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(57) ABSTRACT 

A method for constructing a highly optimized linear-sized 
validation plan, the method comprising: providing a schema 
having a plurality of schema components; compiling the 
schema in three stages: a first stage in which the schema is 
read and modeled in terms of abstract schema components; a 
second stage in which the schema components are augmented 
with a set of derived components and properties by (i) Syn 
thesizing content models from the plurality of schema com 
ponents by adding additional components including one or 
more synthetic content-model components and one or more 
synthetic elements and one or more synthetic types to the one 
or more of the plurality of schema components and (ii) com 
puting the derived set of properties on the components; and a 
third stage in which the schema is traversed in order to gen 
erate recursive-descent validation code for each of the plural 
ity of schema components by generating the highly optimized 
linear-sized validation plan directly from the plurality of 
schema components. 

16 Claims, 4 Drawing Sheets 
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1. 

METHOD FOR CONSTRUCTION OFA 
LINEAR-S7ED VALIDATION-PLAN OF W3C 

XML SCHEMA GRAMMARS 

TRADEMARKS 

IBM(R) is a registered trademark of International Business 
Machines Corporation, Armonk, N.Y., U.S.A. Other names 
used herein may be registered trademarks, trademarks or 
product names of International Business Machines Corpora 
tion or other companies. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to XML (Extensible Markup Lan 

guage) Schema, and particularly to a method for constructing 
a linear-sized validation plan of W3C (WorldWideWeb Con 
sortium) XML Schema Grammars. 

2. Description of Background 
Existing techniques for optimized parsing and validation 

leverage widely known optimization methods by converting a 
given grammar into forms of well-understood finite state 
machines. The content-model definition language of XML 
(Extensible Markup Language) Schema, however, is not eas 
ily converted into such structures. Content models defined in 
XML Schema can compactly represent a wide array of con 
tent-model constraints. In particular, three styles of compo 
sition (i.e., sequence, choice, and all) are Supported, as well as 
arbitrary occurrence bounds. The expressivity of this model 
allows the creation of highly complex content models in a 
relatively compact form. This complexity is at odds with the 
traditional models. Particles composed with the “all” com 
positor, for example, result in a combinatorial explosion of 
states in Such graphs, and simple occurrence ranges are rep 
resented with a state for each iteration of a repetition. 

While many of the excess states in the finite-state model 
may eventually collapse into a relatively simple execution 
plan, their construction and optimization wastes computing 
and memory resources during compile time, and potentially 
prevents completion of the compile. Furthermore, if the opti 
mizations are poorly implemented, artifacts of the blowup 
may appear in the final execution plan, affecting runtime 
performance. Considering the limitations of these finite-state 
models, it is desirable, therefore, to formulate a method for 
constructing a linear-sized validation plan of W3C (World 
Wide Web Consortium) XML Schema Grammars. 

SUMMARY OF THE INVENTION 

The shortcomings of the prior art are overcome and addi 
tional advantages are provided through the provision of a 
method for constructing a highly optimized linear-sized vali 
dation plan, the method comprising: providing a schema hav 
ing a plurality of schema components; compiling the schema 
in three stages: a first stage in which the schema is read and 
modeled in terms of abstract schema components; a second 
stage in which the schema components are augmented with a 
set of derived components and properties by (i) synthesizing 
content models from the plurality of Schema components by 
adding additional components including one or more Syn 
thetic content-model components and one or more synthetic 
elements and one or more synthetic types to the one or more 
of the plurality of schema components and (ii) computing the 
derived set of properties on the components; and a third stage 
in which the schema is traversed in order to generate recur 
sive-descent validation code for each of the plurality of 
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2 
schema components by generating the highly optimized lin 
ear-sized validation plan directly from the plurality of schema 
components. 
The shortcomings of the prior art are overcome and addi 

tional advantages are provided through the provision of a 
computer program product for constructing a highly opti 
mized linear-sized validation plan, the computer program 
product comprising: a storage medium readable by a process 
ing circuit and storing instructions for execution by the pro 
cessing circuit for performing a method comprising: provid 
ing a schema having a plurality of Schema components; 
compiling the schema in three stages: a first stage in which the 
schema components are read and modeled in terms of abstract 
schema components; a second stage in which the schema is 
augmented with a set of derived components and properties 
by (i) synthesizing content models from the plurality of 
schema components by adding additional components 
including one or more synthetic content-model components 
and one or more synthetic elements and one or more synthetic 
types to the one or more of the plurality of Schema compo 
nents and (ii) computing the derived set of properties on the 
components; and a third stage in which the schema is tra 
versed in order to generate recursive-descent validation code 
for each of the plurality of schema components by generating 
the highly optimized linear-sized validation plan directly 
from the plurality of Schema components. 

