language using a par
ticular set of the templates according to the selected program
ming language.

For example, the execution plan can specify a hierarchy of
templates for processing an XML document. The execution
plan, and thus XML processing instructions, can be program
ming language neutral in that no programming language need
be specified by the execution plan. The XML processing
template library 110 can include aversion of each template, or
template code for each template, in C, in Java, and in any of a
variety of other programming languages as may be desired.
At compile time, the parser-generator 105 can be configured
to generate a parser 120 using a selected programming lan
guage, e.g., the C programming language. Accordingly, the
parser-generator 105 can replace template references within
the execution plan, e.g., XML processing instructions, with
the template (template code) from the set oftemplates written
in C. In this case, only the versions of the templates written in
C would be used. If the parser-generator 105 is configured to
generate a parser 120 implemented in Java, the parser-gen
erator 105 can select templates specified by the execution
plan from the set of templates implemented in Java. The
execution plan then can be compiled.
The resulting parser 120 can include a parsing, e.g., scan

ning, layer that can read an XML document byte-by-byte as
well as a validation layer. The templates of the XML process
ing template library 110 can include functions for both layers
of the parser 120 such that when compiled, the two layers can
be intermingled. In illustration, the parsing functionality of
the parser 120 can be mixed with the validation functionality
Such that when a component is scanned, as soon as enough
information is scanned to determine whether the component
is valid, or invalid, as the case may be, the parser 120 can
make a determination at that moment and output a result, e.g.,
valid or invalid XML document. For example, a simple con
tent component can be read Such as a date. The validation
layer can determine whether the data is of the correct type
prior to proceeding, or scanning, a next component. If not a
date, for example, the parser 120 can indicate that the XML
document is invalid immediately upon determining the non
conforming component or element rather than continue vali
dation processing until an end tag is encountered.
As noted, the templates of the XML processing template

library 110 can be configured so that selected templates
implement both the parsing and validation layers. This allows
data items such as dates or integers to be scanned and Vali
dated. In other words, after reading each character and check
ing that the characters that were read are legal XML data
characters, the templates further can be configured to verify
that the data item is legal, e.g., a legal date or integer character,
in the read location. The data can further be stored for vali
dation.

For example, consider a decimal that the XML schema
restricts to be less than 100. A decimal starting with "2 can
continue only with 0-9, dot (“ ”), or finish. Accordingly, the
template functionality need not determine that the next char
acter is any valid character, but one of the enumerated choices
noted above. If, for example, the next character is “6” the
template function can determine that the decimal is now “26.
When the end of the decimal is identified, a check can be
performed to determine whether the decimal is less than 100.
As such, the data does not have to be revisited after parsing for
validation. A separate pass of the data need not be performed
solely for validation. The same sort of processing can be
performed for dates. With respect to tag-reading, templates

US 7,991,799 B2
7

can perform similar functionality when tag names are not
only valid XML name characters, but also are valid for
exactly that tag name.

FIGS. 2-5, taken collectively, illustrate a variety of tem
plates that can be included within the XML processing tem
plate library discussed with reference to FIG. 1. The tem
plates of FIGS. 2-5 represent the basic primitives of XML
parsing and validation and, as such, are designed to be coarse
gained. The template names are shown in capital letters, while
parameters of the templates are shown in italics. The template
names and corresponding parameters are examples of the
XML processing instructions. Each XML processing instruc
tion can be associated with the template that implements the
described functionality. The XML processing instructions, or
references to templates, can be used to build the execution
plan. The execution plan, comprised of XML processing
instructions as shown in FIGS. 2-5, can be compiled.

It should be appreciated that qualified names can be repre
sented in a number of ways Such as character Strings or
symbol table ID numbers. Sets can be represented as bit
vectors, linked lists, arrays, hash-maps, or the like. Control
flow may be represented with any of a variety of common
techniques such as jumps to offsets, 'gotos' to labels, or
branching constructs such as if/then/else, Switch, choose/
when/otherwise, or whilefolofend. Allowed and forbidden
may be interchangeable representations, e.g., through set
negation. The templates illustrated herein are intended to
demonstrate the high level of granularity used, e.g., “chunky
templates, as compared to conventional techniques that ulti
lize low level code. Other alternative logic types or constructs
similar to those noted above can be used in place of those
illustrated in the tables.

