
(12) United States Patent
Kostoulas et al.

USOO7788654B2

(10) Patent No.: US 7,788,654 B2

(54) METHOD FOR CONSTRUCTION OF A
LINEAR-S7ED VALIDATION-PLAN OF W3C
XML SCHEMA GRAMMARS

(75) Inventors: Margaret Gatatzes Kostoulas,
Belmont, MA (US); Moshe E. Matsa,
Cambridge, MA (US); Eric Perkins,
Boston, MA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1045 days.

(21) Appl. No.: 11/465,821

(22) Filed: Aug. 21, 2006

(65) Prior Publication Data

US 2008/OO46453 A1 Feb. 21, 2008

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. 717/151; 717/105: 717/109;
717/116

(58) Field of Classification Search 717/151
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,134,072 B1 * 1 1/2006 Lovett et al. T15,234
7.366,729 B2 * 4/2008 Vincent, III 707/101

2004/0073870 A1* 4/2004 Fuh et al. 715,513

f 4. al 6
Eiseitecatati Attribute-Declaration Carpex-ype-Definition

type-definitio:
e-fiscaats

attie-iggiaratics
icinei-type

SCE
iia:

astract
type-ieities

stisiitiiatie-types

Sististiang-aiiati.
sististill-g-exisists
disaiye-Sisitics

synthetic-content-inade

(45) Date of Patent: Aug. 31, 2010

2004/0194057 A1* 9, 2004 Schulte et al. T17,114
2007/0250766 A1* 10, 2007 Medi et al. 715,513

OTHER PUBLICATIONS

IBM Systems Journal, vol. 45, No. 2, 2006, "Generation of efficient
parsers through direct compilation of XML Schema grammars.” E.
Perkins, M. Matsa, M.G. Kostoulas, A. Heifets, and N. Mendelsohn.
pp. 1-20.

* cited by examiner
Primary Examiner Thomas KPham
(74) Attorney, Agent, or Firm—Cantor Colburn LLP. Edwin
Choi

(57) ABSTRACT

A method for constructing a highly optimized linear-sized
validation plan, the method comprising: providing a schema
having a plurality of schema components; compiling the
schema in three stages: a first stage in which the schema is
read and modeled in terms of abstract schema components; a
second stage in which the schema components are augmented
with a set of derived components and properties by (i) Syn
thesizing content models from the plurality of schema com
ponents by adding additional components including one or
more synthetic content-model components and one or more
synthetic elements and one or more synthetic types to the one
or more of the plurality of schema components and (ii) com
puting the derived set of properties on the components; and a
third stage in which the schema is traversed in order to gen
erate recursive-descent validation code for each of the plural
ity of schema components by generating the highly optimized
linear-sized validation plan directly from the plurality of
schema components.

16 Claims, 4 Drawing Sheets

errai-itis
a

abstrast
prehet-substistiss
base-type-definitial
content-type
attite-SES
atti-Aiai.
prohibited-attributes
feitired-attributes
Sipie-i3Se-type

Spe
type-definitiat

s

l
Spie-type-leftis; Paris tite-se wildcard
faces i-tects
ia 33-S
variety
hase-type-iefinitia emptiairie

first-Sei
fig-Set

tie-issip

articles
espisiif

Synthetic-Element

maine-iterai
giggigi.iegiitii

sceSS-cites
aBespace-castairst

synthetic-conient-model

f

egie
air-sea at
giate-iteral

FaireSpace-fiftstraiti:
iaine-iterals

regiiited-particies

28
3.

US 7,788,654 B2 Sheet 2 of 4 Aug. 31, 2010 U.S. Patent

át

US 7,788,654 B2 Sheet 3 of 4 Aug. 31, 2010 U.S. Patent

US 7,788,654 B2 Sheet 4 of 4 Aug. 31, 2010 U.S. Patent

US 7,788,654 B2
1.

METHOD FOR CONSTRUCTION OFA
LINEAR-S7ED VALIDATION-PLAN OF W3C

XML SCHEMA GRAMMARS

TRADEMARKS

IBM(R) is a registered trademark of International Business
Machines Corporation, Armonk, N.Y., U.S.A. Other names
used herein may be registered trademarks, trademarks or
product names of International Business Machines Corpora
tion or other companies.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to XML (Extensible Markup Lan

guage) Schema, and particularly to a method for constructing
a linear-sized validation plan of W3C (WorldWideWeb Con
sortium) XML Schema Grammars.