Additional features and advantages are realized through 
the techniques of the present invention. Other embodiments 
and aspects of the invention are described in detail herein and 
are considered a part of the claimed invention. For a better 
understanding of the invention with advantages and features, 
refer to the description and the drawings. 

TECHNICAL EFFECTS 

As a result of the Summarized invention, technically we 
have achieved a solution that provides for a method for con 
structing a linear-sized validation plan of W3C (World Wide 
Web Consortium) XML Schema Grammars. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The Subject matter, which is regarded as the invention, is 
particularly pointed out and distinctly claimed in the claims at 
the conclusion of the specification. The foregoing and other 
objects, features, and advantages of the invention are apparent 
from the following detailed description taken in conjunction 
with the accompanying drawings in which: 

FIG. 1 illustrates one example of Schema components; 
FIG. 2 illustrates one example of an element with a syn 

thetic content model; 
FIG. 3 illustrates one example of a wildcard with a syn 

thetic content model; and 
FIG. 4 illustrates one example of QName-literal symbols. 

DETAILED DESCRIPTION OF THE INVENTION 

One aspect of the exemplary embodiments is a method for 
modeling intermediate representations on the schema con 
structs themselves, and generating an execution plan directly 
off those components. This results in a predictable mapping 
between schema size and complexity, and the size and com 
plexity of the execution plan described in the exemplary 
embodiments, and allows each schema construct to be treated 
in an optimized fashion. This both eliminates the compiler 
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overhead of State construction and optimization, and also 
ensures that no blowup makes its way into the final execution 
plan. 

The structure of an XML (Extensible Markup Language) 
document constrained by a schema cannot be decomposed, 
from a validation standpoint, below the tag level. Because 
meta-markup, such as namespace and Xsi:type declarations, 
is contained in conceptually unordered attributes, no conclu 
sive information about the document can be inferred until the 
entire tag is read. Thus, no exchange of information between 
the scanner and the validation logic can be made to refine the 
scanning of the rest of the tag, without possibly having to back 
up and correct mistaken assumptions. As a result, the gram 
mar must not direct Scanning at a granularity any finer than 
the tag. Accordingly, the generated validation logic may be 
cleanly separated from the Scanning infrastructure, at the tag 
level, without loss of any significant performance opportu 
nity. Thus, the generated parser is divided into two logical 
layers, a scanning layer and a validation layer. 
The validation layer is a generated recursive-descent parser 

that drives the Scanner using compiled, predictive knowledge 
from the schema. The Scanning layer consists of a set offixed 
XML primitives that scan content at the byte level, at the 
direction of the validation layer. 
The validation logic is produced directly from the schema 

component model, using component-specific code templates 
for the various components in the schema. This approach is 
enabled by a constraint on valid schemas ensuring that all 
content models are deterministic. This constraint is called the 
Unique Particle Attribution (UPA) constraint, and is satisfied 
by a content model that is formed such that during validation 
of an element information item sequence, the particle com 
ponent (contained directly, indirectly or implicitly therein) 
with which each item in the sequence is validated, can in turn 
be uniquely determined without examining the content or 
attributes of that item, and without any information about the 
items in the remainder of the sequence. This constraint 
ensures that transitions between particles in the content 
model are deterministic. 
The compilation procedure takes place in three stages. The 

inputschema is first readin, and modeled in terms of abstract 
schema components. The complete schema is then aug 
mented with a set of derived (calculated) components and 
properties used to drive code generation. Finally, the schema 
is traversed, in a recursive-descent fashion, to generate the 
validation code for each component. 

