
USOO7752223B2

(12) United States Patent (10) Patent No.: US 7,752,223 B2
Quan, Jr. et al. (45) Date of Patent: Jul. 6, 2010

(54) METHODS AND APPARATUS FOR VIEWS OF (56) References Cited
INPUT SPECIALIZED REFERENCES

U.S. PATENT DOCUMENTS

(75) Inventors: Dennis A. Quan, Jr., Quincy, MA (US); 5,937.409 A * 8/1999 Wetherbee 1.1
Eric David Perkins, Boston, MA (US); 6,766,330 B1 7/2004 Chen et al. 1.1
Chetan R. Murthy, Cambridge, MA
(US); Abraham S. Heifets, Cambridge, * cited by examiner
MA (US); Joseph J. Kesselman,
Malden, MA (US); Moshe Morris Primary Examiner Jean M Corrielus
Emanuel Matsa, Cambridge, MA (US) (74) Attorney, Agent, or Firm—Chapin IP Law, LLC

(73) Assignee: International Business Machines (57) ABSTRACT
Corporation, Armonk, NY (US)

A program specializer employs input specialized data struc
(*) Notice: Subject to any disclaimer, the term of this tures by generating an input specialized definition of a set of

patent is extended or adjusted under 35 data elements, and parsing an application program to identify
U.S.C. 154(b) by 153 days. data element references to data elements in the generated

input specialized definitions of data elements. The program
(21) Appl. No.: 11/500,587 specializer replaces or rewrites the identified data element

references with the corresponding input specialized defini
(22) Filed: Aug. 7, 2006 tion. The input specialized data elements from the input spe

cialized program are employed in a particular view by gen
(65) Prior Publication Data erating a mapping of source data types to preferred data types,

US 2008/OO34O1 O A1 Feb. 7, 2008 Such that the preferred data types have access advantages over
the source data types, and receiving a markup application

(51) Int. Cl. program having Source data types operable to be modified in
G06F 7/30 (2006.01) the input specialized program. A view mapper maps, using

(52) U.S. Cl. 707/790; 791/802; 791/804; the generated mapping, a source data type to a preferred data
791/808; 791/809 type, and applies the mapped preferred data type to occur

(58) Field of Classification Search 707/790 791, rences of the corresponding source data type.
707/802804, 808 809

See application file for complete search history. 17 Claims, 6 Drawing Sheets

100

N 160
190

PROGRAM SPECIALIZER
162

XML
APPLICATION
PROGRAM

INPUT 198
SPECIALZED 198 PROGRAM 98-2

F1 (A, B)
F2 (C) 152-1-1

172

SIGNATURE
GENERATOR

DOCUMENT 174 WIEWMAPPER
OBJECT

MODEL (DOM) MAPPER
(ABC) DATAELEMENT

REFERENCE
PARSER

DATA
STRUCTURE INPUT SPECIALZEO
DEFINITION DATASTRUCTURES
GENERATOR A'B'C'

512

U.S. Patent Jul. 6, 2010 Sheet 2 of 6 US 7,752.223 B2

200
GENERATE AMAPPING OF SOURCE DATA TYPES TO PREFERRED
DATA TYPES, THE PREFERRED DATA TYPES HAVING ACCESS

ADVANTAGES OVER THE SOURCE DATA TYPES

2O1
RECEIVE A MARKUP APPLICATION PROGRAM HAVING SOURCE DATA

TYPES

2O2
MAP, USING THE GENERATED MAPPING, A SOURCE DATA TYPE TO A

PREFERRED DATA TYPE

203
APPLY THE MAPPED PREFERRED DATA TYPE TO OCCURRENCES OF

THE CORRESPONDING SOURCE DATA TYPE

Fig. 2

U.S. Patent Jul. 6, 2010 Sheet 4 of 6 US 7,752.223 B2

300
DEFINEARULE SET INDICATIVE OF SOURCE DATA TYPES, CONDITIONAL RULE

STATEMENTS AND CORRESPONDING PREFERRED OATA TYPES FOREACH OF THE
CONOTIONAL RULE STATEMENTS

301
24 NWOKING THE RULE SET FOR COMPUTING THE ALTERNATEACCESS.