2. Description of Background
Existing techniques for optimized parsing and validation

leverage widely known optimization methods by converting a
given grammar into forms of well-understood finite state
machines. The content-model definition language of XML
(Extensible Markup Language) Schema, however, is not eas
ily converted into such structures. Content models defined in
XML Schema can compactly represent a wide array of con
tent-model constraints. In particular, three styles of compo
sition (i.e., sequence, choice, and all) are Supported, as well as
arbitrary occurrence bounds. The expressivity of this model
allows the creation of highly complex content models in a
relatively compact form. This complexity is at odds with the
traditional models. Particles composed with the “all” com
positor, for example, result in a combinatorial explosion of
states in Such graphs, and simple occurrence ranges are rep
resented with a state for each iteration of a repetition.

While many of the excess states in the finite-state model
may eventually collapse into a relatively simple execution
plan, their construction and optimization wastes computing
and memory resources during compile time, and potentially
prevents completion of the compile. Furthermore, if the opti
mizations are poorly implemented, artifacts of the blowup
may appear in the final execution plan, affecting runtime
performance. Considering the limitations of these finite-state
models, it is desirable, therefore, to formulate a method for
constructing a linear-sized validation plan of W3C (World
Wide Web Consortium) XML Schema Grammars.

SUMMARY OF THE INVENTION

The shortcomings of the prior art are overcome and addi
tional advantages are provided through the provision of a
method for constructing a highly optimized linear-sized vali
dation plan, the method comprising: providing a schema hav
ing a plurality of schema components; compiling the schema
in three stages: a first stage in which the schema is read and
modeled in terms of abstract schema components; a second
stage in which the schema components are augmented with a
set of derived components and properties by (i) synthesizing
content models from the plurality of Schema components by
adding additional components including one or more Syn
thetic content-model components and one or more synthetic
elements and one or more synthetic types to the one or more
of the plurality of schema components and (ii) computing the
derived set of properties on the components; and a third stage
in which the schema is traversed in order to generate recur
sive-descent validation code for each of the plurality of

10

15

25

30

35

40

45

50

55

60

65

2
schema components by generating the highly optimized lin
ear-sized validation plan directly from the plurality of schema
components.
The shortcomings of the prior art are overcome and addi

tional advantages are provided through the provision of a
computer program product for constructing a highly opti
mized linear-sized validation plan, the computer program
product comprising: a storage medium readable by a process
ing circuit and storing instructions for execution by the pro
cessing circuit for performing a method comprising: provid
ing a schema having a plurality of Schema components;
compiling the schema in three stages: a first stage in which the
schema components are read and modeled in terms of abstract
schema components; a second stage in which the schema is
augmented with a set of derived components and properties
by (i) synthesizing content models from the plurality of
schema components by adding additional components
including one or more synthetic content-model components
and one or more synthetic elements and one or more synthetic
types to the one or more of the plurality of Schema compo
nents and (ii) computing the derived set of properties on the
components; and a third stage in which the schema is tra
versed in order to generate recursive-descent validation code
for each of the plurality of schema components by generating
the highly optimized linear-sized validation plan directly
from the plurality of Schema components.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and the drawings.

TECHNICAL EFFECTS

As a result of the Summarized invention, technically we
have achieved a solution that provides for a method for con
structing a linear-sized validation plan of W3C (World Wide
Web Consortium) XML Schema Grammars.

BRIEF DESCRIPTION OF THE DRAWINGS

The Subject matter, which is regarded as the invention, is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates one example of Schema components;
FIG. 2 illustrates one example of an element with a syn

thetic content model;
FIG. 3 illustrates one example of a wildcard with a syn

thetic content model; and
FIG. 4 illustrates one example of QName-literal symbols.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the exemplary embodiments is a method for
modeling intermediate representations on the schema con
structs themselves, and generating an execution plan directly
off those components. This results in a predictable mapping
between schema size and complexity, and the size and com
plexity of the execution plan described in the exemplary
embodiments, and allows each schema construct to be treated
in an optimized fashion. This both eliminates the compiler

US 7,788,654 B2
3

overhead of State construction and optimization, and also
ensures that no blowup makes its way into the final execution
plan.