FIG. 2 is a table 200 illustrating XML processing instruc
tions and functionality of associated templates of the XML
processing template library of FIG. 1 in accordance with
another embodiment of the present invention. As noted, the
parser-generator of FIG. 1 can create an execution plan ref
erencing the templates of the XML processing template
library. The order and hierarchy in which the templates are
referenced can be determined according to the hierarchy and/
or structure of the XML schema being analyzed.

Table 200 illustrates various templates that read sections
and/or components of an XML document into the parser.
Portions of the XML document being processed are read into
the parser on a byte-by-byte level. Decisions affecting execu
tion of the parsing and/or validation can occur on a compo
nent-by-component level. In this regard, one or more of the
templates can be combined to parse and/or validate a particu
lar type of component of the XML schema, e.g., simple,
complex, mixed, etc. It should be appreciated that, with
respect to the descriptions of the various templates, the term
“tag” can refer to any start or end tag, including all of the
attributes of a tag. Empty element tags can be treated as if the
empty element tags have been expressed in an equivalent
Syntax using separate start and end tags, with no intervening
COntent.

FIG. 3 is a table 300 illustrating XML processing instruc
tions and functionality of associated templates of the XML
processing template library of FIG. 1 in accordance with
another embodiment of the present invention. The templates
listed in table 300 illustrate templates for checking that a
component or section of an XML document, once read,
matches the type to which the component or section is to
correspond per the XML Schema. For example, an open tag
must contain the attributes and Sub-components specified by
the declaration type of the component. A close tag must match
the current open tag. The templates listed in table 300 can

10

15

25

30

35

40

45

50

55

60

65

8
check that a component or section can legally occur in the
current XML document position and that the component is
the correct type.

FIG. 4 is a table 400 illustrating XML processing instruc
tions and functionality of associated templates of the XML
processing template library illustrated in FIG. 1 inaccordance
with another embodiment of the present invention. The tem
plates listed in table 400 manipulate counters that can be used
in counting and/or otherwise dealing with Sub-components.
Since Sub-components can be constrained to have a minimum
and/or a maximum number of occurrences within a compo
nent, the templates listed in table 400 provide mechanisms for
monitoring the number of Such occurrences and comparing
the occurrences with the minimum and/or maximum number
of occurrences specified in the XML schema.

"All group’ occurrence constraints in an XML Schema
allow one to specify that an element needs to include several
different children. If any one of the needed children is miss
ing, validation of the XML document fails. This aspect of
XML is useful, for example, for representing C structs and/or
Java objects, where values are accessed by named fields and
are not ordered.

In one embodiment, when validating an input, a set corre
sponding to the all-group constraint can be maintained. The
set may be empty if the XML Schema does not use all-group
constraints. When a new child is encountered in an all-group
constraint, the occurrence of the child can be marked or
recorded in the set corresponding to the all-group constraint.
When the end of the portion defining the all-group constraint
is encountered in the XML document being validated, a check
can be performed to ensure that each required child of the
all-group constraint was encountered, and thus marked within
the set corresponding to the all-group constraint. If a given
required child is not encountered, the XML document fails.
Since all-group constraints can be nested, a stack of such sets
can be used. When a new all-group constraint is encountered,
a new set is pushed onto the stack. The set can be popped off
of the stack to return to the previous constraint.

FIG. 5 is a table 500 illustrating XML processing instruc
tions and functionality of associated templates of the XML
processing template library illustrated in FIG. 1 inaccordance
with another embodiment of the present invention. The tem
plates listed in table 500 provide mechanisms for flow con
trol. The templates of table 500 allow the appropriate tem
plate to be located for processing a next component type or
section of an XML document being processed.

FIG. 6 is a flow chart illustrating a method 600 of creating
a schema specific parser in accordance with another embodi
ment of the present invention. The method 600 can be imple
mented by a parser-generator as described with reference to
FIG. 1. Accordingly, in step 605, the parser-generator can
receive an XML Schema as input. The parser generator can
load the XML schema.