302
GENERATE AMAPPING OF SOURCE DATA TYPES TO PREFERRED DATA TYPES, THE
PREFERRED DATA TYPES HAVING ACCESS ADVANTAGES OVER THE SOURCE DATA

TYPES

303
IDENTIFY ASOURCE DATA TYPE ASA TARGET DATA TYPE OPERABLE FOR

ALTERNATEACCESS
304

DENTIFYING ALTERNATEACCESS FURTHER COMPRISES COMPUTNG AT
LEAST ONE OF ACCESS SPEED, ACCESS FREQUENCY, BOUNDS LIMIT OF
ACCESSIBLE ELEMENTS, INLINING ACCESS EXPRESSIONS, CONJUNCTIVE

ACCESS, DISJUNCTIVE ACCESS

305
DETERMINEA PREFERRED DATA TYPE RESPONSIVE TO THE ALTERNATE

ACCESS

306
IDENTIFY AT LEAST ONE OF AGGREGATION OPERATION AND ACCESS
OPERATIONS AND MODIFYING THE OPERATION ACCORONG TO THE

MAPPNG

307
ENUMERATE AN ASSOCATION FROM THE TARGE DATA TYPE TO THE

PREFERRED DATA TYPE

308
MAPPING TYPES INCLUDE AT LEAST ONE OF AN INDEX, HASHTABLE,

LIST, TREE, ARRAY, STATIC ELEMENT

309
GENERATEA MAPPING DESCRIPTOR FROM THE MAPPING, THE

DESCRIPTOR INDICATIVE OF THE TARGET SOURCE TYPE ANDAT LEAST
ONE CORRESPONDING PREFERRED DATA TYPE INDICATIVE OF

SPECIFIED CODE

U.S. Patent Jul. 6, 2010 Sheet 5 of 6 US 7,752.223 B2

310
RECEIVE A MARKUP APPLICATION PROGRAM HAVING SOURCE DATA TYPES

311
PARSE THE APPLICATION PROGRAMO DENTFY OCCURRENCES OF THE

TARGET DATA TYPE

312
MAP, USING THE GENERATED MAPPING, A SOURCE DATA TYPE TO A

PREFERRED DATA TYPE

313
APPLY THE MAPPED PREFERRED DATA TYPE TO OCCURRENCES OF THE

CORRESPONDING SOURCE DATA TYPE

314
REPLACE OCCURRENCES OF THE TARGE DATA TYPE WITH THE

CORRESPONDING PREFERRED DATA TYPE

315
REWRITE THE ACCESS EXPRESSION INCLUDING THE REDUNDANT DATA

TYPES WITH THE NO-OPS

316
SUBSTITUTE, USING THE DESCRIPTOR, SPECIFIED CODE FROM THE

DESCRIPTOR FOR THE PARSED TARGET SOURCE DATA TYPE

Fig. 6

U.S. Patent Jul. 6, 2010 Sheet 6 of 6 US 7,752.223 B2

317
IDENTIFY REDUNDANT DATA TYPES INCLUDING INFORMATION AREADY

REPRESENTED

REPLACE THE REDUNDANT DATA TYPES WITH NO-OPS

319
NLNE THE ACCESS EXPRESSION, NL. NING REPLACING A FUNCTON

CALL WITH ASTRING SUBSTITUTION OPERABLE TO PROVIDE
EQUIVALENT ACCESS TO THE PREFERRED DATA TYPE

32O
REPEAT THE PARSING AND THE MAPPNG UNTIL EACH TARGET DATA
TYPE IN THE SOURCE HAS BEEN MAPPED TO THE CORRESPONDING

PREFERRED DATA TYPE

Fig. 7

US 7,752,223 B2
1.