The structure of an XML (Extensible Markup Language)
document constrained by a schema cannot be decomposed,
from a validation standpoint, below the tag level. Because
meta-markup, such as namespace and Xsi:type declarations,
is contained in conceptually unordered attributes, no conclu
sive information about the document can be inferred until the
entire tag is read. Thus, no exchange of information between
the scanner and the validation logic can be made to refine the
scanning of the rest of the tag, without possibly having to back
up and correct mistaken assumptions. As a result, the gram
mar must not direct Scanning at a granularity any finer than
the tag. Accordingly, the generated validation logic may be
cleanly separated from the Scanning infrastructure, at the tag
level, without loss of any significant performance opportu
nity. Thus, the generated parser is divided into two logical
layers, a scanning layer and a validation layer.
The validation layer is a generated recursive-descent parser

that drives the Scanner using compiled, predictive knowledge
from the schema. The Scanning layer consists of a set offixed
XML primitives that scan content at the byte level, at the
direction of the validation layer.
The validation logic is produced directly from the schema

component model, using component-specific code templates
for the various components in the schema. This approach is
enabled by a constraint on valid schemas ensuring that all
content models are deterministic. This constraint is called the
Unique Particle Attribution (UPA) constraint, and is satisfied
by a content model that is formed such that during validation
of an element information item sequence, the particle com
ponent (contained directly, indirectly or implicitly therein)
with which each item in the sequence is validated, can in turn
be uniquely determined without examining the content or
attributes of that item, and without any information about the
items in the remainder of the sequence. This constraint
ensures that transitions between particles in the content
model are deterministic.
The compilation procedure takes place in three stages. The

inputschema is first readin, and modeled in terms of abstract
schema components. The complete schema is then aug
mented with a set of derived (calculated) components and
properties used to drive code generation. Finally, the schema
is traversed, in a recursive-descent fashion, to generate the
validation code for each component.

To represent and operate on the XML Schemagrammar, as
well as verify validity of the schema constraints, a publicly
available implementation of the schema components is used.
The schema components, taken in aggregate, are referred to
as the schema. It is assumed that the schema for any given
grammar is fully resolved before compilation begins, i.e.
there are no missing Subcomponents, and no attempt will be
made to further resolve components.

FIG. 1 shows the set of schema components, with their
compilation annotations in italics, as well as two special
components (synthetic-element and skip-term). The set of
schema components 10 includes a schema block 12, an ele
ment-declaration block 14, an attribute-declaration block 16,
a complex-type-definition block 18, a simple-type-definition
block 20, a particle block 22, an attribute-use block 24, a
wildcard block 26, a model-group block 28, a synthetic
element block 30, and a skip-term block32. For instance, the
schema block 12 includes the schema component properties
type-definition, element-declarations, attribute-declarations,
and the compilation annotation document-type.

10

15

25

30

35

40

45

50

55

60

65

4
Top-level Schema components have four primary compo

nent types: element and attribute declarations, complex and
simple type definitions. Complex type definitions also refer
ence a set of helper components: particle, model-group, wild
card, and attribute-use.
Complex types may have content that is simple, complex,

or empty. In the case where the content is simple, the value of
the content-type property is a simple-type-definition that
defines the content. In the case where the content is empty, the
content-type value is empty. If the complex type has complex
content, then the content-type is a particle, which defines a
complex content model. The content model for Such a com
plex type is defined in terms of the helper components (par
ticles, model-groups, and wildcards).

Particles and model-groups structure the content model for
validating element content, which is eventually validated by
element declarations or wildcards. The basic unit of the con
tent model is the particle. A particle is a term in the grammar
for element content, consisting of either an element declara
tion, a wildcard or a model group, together with occurrence
constraints. Particles contribute to validation as part of com
plex type definition validation, where they allow anywhere
from Zero to many element information items or sequences
thereof, depending on their contents and occurrence con
straints.

A particle has a pair of occurrence constraints, min-occurs
and max-occurs, and a term. The term of a particle can be an
element declaration, a model-group or a wildcard. Model
groups, in turn, compose groups of particles, using one of
three composition models (XSd:sequence, XSd:choice, XSd:
all). These components can be combined freely, within the
constraints of the Unique Particle Attribution constraint, as
discussed above. Note that in order to facilitate processing,
the XML Schema recommendation places extra restrictions
on the use of model-groups with the XSd:all compositor.