To represent and operate on the XML Schemagrammar, as 
well as verify validity of the schema constraints, a publicly 
available implementation of the schema components is used. 
The schema components, taken in aggregate, are referred to 
as the schema. It is assumed that the schema for any given 
grammar is fully resolved before compilation begins, i.e. 
there are no missing Subcomponents, and no attempt will be 
made to further resolve components. 

FIG. 1 shows the set of schema components, with their 
compilation annotations in italics, as well as two special 
components (synthetic-element and skip-term). The set of 
schema components 10 includes a schema block 12, an ele 
ment-declaration block 14, an attribute-declaration block 16, 
a complex-type-definition block 18, a simple-type-definition 
block 20, a particle block 22, an attribute-use block 24, a 
wildcard block 26, a model-group block 28, a synthetic 
element block 30, and a skip-term block32. For instance, the 
schema block 12 includes the schema component properties 
type-definition, element-declarations, attribute-declarations, 
and the compilation annotation document-type. 
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4 
Top-level Schema components have four primary compo 

nent types: element and attribute declarations, complex and 
simple type definitions. Complex type definitions also refer 
ence a set of helper components: particle, model-group, wild 
card, and attribute-use. 
Complex types may have content that is simple, complex, 

or empty. In the case where the content is simple, the value of 
the content-type property is a simple-type-definition that 
defines the content. In the case where the content is empty, the 
content-type value is empty. If the complex type has complex 
content, then the content-type is a particle, which defines a 
complex content model. The content model for Such a com 
plex type is defined in terms of the helper components (par 
ticles, model-groups, and wildcards). 

Particles and model-groups structure the content model for 
validating element content, which is eventually validated by 
element declarations or wildcards. The basic unit of the con 
tent model is the particle. A particle is a term in the grammar 
for element content, consisting of either an element declara 
tion, a wildcard or a model group, together with occurrence 
constraints. Particles contribute to validation as part of com 
plex type definition validation, where they allow anywhere 
from Zero to many element information items or sequences 
thereof, depending on their contents and occurrence con 
straints. 

A particle has a pair of occurrence constraints, min-occurs 
and max-occurs, and a term. The term of a particle can be an 
element declaration, a model-group or a wildcard. Model 
groups, in turn, compose groups of particles, using one of 
three composition models (XSd:sequence, XSd:choice, XSd: 
all). These components can be combined freely, within the 
constraints of the Unique Particle Attribution constraint, as 
discussed above. Note that in order to facilitate processing, 
the XML Schema recommendation places extra restrictions 
on the use of model-groups with the XSd:all compositor. 

Because of the open-ended composition model of XML 
Schema, the schema components as defined by the specifica 
tion lack explicit representations of validation constraints that 
reference the schema globally. In particular, the content 
model for wildcards, element Substitution groups, and the 
content model for the document itself all make implicit ref 
erences to the global element declarations of the schema, 
without enumerating them. In the compiler, these implicit 
validation rules are rendered explicitly with content models 
synthesized from the standard Schema components and the 
global properties of the schema. These synthetic content 
models are represented with the normal schema components, 
and with two additional synthetic components. 

In contrast to a DTD (Document Type Definition), XML 
Schema provides no standard way to indicate the content 
model for the document itself. The validation rule for the 
document element, unless the root is otherwise specified, is 
normally taken to be similar to that of a wildcard, matching 
any global element. To represent this, a virtual top-level type 
for the content of the document is defined. This top-level type 
is a complex type called documentType, and is defined within 
a private namespace. Unless otherwise stipulated, the docu 
mentType is assumed to take a form similar to that of XSd: 
anyType, but somewhat more restrictive in that it bears no 
attributes, forces strict processing, and does not allow mixed 
COntent. 

Element substitution groups allow for the substitution of 
one named element for another. Any global element declara 
tion may serve as the head of a Substitution group, and any 
element with a properly derived type may declare itself to be 
substitutable for the head element. 
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In a fixed schema, the validation rule for an element sub 
stitution group acts as a choice over the appropriate element 
declarations. To represent this explicitly in the compiler, the 
element declaration component is augmented with a syn 
thetic-content-model property that represents the expanded 
form of the element declaration (FIG. 2). FIG. 2 illustrates 
one example of an element synthetic-content model 40. The 
element synthetic-content-model 40 includes an element dec 
laration block 42, a particle block 44 (with a choice model 
group as its term), a particle block 46 (with one synthetic 
element term), and a particle block 48 (with a synthetic ele 
ment term). Also, note that particle block 48 may be a 
sequence of particle blocks each with a synthetic element 
term. Each of these synthetic element terms represent an 
element declaration that could be substituted for this element. 