METHODS AND APPARATUS FOR VIEWS OF
INPUT SPECIALIZED REFERENCES

BACKGROUND

In conventional XML based application, a typical first step
in any XML processing is to read in an XML document from
disk (or the network) into memory. Most of the standards for
conventional XML processing operate on an abstract model
of the document in which the document is modeled as a set of
nodes linked together with two fundamental, bidirectional
relationships, parent/child, and previous-sibling/next-sib
ling. Traversal of these linkages to locate specific nodes, is
accomplished by QName (i.e. get the next sibling named
“foo', or the first child named “bar'), as the conventional
model is meant to be generalized for any XML vocabulary.
Note that in most models, attributes are handled specially, and
are not considered children—or siblings—because of their
special, unordered semantics. The basic access pattern, how
ever, remains the same. The W3C standard Document Object
Model (DOM) provides a standard example of this model
both in abstract, and in concrete implementation.

Traditionally, conventional processing of the Extensible
Markup Language is based on a set of fairly general-purpose,
off-the-shelf software components: a parser which under
stands XML syntax (and, often, applies basic data validation,
following rules for this type of document as expressed in an
XML Schema), an intermediate form for the XML dataset
(such as a model accessed through the W3C DOMAPIs, or a
sequence of SAX events), and a serializer which will render
the intermediate representation back into its XML-syntax
equivalent. The actual application code, as is apparent to
those of skill in the art, operates on the intermediate repre
sentation between its production by the parser and its delivery
to the serializer.

The generality of such tools facilitates development, but
has performance costs. For example, a parser which is
designed for general-purpose use may spend a significant
amount of time testing for input cases which are extremely
unlikely to occur in a document conforming to a given
schema.

SUMMARY

Conventional code optimization mechanisms such as opti
mized parsers attempt to generate code expressions for
accessing data in a most efficient manner for the type of data
represented. However, modern development languages Such
as markup languages have the capability to generate and
access large, complex data structures via conventional
sequences including list traversal and name matching. Such
markup languages, while readily adaptable to a variety of
information definitions, Suffer from several shortcomings.
Popular markup languages Such as the Extensible Markup
Language (XML), while providing flexible and powerful data
representation mechanisms, tend to generate complex,
dynamic data structures which may not be the most appropri
ate for all contexts. For example, a sequential operation for a
fixed number of operands may be best served by an array,
however periodic random access to an unknown number of
elements may be more appropriate for a hash table.
The same is true for a generic dataset model Such as a

general-purpose DOM implementation; a complete represen
tation of the conventional document may include a great deal
of information that this particular application does not need to
access. If the access patterns are known, the data structure can
be optimized to better Support them, for example by storing

10

15

25

30

35

40

45

50

55

60

65

2
information in a hashtable rather than as a list of children.
Similarly, large portions of the document may be entirely
irrelevant, thus representing data references that may be opti
mized away.

In fact, evenan optimized parser can represent unnecessary
overhead. In the traditional model described above, to take
advantage of conventional XML-based tooling, a developer
first has the data represented as an XML-syntax character
stream. In many real-world cases, especially for business
processes, the data is originally in Some other representation
specific to the program which is producing or retrieving it.
This means that we must pay the overhead of serializing it out
from that representation into XML syntax, only to pay the
costs of parsing it back into the representation which is native
to the XML-based processor.

Various attempts have been made to streamline this, e.g. by
using adapters to wrap an XML interface such as the DOM
around this non-XML data or by rendering the data directly
into a SAX stream which can be used to build the XML
application’s preferred representation—but these have
involved either interpretive inefficiencies in the adapter layer,
or memory inefficiencies in the process of recopying the data,
or both.

Accordingly, configurations herein Substantially overcome
the shortcomings presented above by providing an abstract
view mapping operable to map general data types, such as
those from a DOM based definition, to a preferred data type
better suited to the access patterns of the invoking code. The
exemplary configurations employ input specialization with
abstract view mapping to map from a target source data type
to a preferred data type operable to provide more efficient or
better suited access to the data at hand. The mapping is oper
able to inject particular observations or context specific
knowledge about how the data is accessed or used, and pro
vide a more appropriate or efficient manner of access. By
parsing an XML application program employing Such DOM
based or input specialized target data types, configurations
herein replace or rewrite the expression representing and
referencing the data types to employ the preferred data types.
Further, such optimizations may be further combined with
input specialization techniques, such as those disclosed in
copending U.S. patent application entitled “METHODS
AND APPARATUS FOR INPUT SPECIALIZATION and
Ser. No. 1 1/501,216, filed concurrently and incorporated
herein by reference. In this manner, the combination of view
(data type) mapping and input specialization is applicable to
XML implementations to effect more efficient access mecha
nisms and eliminate unnecessary complex pointer references
and associated traversals.