Because of the open-ended composition model of XML
Schema, the schema components as defined by the specifica
tion lack explicit representations of validation constraints that
reference the schema globally. In particular, the content
model for wildcards, element Substitution groups, and the
content model for the document itself all make implicit ref
erences to the global element declarations of the schema,
without enumerating them. In the compiler, these implicit
validation rules are rendered explicitly with content models
synthesized from the standard Schema components and the
global properties of the schema. These synthetic content
models are represented with the normal schema components,
and with two additional synthetic components.

In contrast to a DTD (Document Type Definition), XML
Schema provides no standard way to indicate the content
model for the document itself. The validation rule for the
document element, unless the root is otherwise specified, is
normally taken to be similar to that of a wildcard, matching
any global element. To represent this, a virtual top-level type
for the content of the document is defined. This top-level type
is a complex type called documentType, and is defined within
a private namespace. Unless otherwise stipulated, the docu
mentType is assumed to take a form similar to that of XSd:
anyType, but somewhat more restrictive in that it bears no
attributes, forces strict processing, and does not allow mixed
COntent.

Element substitution groups allow for the substitution of
one named element for another. Any global element declara
tion may serve as the head of a Substitution group, and any
element with a properly derived type may declare itself to be
substitutable for the head element.

US 7,788,654 B2
5

In a fixed schema, the validation rule for an element sub
stitution group acts as a choice over the appropriate element
declarations. To represent this explicitly in the compiler, the
element declaration component is augmented with a syn
thetic-content-model property that represents the expanded
form of the element declaration (FIG. 2). FIG. 2 illustrates
one example of an element synthetic-content model 40. The
element synthetic-content-model 40 includes an element dec
laration block 42, a particle block 44 (with a choice model
group as its term), a particle block 46 (with one synthetic
element term), and a particle block 48 (with a synthetic ele
ment term). Also, note that particle block 48 may be a
sequence of particle blocks each with a synthetic element
term. Each of these synthetic element terms represent an
element declaration that could be substituted for this element.

This new content model is a choice over any elements that
could transitively appear in the Substitution group headed by
this element. In order to distinguish an element declaration
(which is always considered to be the head of a substitution
group) from the terms of this synthetic choice, a synthetic
component called the Synthetic-Element is defined, which
like regular element declarations, wildcards and model
groups may be the term of any particle. The Synthetic-Ele
ment, as opposed to the regular element declaration, validates
only the declared element, and not any of its Substitution
group members.
The content model for wildcards is similarly implicit, as

shown in FIG. 3. FIG. 3 illustrates one example of a wildcard
synthetic-content model 50. The wildcard synthetic-content
model 50 includes a wildcard block 52, a particle block 54
(with a choice model group as its term), a particle block 56
(with a synthetic element term), and a particle block 58 (with
a skip term). Also, note that particle block 58 may be a
sequence of particle blocks each with a skip term.
The structure of the validation rule for a wildcard depends

on the value of its process-contents property. When skip pro
cessing is stipulated, the processor is required to skip over the
matching element, and all of its content, without any valida
tion. When strict processing is stipulated, the matching ele
ment must be validated with one of the global element dec
larations in the schema. Lax processing combines the two
options, requiring full validation of known elements, but
allowing skip processing for unknown elements. In all cases,
the matching element satisfies the namespace constraint
specified on the wildcard component.

In the compiler, the validation rule for a wildcard is repre
sented with a choice similar to that used for element substi
tution groups. This is assigned to the synthetic-content-model
property of the wildcard. Skip processing is represented with
a special synthetic component, the Skip-Term. If the process
contents property is strict or lax, the choice contains a particle
with a Synthetic-Element term for each global element dec
laration that satisfies the namespace constraint. If the process
contents property is skip or lax, the model-group also con
tains a particle with a Skip-Term.
Once the schema is fully resolved, the derived properties

may be computed. These properties form the basis for the
code generation phase that follows. Because several of the
properties represent global information about the schema,
Such as the complete set of global elements matching a wild
card component, the derived properties must all be computed
before code generation begins. The properties are calculated
in order, since the calculations of one step are used in Subse
quent steps. Note that the calculation procedures implicitly
assume that the schema is valid with respect to all of the
constraints on Schema components in the XML Schema
specification.