In step 610, the parser generator can read the XML schema.
In step 615, the parser generator can identify the various
components of the XML schema. In step 620, the parser
generator can determine a hierarchy of the XML schema. The
hierarchy of the XML schema reflects the structure of the
XML schema, as well as the structure of the XML documents
to be validated against the XML schema. For example, the
nesting of components and Sub-components can be deter
mined.

In step 625, the components of the XML schema can be
mapped to a plurality of XML processing instructions. As
noted, each XML processing instruction can be associated
with a particular XML processing template from the XML
processing template library. In step 630, an execution plan

US 7,991,799 B2
9

specifying a hierarchy of XML processing instructions, and
thus templates, can be generated. The hierarchy of XML
processing instructions specified by the execution plan can
match or correspond to the hierarchy of components the XML
schema.

In step 635, the execution plan can be compiled. In com
piling the execution plan, any dependent references can be
resolved. Various parameters needed by particular XML pro
cessing instructions, e.g., minimum and/or maximum com
ponent occurrences, can be determined. In this manner, the
XML processing instructions can be parameterized according
to the components of the XML schema. Each XML process
ing instruction can be replaced with the template code asso
ciated with that XML processing instruction. Parameters of
the XML processing instruction can be used to set parameters
of or within, the template code. The Source code, e.g., param
eterized template code, can be compiled. In step 640, the
parser-generator can output the compiled code, e.g., the
schema specific parser.
As noted, in one embodiment, the parser-generator can be

configured to generate a schema specific parser in a specified
programming language. In another embodiment, the parser
generator can be configured to output a plurality of schema
specific parsers, where each schema specific parser is imple
mented and compiled in a different programming language.

FIG. 7 is an example of an XML schema fragment 700
which is useful for understanding the embodiments disclosed
herein. The XML schema fragment 700 defines a component,
and more particularly, a complex type component “Example
Type.” The ExampleType component has three attributes
denoted as “attr1.” “attr2, and “attr3 as well as a sequence
of several components, e.g., Sub-components. The sequence
of sub-components can include either one of “Namel” or
“Name2 followed by “Name3.”

FIG. 8 is an example of an XML document 800 that is to be
validated against the XML schema fragment pictured in FIG.
7. The XML document 800 includes a sequence of sub-com
ponents including “Name2 followed by “Name3”. The
XML document 800 further specifies values for each of
attributes attr1, attr2, and attr3.

FIG.9 is an example of a fragment of an execution plan 900
that can be automatically generated by the system of FIG. 1 in
accordance with another embodiment of the present inven
tion. As noted, the execution plan fragment 900 can include a
hierarchy of XML processing instructions that correspond to
the hierarchy of the XML schema upon which the execution
plan is built, e.g., the XML schema fragment of FIG. 7.
Accordingly, the execution plan fragment 900 has not yet
been compiled. As each XML processing instruction can be
associated with a template, it should be appreciated that ref
erences to XML processing instructions in describing the
execution plan fragment 900 further reference the associated
templates.

Since the XML schema fragment provides for three
attributes, one of which is required, the “ASSERT ATTRS'
XML processing instruction is inserted with parameters per
mitting the attributes and requiring one. After, three ASSER
T ATTR CONTENT' XML processing instructions are
inserted into the execution plan 900 to ensure that the type of
the attribute content is as specified in the XML schema frag
ment. The “READ TAG QNAMES XML processing
instruction obtains the next block of data from the instance
document, in this case the XML document being validated as
pictured in FIG. 8 and checks that the next component, in this
case “Name2.’ is a legal follower of the previous component.
The “READ TAG QNAMES XML processing instruction
ensures that the found tag is in the set of permitted tags. The