This new content model is a choice over any elements that 
could transitively appear in the Substitution group headed by 
this element. In order to distinguish an element declaration 
(which is always considered to be the head of a substitution 
group) from the terms of this synthetic choice, a synthetic 
component called the Synthetic-Element is defined, which 
like regular element declarations, wildcards and model 
groups may be the term of any particle. The Synthetic-Ele 
ment, as opposed to the regular element declaration, validates 
only the declared element, and not any of its Substitution 
group members. 
The content model for wildcards is similarly implicit, as 

shown in FIG. 3. FIG. 3 illustrates one example of a wildcard 
synthetic-content model 50. The wildcard synthetic-content 
model 50 includes a wildcard block 52, a particle block 54 
(with a choice model group as its term), a particle block 56 
(with a synthetic element term), and a particle block 58 (with 
a skip term). Also, note that particle block 58 may be a 
sequence of particle blocks each with a skip term. 
The structure of the validation rule for a wildcard depends 

on the value of its process-contents property. When skip pro 
cessing is stipulated, the processor is required to skip over the 
matching element, and all of its content, without any valida 
tion. When strict processing is stipulated, the matching ele 
ment must be validated with one of the global element dec 
larations in the schema. Lax processing combines the two 
options, requiring full validation of known elements, but 
allowing skip processing for unknown elements. In all cases, 
the matching element satisfies the namespace constraint 
specified on the wildcard component. 

In the compiler, the validation rule for a wildcard is repre 
sented with a choice similar to that used for element substi 
tution groups. This is assigned to the synthetic-content-model 
property of the wildcard. Skip processing is represented with 
a special synthetic component, the Skip-Term. If the process 
contents property is strict or lax, the choice contains a particle 
with a Synthetic-Element term for each global element dec 
laration that satisfies the namespace constraint. If the process 
contents property is skip or lax, the model-group also con 
tains a particle with a Skip-Term. 
Once the schema is fully resolved, the derived properties 

may be computed. These properties form the basis for the 
code generation phase that follows. Because several of the 
properties represent global information about the schema, 
Such as the complete set of global elements matching a wild 
card component, the derived properties must all be computed 
before code generation begins. The properties are calculated 
in order, since the calculations of one step are used in Subse 
quent steps. Note that the calculation procedures implicitly 
assume that the schema is valid with respect to all of the 
constraints on Schema components in the XML Schema 
specification. 
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6 
The substitutable-types property of an element-declaration 

defines the set of types that can appear in the instance docu 
ment, by using the Xsi:type dynamic typing mechanism, 
instead of the declared type. The substitutable-types set con 
tains all global types, including the declared type itself, that 
possess the following characteristics: they are not anonymous 
or abstract, they are transitively derived from the declared 
type, and they do not, at any step of derivation, violate the 
prohibited-substitutions properties of the element-declara 
tion and type-definition. In the generated parser, the Substi 
tutable types set is used to validate the value of any Xsi:type 
attributes that may appear in the document. 

In validating an XML document, a correspondence is made 
between literal element and attribute names and QNames 
found in the schema. To make this correspondence, a symbol 
called the QName-literal is defined. A QName-literal may 
represent a specific QName referenced in the schema, or 
some unbounded set of QNames not directly referenced in the 
schema, but indirectly referenced by a wildcard. Additionally, 
special QName-literals are used for the close-tag and the 
end-of-file symbols. At the abstract level, validation con 
structs are considered to validate sets of QName-literals in the 
case of attributes, or sequences of QName-literals in the case 
of content models. 
A QName-literal can have one of several forms, as shown 