5

10

15

25

30

35

40

45

50

55

60

65

6
The substitutable-types property of an element-declaration

defines the set of types that can appear in the instance docu
ment, by using the Xsi:type dynamic typing mechanism,
instead of the declared type. The substitutable-types set con
tains all global types, including the declared type itself, that
possess the following characteristics: they are not anonymous
or abstract, they are transitively derived from the declared
type, and they do not, at any step of derivation, violate the
prohibited-substitutions properties of the element-declara
tion and type-definition. In the generated parser, the Substi
tutable types set is used to validate the value of any Xsi:type
attributes that may appear in the document.

In validating an XML document, a correspondence is made
between literal element and attribute names and QNames
found in the schema. To make this correspondence, a symbol
called the QName-literal is defined. A QName-literal may
represent a specific QName referenced in the schema, or
some unbounded set of QNames not directly referenced in the
schema, but indirectly referenced by a wildcard. Additionally,
special QName-literals are used for the close-tag and the
end-of-file symbols. At the abstract level, validation con
structs are considered to validate sets of QName-literals in the
case of attributes, or sequences of QName-literals in the case
of content models.
A QName-literal can have one of several forms, as shown

in FIG. 4. FIG. 4 illustrates one example of QName-literal
symbols 60. These may be a known QName-literal 62, a
namespace-known QName-literal 64, and one of three con
stant QName-literal symbols 70. If the QName-literal is a
known symbol then it carries two parts of information 66: a
namespace-uridatum and a local-part datum. If the QName
literal is a namespace-known symbol, then it carries one piece
of information 68: a namespace-uridatum. The three constant
QName-literal symbols are unknown, close, and end-of-file
or eof, as shown in box 70.
A QName explicitly referenced in the schema is repre

sented by the known QName-literal, which is the
{namespace-uri, local-part pair. An unknown QName in a
known namespace is represented by a namespace-known
QName-literal, with a single property, the namespace-uri.
QNames with an unknown namespace are represented by the
special singleton unknown QName-literal, regardless of their
local-part. Close tags, regardless of their name, are all repre
sented by the special close QName-literal. Similarly, the end
of-file is represented by the eof QName-literal.

Note that the set of known QName-literals is considered to
be established completely before compilation begins, and that
unknown and namespace-known QName-literals are not used
to refer to known QNames. Thus, an element wildcard may
validate known, namespace-known, and unknown QName
literals.

Every particle in the schema has three calculated proper
ties: emptiable, first-set, and follow-set. These properties
define the relationship between the schema component and
the QName-literal sequence it will validate. The emptiable
property corresponds to the Particle Emptiable definition of
the XML Schema recommendation, and determines whether
or not the particle can validate the empty QName sequence.
The emptiable property is used to calculate the other particle
properties below.
The first-set of a particle defines the set of QName-literals

that can occur in the first position of an element QName
sequence that is validated by the particle. The first set is used
to build control-flow logic for the content model; as a direct
result of the Unique Particle Attribution constraint, compari
son of an input QName-literal to the calculated first-set of a
particle immediately determines whether or not that particle

US 7,788,654 B2
7

validates the input sequence. The first-set is calculated recur
sively, in a single pass over the schema.
The follow-set of a particle defines the set of QName

literals that can follow a QName-literal sequence validated by
that particle. The follow-set is used to drive context-sensitive
tag scanning. After the first-set is calculated for every particle,
the follow-set is calculated in a second pass over the schema
components, using the first-set of adjacent components.

For each complex type two sets of attribute QName-literals
are calculated, required and prohibited. These sets are used to
validate the attribute occurrence constraints. The required set
includes the attribute QName-literals that are required to
appear in the input tag. The prohibited set includes the
attribute QName-literals that are not allowed to appear in the
input tag.
The required and prohibited sets are created from informa

tion in the attribute uses of the complex type. Entries for
attribute wildcards are also included, in the form of known
QName-literals, namespace-known QName-literals and the
unknown QName-literal, depending on the wildcards pro
cess-contents value.
The generated parser consists of modules validating each

type in the input schema, including the synthetic document
Type. The validation logic is produced directly from the
schema component model representation of each type. Vali
dation code for simple types is largely independent of the
input schema, and in the exemplary embodiments of the
present invention, it consists mostly of library code.