All modern programming languages Support Some method
for aggregating multiple pieces of data into a single unit of an
aggregate type. Similarly mechanisms are supported for dis
aggregating the data items from the aggregate type. As the
basis for our application of views, we define an abstraction of
these capabilities where the aggregation method is referred to
as a constructor, the disaggregation method is a referred to as
a deconstruction match, and the resulting aggregate data type
is referred to as a CDT. While the terminology we use for
these operations derives from algebraic data types used in
languages Such as Haskell and OCaml, here we are using
these terms as abstractions of operations available in all lan
guages. Conjunctive aggregation of data items (as Supported
in C with structs, for example) is represented through the use
of a single constructor. Disjunction among possible aggrega
tions (as Supported in c with unions) is represented with a
CDT that has several constructor alternatives. The disaggre
gation operation is represented with a deconstruction match,

US 7,752,223 B2
3

in which a particular construction alternative may be disag
gregated, and its various data items bound to variables for use
in the program.

In further detail, the method of processing an XML appli
cation program using abstract view mappings with input spe
cialized data structures as defined herein includes generating
an input specialized definition of a set of data elements, and
parsing an application program to identify data element ref
erences to data elements in the generated input specialized
definitions of data elements. A data structure generator com
putes an input specialized definition corresponding to each of
the identified references data element references, and a pro
gram specializer replaces or rewrites the identified data ele
ment references with the corresponding input specialized 15
definition. Computing the input specialized definition
includes determining an index for offset indirection, Such as a
fixed field in a C struct, therefore having offset references to
members of the data element, such that the data element
members are operable for indexed references by the resulting
input specialized application program.

10

The input specialized data elements from the input special
ized program are employed in a particular view by generating
a mapping of Source data types to preferred data types. Such
that the preferred data types have access advantages over the
Source data types, and receiving a markup application pro
gram having source data types operable to be modified in the
input specialized program. A view mapper maps, using the
generated mapping, a source data type to a preferred data
type, and applies the mapped preferred data type to occur
rences of the corresponding source data type. Depending on
the particular configuration, a compiler or automated genera
tion process may interpret the rules to define the mapping, or
alternatively, manual code file development may provide the
mapping.

Alternate configurations of the invention include a multi
programming or multiprocessing computerized device Such
as a workstation, handheld or laptop computer or dedicated
computing device or the like configured with Software and/or
circuitry (e.g., a processor as Summarized above) to process
any or all of the method operations disclosed herein as
embodiments of the invention. Still other embodiments of the
invention include Software programs such as a Java Virtual
Machine and/oran operating system that can operate alone or
in conjunction with each other with a multiprocessing com
puterized device to perform the method embodiment steps
and operations Summarized above and disclosed in detail
below. One such embodiment comprises a computer program
product that has a computer-readable medium including com
puter program logic encoded thereon that, when performed in
a multiprocessing computerized device having a coupling of
a memory and a processor, programs the processor to perform
the operations disclosed herein as embodiments of the inven
tion to carry out data access requests. Such arrangements of
the invention are typically provided as Software, code and/or
other data (e.g., data structures) arranged or encoded on a
computer readable medium Such as an optical medium (e.g.,
CD-ROM), floppy or hard disk or other medium such as
firmware or microcode in one or more ROM or RAM or
PROM chips, field programmable gate arrays (FPGAs) or as
an Application Specific Integrated Circuit (ASIC). The soft
ware or firmware or other such configurations can be installed
onto the computerized device (e.g., during operating system
or execution environment installation) to cause the comput

25

30

35

40

45

50

55

60

65

4
erized device to perform the techniques explained herein as
embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following descrip
tion of particular embodiments of the invention, as illustrated
in the accompanying drawings in which like reference char
acters refer to the same parts throughout the different views.
The drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the invention.