in FIG. 4. FIG. 4 illustrates one example of QName-literal 
symbols 60. These may be a known QName-literal 62, a 
namespace-known QName-literal 64, and one of three con 
stant QName-literal symbols 70. If the QName-literal is a 
known symbol then it carries two parts of information 66: a 
namespace-uridatum and a local-part datum. If the QName 
literal is a namespace-known symbol, then it carries one piece 
of information 68: a namespace-uridatum. The three constant 
QName-literal symbols are unknown, close, and end-of-file 
or eof, as shown in box 70. 
A QName explicitly referenced in the schema is repre 

sented by the known QName-literal, which is the 
{namespace-uri, local-part pair. An unknown QName in a 
known namespace is represented by a namespace-known 
QName-literal, with a single property, the namespace-uri. 
QNames with an unknown namespace are represented by the 
special singleton unknown QName-literal, regardless of their 
local-part. Close tags, regardless of their name, are all repre 
sented by the special close QName-literal. Similarly, the end 
of-file is represented by the eof QName-literal. 

Note that the set of known QName-literals is considered to 
be established completely before compilation begins, and that 
unknown and namespace-known QName-literals are not used 
to refer to known QNames. Thus, an element wildcard may 
validate known, namespace-known, and unknown QName 
literals. 

Every particle in the schema has three calculated proper 
ties: emptiable, first-set, and follow-set. These properties 
define the relationship between the schema component and 
the QName-literal sequence it will validate. The emptiable 
property corresponds to the Particle Emptiable definition of 
the XML Schema recommendation, and determines whether 
or not the particle can validate the empty QName sequence. 
The emptiable property is used to calculate the other particle 
properties below. 
The first-set of a particle defines the set of QName-literals 

that can occur in the first position of an element QName 
sequence that is validated by the particle. The first set is used 
to build control-flow logic for the content model; as a direct 
result of the Unique Particle Attribution constraint, compari 
son of an input QName-literal to the calculated first-set of a 
particle immediately determines whether or not that particle 
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validates the input sequence. The first-set is calculated recur 
sively, in a single pass over the schema. 
The follow-set of a particle defines the set of QName 

literals that can follow a QName-literal sequence validated by 
that particle. The follow-set is used to drive context-sensitive 
tag scanning. After the first-set is calculated for every particle, 
the follow-set is calculated in a second pass over the schema 
components, using the first-set of adjacent components. 

For each complex type two sets of attribute QName-literals 
are calculated, required and prohibited. These sets are used to 
validate the attribute occurrence constraints. The required set 
includes the attribute QName-literals that are required to 
appear in the input tag. The prohibited set includes the 
attribute QName-literals that are not allowed to appear in the 
input tag. 
The required and prohibited sets are created from informa 

tion in the attribute uses of the complex type. Entries for 
attribute wildcards are also included, in the form of known 
QName-literals, namespace-known QName-literals and the 
unknown QName-literal, depending on the wildcards pro 
cess-contents value. 
The generated parser consists of modules validating each 

type in the input schema, including the synthetic document 
Type. The validation logic is produced directly from the 
schema component model representation of each type. Vali 
dation code for simple types is largely independent of the 
input schema, and in the exemplary embodiments of the 
present invention, it consists mostly of library code. 

For every complex type a recursive-descent parse function 
is defined that parses all the attributes and content of the 
complex type. To validate element content in a complex type, 
the element dispatch function is also defined. This function 
handles element-specific validation constructs Such as 
defaulting and nillability, as well as dynamic typing, and 
dispatches a call to the actual type's parse function. Together, 
the type parse functions and element dispatch functions make 
up the whole validation engine. 

The main entry-point of the generated parser is the parse 
function for the documentType. Starting with the parse func 
tion for the documentType, control passes back and forth 
between parse and dispatch functions, descending through 
the different types in the schema. 

The validation logic for complex content is generated by 
mapping the various Schema components in the content 
model to code templates. The templates, like the components 
themselves, are composable. For any component type, there 
is at least one generic template that will produce validation 
code for that component. In addition, there may be several 
optimized templates tailored for common, simple use cases. 
Using optimized code templates for common use cases helps 
to minimize the size of the generated code, and results in 
highly optimized validation logic. 