For every complex type a recursive-descent parse function
is defined that parses all the attributes and content of the
complex type. To validate element content in a complex type,
the element dispatch function is also defined. This function
handles element-specific validation constructs Such as
defaulting and nillability, as well as dynamic typing, and
dispatches a call to the actual type's parse function. Together,
the type parse functions and element dispatch functions make
up the whole validation engine.

The main entry-point of the generated parser is the parse
function for the documentType. Starting with the parse func
tion for the documentType, control passes back and forth
between parse and dispatch functions, descending through
the different types in the schema.

The validation logic for complex content is generated by
mapping the various Schema components in the content
model to code templates. The templates, like the components
themselves, are composable. For any component type, there
is at least one generic template that will produce validation
code for that component. In addition, there may be several
optimized templates tailored for common, simple use cases.
Using optimized code templates for common use cases helps
to minimize the size of the generated code, and results in
highly optimized validation logic.

Templates for the content model Schema components are
described below, and one is presented in pseudo-C code. In
the templates, compile-time Substitutions are often made.
They are indicated as follows:
COMPILEx marks the insertion of the compiled code for

the schema-component specified by X, relative to the current
schema-component.
IDX represents a constant for the QName-literal X.
SETIX represents a constant set for the given QName

literal-set.
SET CASEX represents a series of switch cases (all with

the same body) for each of the QName-literals in X.
IFX indicates a conditional section of the template that is

evaluated at compile time.

10

15

25

30

35

40

45

50

55

60

65

8
READ TAGX is used to mark the insertion of the appro

priate read-tag primitive for the QName-literal set X.
READ SIMPLE CONTENTx marks the insertion of

the appropriate read-content function for the simple type
specified by X.
DISPATCHX represents a call to the dispatch function to

validate the type of the element declaration X.
In the exemplary embodiments of the present invention, all

comparisons of QName-literal sets have been implemented
as bit-vector operations. At compile time, the literal bit vec
tors are calculated, and at runtime, the instance literals are
compared against the set in bulk.
A number oftemplates may be utilized by one skilled in the

art to create a highly optimized linear-sized validation plan.
One such template is a particle template. Particle templates
handle occurrence constraints. They must also handle emp
tiability, which interacts with the min-occurs property. A
generic particle template is as follows:

int count = 0;
label: while (count < max) {

if (SET first set.contains(current tag))
break label:

COMPILEterm):
count----.

IFI emptiable { if (count < min) Fail();

In addition, various optimized templates may be created
for specific common cases. For instance, common cases with
obvious template implementations include an unbounded
particle with maxOccurs=“unbounded', an optimized tem
plate for optional particles (particles that have maxOccurs=1,
and are emptiable), fixed-repeat particles (particles that have
minOccurs maxOccurs and are not emptiable), simple par
ticles (particles that have minOccurs—maxOccurs=1), and
degenerate particles (particles that have
minOccurs—maxOccurs=0).
The generic template for model-groups with compositor

XSd:sequence is a sequence of Substitutions. There is no need
for optimized templates. The generic template for a choice is
a simple Switch statement. An optimized template for a choice
with two particles simplifies the switch to the more efficient
if-else clause. A choice with only one particle is a direct
Substitution of that particle. In addition, all-group templates
make use of a set to check occurrence constraints. The set is
checked at runtime against the set of required particles. The
required-particles set contains an entry for each particle in the
model-group that has a minOccurs property value of 1. The
entries in the set are one-based indices into the list of particles.
An optimized template for all-groups with no required-par
ticles does not need the final test for the existence of all
required-particles. As with choice, an all-group with exactly
one particle is a direct substitution of that particle. As with
sequence, an all-group with no particles validates the empty
sequence. The template is therefore a no-op.