5

10

15

25

30

35

40

45

50

55

60

65

10
“JUMP TAG NOT EQUAL XML processing instruction
causes flow control to branch to the specified name offset
when the current tag name does not match the provided com
ponent name. The “CALL TYPEXML processing instruc
tion checks the instance element for XSi-type declarations and
jumps to the appropriate complex handler for the determined
type (whether from the instance or the XML Schema speci
fied default type). The remaining functions referenced in the
execution plan fragment 900 perform functions similar to
those already discussed.
As noted, each template refers to a block or portion of

programming code that implements a particular XML docu
ment processing function, e.g., with respect to an XML
schema component. At compile time, the templates refer
enced by the execution plan, via the XML processing instruc
tion(s), can be inserted into the execution plan in place of the
XML processing instructions. It should be appreciated that
rather than replacing references to templates in the execution
plan, the execution plan can be preserved and one or more
new documents can be generated into which templates can be
inserted. The templates can be inserted in a manner that
preserves the hierarchy of the execution plan. In that case, the
newly created documents can be compiled to generate the
native schema specific parser. In any case, the hierarchically
ordered templates can be parameterized and compiled to cre
ate a schema specific XML parser that can be incorporated
into one or more different systems.
The particular templates discussed can be coded in any of

a variety of programming languages. Accordingly, the execu
tion plan 900 can be generic, or platform independent, in the
sense that the particular code template inserted for a given
XML processing instruction can depend upon which pro
gramming language is specified. In this manner, a Schema
specific parser can be generated for any of a plurality of
different programming languages. Moreover, several parsers,
e.g., one for each of a plurality of different programming
languages, can be generated automatically from a single
execution plan if so desired.
The flowchart and block diagram in the figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagram may representa module, segment, orportion of code,
which comprises one or more executable instructions for
implementing the specified logical function. It should also be
noted that, in Some alternative implementations, the functions
noted in the blocks may occur out of the order noted in the
figures. For example, two blocks shown in Succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagram and/or flowchart illustration, and
combinations of blocks in the block diagram and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com
puter instructions.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition

cation in detail and by reference to the embodiments thereof,
it will be apparent that modifications and variations are pos
sible without departing from the scope of the invention
defined in the appended claims.

creating an execution plan further comprises selecting, for
inclusion in the execution plan, at least one XML processing
instruction associated with an XML processing template that
checks a section read by the schema specific parser against a
component type associated with the section.

US 7,991,799 B2
11

of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act 5
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of 15
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

10

Having thus described the invention of the present appli
2O

What is claimed is:
1. A computer-implemented method of creating a schema 25

specific parser for processing Extensible Markup Language
(XML) documents, the method comprising:

identifying a plurality of XML processing templates,
wherein each of the plurality of XML processing tem
plates performs a specific task of processing an XML
document against an XML schema component;

receiving an XML schema comprising a plurality of com
ponents, the XML schema specifying classes of allow
able XML documents or XML messages that a system
will accept;

determining a hierarchy of the plurality of components of
the XML schema:

creating an execution plan specifying a hierarchy of XML
processing instructions, wherein each XML processing
instruction is associated with an XML processing tem
plate from the plurality of XML processing templates,
wherein the hierarchy of XML processing instructions is
determined according to the hierarchy of components of
the XML schema:

compiling the execution plan to generate the schema spe
cific parser, and

outputting the schema specific parser.
2. The computer-implemented method of claim 1, wherein

30

35

40

45

creating an execution plan further comprises selecting, for
inclusion in the execution plan, at least one XML processing
instruction associated with an XML processing template that
reads a section of the XML document to be processed accord
ing to an expected component type of the section.

50

3. The computer-implemented method of claim 1, wherein
55

4. The computer-implemented method of claim 1, wherein 60
creating an execution plan further comprises selecting, for
inclusion in the execution plan, at least one XML processing
instruction, which is associated with an XML processing
template, that counts a number of occurrences of a compo
nent. 65

5. The computer-implemented method of claim 1, wherein
creating an execution plan further comprises selecting, for

12
inclusion in the execution plan, at least one XML processing
instruction, which is associated with an XML processing
template, that performs flow control within the schema spe
cific parser.

6. The computer-implemented method of claim 1, wherein
creating the execution plan further comprises parameterizing
XML processing instructions of the execution plan according
to the XML schema.

7. The computer-implemented method of claim 6, wherein
compiling the execution plan further comprises replacing
each XML processing instruction within the execution plan
with the template code associated with the XML processing
instruction.

8. The computer-implemented method of claim 1, further
comprising associating each XML processing instruction
with at least two portions of template code, wherein each
portion of template code is in a different programming lan
gllage.