Templates for the content model Schema components are 
described below, and one is presented in pseudo-C code. In 
the templates, compile-time Substitutions are often made. 
They are indicated as follows: 
COMPILEx marks the insertion of the compiled code for 

the schema-component specified by X, relative to the current 
schema-component. 
IDX represents a constant for the QName-literal X. 
SETIX represents a constant set for the given QName 

literal-set. 
SET CASEX represents a series of switch cases (all with 

the same body) for each of the QName-literals in X. 
IFX indicates a conditional section of the template that is 

evaluated at compile time. 
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8 
READ TAGX is used to mark the insertion of the appro 

priate read-tag primitive for the QName-literal set X. 
READ SIMPLE CONTENTx marks the insertion of 

the appropriate read-content function for the simple type 
specified by X. 
DISPATCHX represents a call to the dispatch function to 

validate the type of the element declaration X. 
In the exemplary embodiments of the present invention, all 

comparisons of QName-literal sets have been implemented 
as bit-vector operations. At compile time, the literal bit vec 
tors are calculated, and at runtime, the instance literals are 
compared against the set in bulk. 
A number oftemplates may be utilized by one skilled in the 

art to create a highly optimized linear-sized validation plan. 
One such template is a particle template. Particle templates 
handle occurrence constraints. They must also handle emp 
tiability, which interacts with the min-occurs property. A 
generic particle template is as follows: 

int count = 0; 
label: while (count < max) { 

if (SET first set.contains(current tag)) 
break label: 

COMPILEterm): 
count----. 

IFI emptiable { if (count < min) Fail(); 

In addition, various optimized templates may be created 
for specific common cases. For instance, common cases with 
obvious template implementations include an unbounded 
particle with maxOccurs=“unbounded', an optimized tem 
plate for optional particles (particles that have maxOccurs=1, 
and are emptiable), fixed-repeat particles (particles that have 
minOccurs maxOccurs and are not emptiable), simple par 
ticles (particles that have minOccurs—maxOccurs=1), and 
degenerate particles (particles that have 
minOccurs—maxOccurs=0). 
The generic template for model-groups with compositor 

XSd:sequence is a sequence of Substitutions. There is no need 
for optimized templates. The generic template for a choice is 
a simple Switch statement. An optimized template for a choice 
with two particles simplifies the switch to the more efficient 
if-else clause. A choice with only one particle is a direct 
Substitution of that particle. In addition, all-group templates 
make use of a set to check occurrence constraints. The set is 
checked at runtime against the set of required particles. The 
required-particles set contains an entry for each particle in the 
model-group that has a minOccurs property value of 1. The 
entries in the set are one-based indices into the list of particles. 
An optimized template for all-groups with no required-par 
ticles does not need the final test for the existence of all 
required-particles. As with choice, an all-group with exactly 
one particle is a direct substitution of that particle. As with 
sequence, an all-group with no particles validates the empty 
sequence. The template is therefore a no-op. 

Furthermore, concerning element declarations and wild 
cards, validation code for element declarations and wildcards 
is produced by their synthetic-content models. Synthetic 
elements validate exactly one element. The content model for 
a skip term, which is used by the synthetic-content-model of 
skip and lax wildcards, repeatedly calls the scanner to Scan 
through one well-formed element. 
The template for complex types is composed of a header 

that handles attributes and Xsinil, and a body that handles 
content. The header template is the same for all complex 
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types. Note that in the special case of the documentType, the 
template is modified to compare the final tag against the 
end-of-file QName-Literal rather than the close QName-Lit 
eral. The body template for complex types with simple con 
tent uses the simple-base-type, which is the complex type's 
nearestancestor of simple type. The body template for com 
plex types with empty content simply comprises a call to a 
scanner primitive to read a close tag. 
The capabilities of the present invention can be imple 

mented in Software, firmware, hardware or some combination 
thereof. 
As one example, one or more aspects of the present inven 

tion can be included in an article of manufacture (e.g., one or 
more computer program products) having, for instance, com 
puter usable media. The media has embodied therein, for 
instance, computer readable program code means for provid 
ing and facilitating the capabilities of the present invention. 
The article of manufacture can be included as a part of a 
computer system or sold separately. 