FIG. 1 is an exemplary XML environment suitable for use
with the present configuration;

FIG. 2 is a flowchart of mapping in the environment of FIG.
1

FIG. 3 is a diagram of type mapping as disclosed herein;
FIG. 4 is a flow diagram of rewriting a data access expres

sion according to configurations herein; and
FIGS. 5-7 are a flowchart of application program optimi

Zation as disclosed herein.

DETAILED DESCRIPTION

FIG. 1 is an exemplary XML environment 100 suitable for
use with the present configuration. Referring to FIG. 1, an
application program 150 employing DOM 104 based refer
ences is receivable by a program specializer 160. The appli
cation program 150 includes function invocations F1 and F2
152-1 ... 152-2 respectively (152 generally), that include the
data element references 104-1 . . . 104-3 for A,B and C,
respectively. The program specializer 160 receives the appli
cation program 150 in an abstract syntax tree (AST) 162. Also
employing the DOM 16 definitions is the data structure gen
erator 130, that generates input specialized data structures
180 derived from the DOM definitions A,B and C (104). A
parser 170 includes a signature generator 172 and a mapper
174.

The parser 172 processes the syntax tree 162 to identify
function invocations F1 and F2 including data element refer
ences included in the input specialized data structures 180.
The mapper 174 identifies the input specialized data struc
tures A, B' and C (120) corresponding to the data element
references A, B and C104 from the application program 150.
The signature generator 172 employs the mapped data ele
ments A'B' and C to replace the function invocations F1 and
F2 with the input specialized function references (signatures)
F1' and F2' 192 in the output application program 190 includ
ing the input specialized calls 192. Accordingly, the input
specialized data elements 194-1 . . . 194-3 are operable to
access the corresponding data item 196-1 . . . 196-3 via a
single offset indirection 198, thus avoiding an iteration of
pointer references and name matching typically associated
with DOM based references in an application program. The
single offset indirection 198, therefore, provides an offset
reference for the data item 196 referred to by the data element
194, in contrast to the potentially extended traversal of tree
nodes 153 form traversing a DOM based data structure as in
104-1 ... 104-3.
The input specialized program 190 is responsive to a view

mapper 500 for replacing or rewriting the data element refer
ences 120 according to a map 506 of data types. Data element
references 194 are receivable by the parser 502 for mapping to
alternate views A set of rules 504 determines, for particular
data types from the input specialized data structures 120,
alternate view data structures 512. The map 506 maps the

US 7,752,223 B2
5

input specialized data structures 120 to the alternate view data
structures 512 yielding a view optimized program 510.

Referring to the discussion on input specialization above,
and as discussed further in the copending application cited
above. As has been demonstrated in previous disclosures 1.
if we know the schema(s) expected by this application (as is
generally the case for business applications), we can use that
information to automatically produce a parser and data struc
tures optimized for the specific kinds of document to be
processed, and therefore obtain considerable reductions in
parse time. Paradoxically, the requirement that a parser per
form the additional work to check that an XML document is
a valid instance of a specific schema can actually reduce the
total cost of reading the document.

Applying that same schema information to optimize the
data model generated by the parser can likewise yield a more
efficient solution, allowing us to store the data in a form which
is more compact and can be manipulated more rapidly. This
typically implies that we are able to alter the XML application
to run against the new data structures, via an "input special
ization’ process, such as that discussed in the copending
application cited above.

Configurations herein employ input specialization and
abstract view mapping to show how information obtained
from the user or extracted from an XSLT stylesheet can be
used to further improve the efficiency of parsing and model
construction. Also applied is the concept of view specializa
tion to allow binding the now highly optimized application
code directly to non-XML data structures, avoiding the need
to generate and re-parse XML syntax while retaining all the
advantages of working with the standardized XML abstrac
tions.