Furthermore, concerning element declarations and wild
cards, validation code for element declarations and wildcards
is produced by their synthetic-content models. Synthetic
elements validate exactly one element. The content model for
a skip term, which is used by the synthetic-content-model of
skip and lax wildcards, repeatedly calls the scanner to Scan
through one well-formed element.
The template for complex types is composed of a header

that handles attributes and Xsinil, and a body that handles
content. The header template is the same for all complex

US 7,788,654 B2

types. Note that in the special case of the documentType, the
template is modified to compare the final tag against the
end-of-file QName-Literal rather than the close QName-Lit
eral. The body template for complex types with simple con
tent uses the simple-base-type, which is the complex type's
nearestancestor of simple type. The body template for com
plex types with empty content simply comprises a call to a
scanner primitive to read a close tag.
The capabilities of the present invention can be imple

mented in Software, firmware, hardware or some combination
thereof.
As one example, one or more aspects of the present inven

tion can be included in an article of manufacture (e.g., one or
more computer program products) having, for instance, com
puter usable media. The media has embodied therein, for
instance, computer readable program code means for provid
ing and facilitating the capabilities of the present invention.
The article of manufacture can be included as a part of a
computer system or sold separately.

Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa
bilities of the present invention can be provided.

The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per
formed in a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention has been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:
1. A method for constructing a highly optimized linear

sized validation plan on a computing device, the method
comprising:

providing to the computing device an XML Schema having
a plurality of XML Schema components;

compiling the XML Schema on the computing device in
three stages:
a first stage in which the XML schema is read and
modeled in terms of abstract schema components;

a second stage in which the XML Schema components
are augmented with a set of derived components and
properties to form an augmented XML Schema by (i)
synthesizing content models from the plurality of
XML schema components by adding additional XML
components including one or more XML synthetic
content-model components and one or more XML
synthetic elements and one or more XML synthetic
types to the one or more of the plurality of XML
schema components and (ii) computing the derived
set of properties on the XML components; and

a third stage in which the augmented XML schema is
traversed in order to generate recursive-descent vali
dation code for each of the plurality of XML schema
components by generating the highly optimized lin
ear-sized validation plan directly from the plurality of
XML Schema components.

10

15

25

30

35

40

45

50

55

60

10
2. The method of claim 1, wherein the one or more syn

thetic XML content-model properties are located in an ele
ment declaration schema component.

3. The method of claim 1, wherein the one or more XML
synthetic elements only validate a declared element.

4. The method of claim 1, wherein the XML schema
includes QNames.

5. The method of claim 4, wherein a QName-literal repre
sents a QName referenced in the XML schema.

6. The method of claim 4, wherein a QName-literal repre
sents an unbounded set of QNames not directly referenced in
the XML schema.

7. The method of claim 1, wherein the highly optimized
linear-sized validation plan is generated via templates.

8. The method of claim 7, wherein highly optimized vali
dation templates are used in many common use cases.

9. A computer program product for constructing a highly
optimized linear-sized validation plan, the computer program
product comprising:

a storage medium readable by a processing circuit and
storing instructions for execution by the processing cir
cuit for performing a method comprising:
providing an XML schema having a plurality of XML

schema components;
compiling the XML Schema in three stages:

a first stage in which the XML Schema components
are read and modeled in terms of abstract schema
components;

a second stage in which the XML schema is aug
mented with a set of derived components and prop
erties to form an augmented XML schema by (i)
synthesizing content models from the plurality of
XML schema components by adding additional
components including one or more synthetic XML
content-model components and one or more Syn
thetic XML elements and one or more synthetic
XML types to the one or more of the plurality of
XML Schema components and (ii) computing the
derived set of properties on the components; and

a third stage in which the augmented XML Schema is
traversed in order to generate recursive-descent
validation code for each of the plurality of XML
Schema components by generating the highly opti
mized linear-sized validation plan directly from the
plurality of XML schema components.

10. The computer program product of claim 9, wherein the
one or more synthetic XML content-model properties are
located in an element declaration schema component.

11. The computer program product of claim 9, wherein the
one or more synthetic XML elements only validate a declared
element.

12. The computer program product of claim 9, wherein the
schema includes QNames.

13. The computer program product of claim 12, wherein a
QName-literal represents a QName referenced in the schema.

14. The computer program product of claim 12, wherein a
QName-literal represents an unbounded set of QNames not
directly referenced in the schema.

15. The computer program product of claim 9, wherein the
highly optimized linear-sized validation plan is generated via
templates.

16. The computer program product of claim 15, wherein
highly optimized validation templates are used in many com
OUIS CaSS.