Additionally, at least one program storage device readable 
by a machine, tangibly embodying at least one program of 
instructions executable by the machine to perform the capa 
bilities of the present invention can be provided. 

The flow diagrams depicted herein are just examples. 
There may be many variations to these diagrams or the steps 
(or operations) described therein without departing from the 
spirit of the invention. For instance, the steps may be per 
formed in a differing order, or steps may be added, deleted or 
modified. All of these variations are considered a part of the 
claimed invention. 

While the preferred embodiment to the invention has been 
described, it will be understood that those skilled in the art, 
both now and in the future, may make various improvements 
and enhancements which fall within the scope of the claims 
which follow. These claims should be construed to maintain 
the proper protection for the invention first described. 

What is claimed is: 
1. A method for constructing a highly optimized linear 

sized validation plan on a computing device, the method 
comprising: 

providing to the computing device an XML Schema having 
a plurality of XML Schema components; 

compiling the XML Schema on the computing device in 
three stages: 
a first stage in which the XML schema is read and 
modeled in terms of abstract schema components; 

a second stage in which the XML Schema components 
are augmented with a set of derived components and 
properties to form an augmented XML Schema by (i) 
synthesizing content models from the plurality of 
XML schema components by adding additional XML 
components including one or more XML synthetic 
content-model components and one or more XML 
synthetic elements and one or more XML synthetic 
types to the one or more of the plurality of XML 
schema components and (ii) computing the derived 
set of properties on the XML components; and 

a third stage in which the augmented XML schema is 
traversed in order to generate recursive-descent vali 
dation code for each of the plurality of XML schema 
components by generating the highly optimized lin 
ear-sized validation plan directly from the plurality of 
XML Schema components. 
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2. The method of claim 1, wherein the one or more syn 

thetic XML content-model properties are located in an ele 
ment declaration schema component. 

3. The method of claim 1, wherein the one or more XML 
synthetic elements only validate a declared element. 

4. The method of claim 1, wherein the XML schema 
includes QNames. 

5. The method of claim 4, wherein a QName-literal repre 
sents a QName referenced in the XML schema. 

6. The method of claim 4, wherein a QName-literal repre 
sents an unbounded set of QNames not directly referenced in 
the XML schema. 

7. The method of claim 1, wherein the highly optimized 
linear-sized validation plan is generated via templates. 

8. The method of claim 7, wherein highly optimized vali 
dation templates are used in many common use cases. 

9. A computer program product for constructing a highly 
optimized linear-sized validation plan, the computer program 
product comprising: 

a storage medium readable by a processing circuit and 
storing instructions for execution by the processing cir 
cuit for performing a method comprising: 
providing an XML schema having a plurality of XML 

schema components; 
compiling the XML Schema in three stages: 

a first stage in which the XML Schema components 
are read and modeled in terms of abstract schema 
components; 

a second stage in which the XML schema is aug 
mented with a set of derived components and prop 
erties to form an augmented XML schema by (i) 
synthesizing content models from the plurality of 
XML schema components by adding additional 
components including one or more synthetic XML 
content-model components and one or more Syn 
thetic XML elements and one or more synthetic 
XML types to the one or more of the plurality of 
XML Schema components and (ii) computing the 
derived set of properties on the components; and 

a third stage in which the augmented XML Schema is 
traversed in order to generate recursive-descent 
validation code for each of the plurality of XML 
Schema components by generating the highly opti 
mized linear-sized validation plan directly from the 
plurality of XML schema components. 

10. The computer program product of claim 9, wherein the 
one or more synthetic XML content-model properties are 
located in an element declaration schema component. 

11. The computer program product of claim 9, wherein the 
one or more synthetic XML elements only validate a declared 
element. 

12. The computer program product of claim 9, wherein the 
schema includes QNames. 

13. The computer program product of claim 12, wherein a 
QName-literal represents a QName referenced in the schema. 

14. The computer program product of claim 12, wherein a 
QName-literal represents an unbounded set of QNames not 
directly referenced in the schema. 

15. The computer program product of claim 9, wherein the 
highly optimized linear-sized validation plan is generated via 
templates. 

16. The computer program product of claim 15, wherein 
highly optimized validation templates are used in many com 
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