9. The computer-implemented method of claim8, wherein
compiling further comprises replacing each XML processing
instruction within the execution plan with the template, asso
ciated with the XML processing instruction, that is coded in a
selected programming language in which the schema specific
parser is to be created.

10. A system for creating a schema specific parser for
processing Extensible Markup Language (XML) documents,
the system comprising:

a processor; and
a computer-readable storage having stored thereon:

a library comprising a plurality of XML processing tem
plates, wherein each XML processing template com
prises source code that, when compiled, performs a
particular task of processing an XML document
against an XML Schema component; and

a parser generator that determines a hierarchy of an
XML schema, the XML schema specifying classes of
allowable XML documents or XML messages that
the system, or another system, will accept, and creates
an execution plan specifying a hierarchy of XML
processing instructions according to the hierarchy of
the XML schema, wherein each XML processing
instruction is associated with an XML processing
template of the plurality of XML processing tem
plates;

wherein the parser generator compiles the execution
plan and outputs the schema specific parser.

11. The system of claim 10, wherein the parser generator
parameterizes templates of the execution plan according to
the XML schema.

12. The system of claim 11, wherein the parser generator
replaces each XML processing instruction within the execu
tion plan with template code associated with the XML pro
cessing instruction.

13. A computer program product comprising:
a computer-readable storage having computer-usable pro
gram code stored thereon that creates a schema specific
parser for processing Extensible Markup Language
(XML) documents, the computer program product com
prising:

computer-usable program code that identifies a plurality of
XML processing templates, wherein each of the plural
ity of XML processing templates performs a specific
task of processing an XML document against an XML
Schema component;

computer-usable program code that receives an XML
Schema comprising a plurality of components, the XML

US 7,991,799 B2
13

schema specifying classes of allowable XML docu
ments or XML messages that a system will accept;

computer-usable program code that determines a hierarchy
of the plurality of components of the XML schema:

computer-usable program code that creates an execution
plan specifying a hierarchy of XML processing instruc
tions, wherein each XML processing instruction is asso
ciated with an XML processing template from the plu
rality of XML processing templates, wherein the
hierarchy of XML processing instructions is determined
according to the hierarchy of components of the XML
Schema:

computer-usable program code that compiles the execu
tion plan to generate the schema specific parser; and

computer-usable program code that outputs the schema
specific parser.

14. The computer program product of claim 13, wherein
the computer-usable program code that creates an execution
plan further comprises computer-usable program code that
selects, for inclusion in the execution plan, at least one XML
processing instruction associated with an XML processing
template that reads a section of the XML document to be
processed according to an expected component type of the
section.

15. The computer program product of claim 13, wherein
the computer-usable program code that creates an execution
plan further comprises computer-usable program code that
selects, for inclusion in the execution plan, at least one XML
processing instruction associated with an XML processing
template that checks a section read by the schema specific
parser against a component type associated with the section.

16. The computer program product of claim 13, wherein
the computer-usable program code that creates an execution
plan further comprises computer-usable program code that
selects, for inclusion in the execution plan, at least one XML

10

15

25

30

14
processing instruction, which is associated with an XML
processing template, that counts a number of occurrences of
a component.

17. The computer program product of claim 13, wherein
the computer-usable program code that creates an execution
plan further comprises computer-usable program code that
selects, for inclusion in the execution plan, at least one XML
processing instruction, which is associated with an XML
processing template, that performs flow control within the
schema specific parser.

18. The computer program product of claim 13, wherein
the computer-usable program code that creates the execution
plan further comprises computer-usable program code that
parameterizes XML processing instructions of the execution
plan according to the XML Schema, and wherein the com
puter-usable program code that compiles the execution plan
further comprises computer-usable program code that
replaces each XML processing instruction within the execu
tion plan with the template associated with the XML process
ing instruction.

19. The computer program product of claim 13, wherein
the computer-usable medium further comprises computer
usable program code that associates each XML processing
instruction with at least two portions of template code,
wherein each portion of template code is in a different pro
gramming language.

20. The computer program product of claim 19, wherein
the computer-usable program code that compiles further
comprises computer-usable program code that replaces each
XML processing instruction within the execution plan with
the template, associated with the XML processing instruc
tion, that is coded in a selected programming language in
which the schema specific parser is to be created.

k k k k k