The notion of input specialization has been shown to Suc
cessfully map high-level XML processing programs to low
level data structures. This has been used to enhance the per
formance of XML processing programs, by eliminating both
execution and memory costs of the rich data model used in
XML processing languages Such as XSLT. The same methods
can also be used to reduce the same XML processing pro
grams to the kinds of abstract data aggregation and disaggre
gation operations discussed above. By specializing to the
CDT model, rather than the concrete physical structures used
in previous applications of input specialization, we are able to
apply the concept of views to XML processing. Such view
concents are well known in the art and are discussed furtherin
Wadler, P. “Views: A way for pattern matching to cohabit with
data abstraction.” 14th ACM Symposium on Principles of
Programming Languages, January 1987: Revised March
1987. Incorporated herein by reference.
The CDT model described above shares key similarities

with the concrete structures used in regular input specializa
tion. In particular, the data aggregations do not have any of the
complex cross linkages present in the high-level XML data
model, but rather have simple containment/aggregation rela
tionships. This means that the same methods used to translate
the high-level program to low-level physical data structures,
map well onto the task of translating the same kinds of pro
grams to the CDT model. So for example, where standard
input specialization might, in an XSL program, map the
evaluation of a child axis down to a direct access of a named
member in a physical Java class, we may also use it to map the
same child axis operation to a simple disaggregation, in
which the named member of the aggregation is disaggregated
and bound to a variable.

In order to drive this modified input specialization process
then, we employ a mapping from the high-level type system
(such as XML Schema) to the abstract data system of CDTs.

10

15

25

30

35

40

45

50

55

60

65

6
This is a straight-forward extension of the known technolo
gies that do this for C structs, Java classes, and other physical
data types. Indeed, the abstract constructor/destructor model
provides a powerful target for Such a mapping because it more
easily captures both conjunctive (For example XML Sche
ma’s “sequence' model) and disjunctive (For example, XML
Schemas "choice” and “all” models) content. This is because
a given CDT may have several construction options (con
structors) which naturally model disjunction in the XML type
system.
Once the original XML processing program has been spe

cialized to the constructor/destructor model, The View con
cept may be then applied to further enhance performance with
additional programmer-provided optimization strategies (as
in the example of arrays vs. hashtables) or to retarget the
processing platform off of serialized XML data already
instantiated into preexisting business data structures.

FIG. 2 is a flowchart of mapping in the environment of FIG.
1. Referring to FIGS. 1 and 2, the method of representing
computer parameter data as disclosed herein includes gener
ating a mapping 506 of source data types 120 to preferred data
types 512, such that the preferred data types 512 have access
advantages over the source data types 120, as depicted at step
200, and receiving a markup application program 150 having
source data types 104, as shown at step 201. A view mapper
500 maps, using the generated mapping 506, the source data
type to a preferred data type, as depicted at step 202, and
applies the mapped preferred data type to occurrences of the
corresponding source data type, as shown at Step 203

Configurations herein therefore provide a method to opti
mize a program's runtime data representation, aggregation,
and extraction. The idea is that a compiler can accept a map
ping from an abstract interface used by the client code to the
actual target interface and automatically implant code that
works against the target interface when calls are made against
the abstract interface, eliminating the need for a translated
copy to be computed and constructed at runtime.

In addition to the standard input files, the compiler takes a
mapping descriptor from one interface to the other. This map
consists of a list of types to be replaced. For each type, new
code for data access and aggregation is specified. In lan
guages lacking type inference, the resulting type must also be
specified. After the compiler has built an in memory repre
sentation of an input program, and performed Zero or more
transformations, it applies this data rewriting pass. The com
piler walks over the in memory program representation,
checking each type reference, data access or data aggregation.
If the types of these actions are in the mapping, the compiler
substitutes the specified code. This process may be repeated
until the compiler finds no types to substitute (in other words,
reaching a fixpoint, when all changes have been performed).
At this point, the compiler can continue with Zero or more
transformations, such as optimizations or code generation.

FIG. 3 is a diagram of type mapping as disclosed herein.
Referring to FIG.3, a mapping 400 includes source data types
410 and target data types 420. The mapping may take any
Suitable implementation form, such as a list, array or other
sequence, however is shown as a digraph for exemplary pur
poses. Individual elements x, y and Z (402-1 . . . 402-3)
representing target, or source data types A, B and C
(410-1 ... 410-3, respectively) map to a corresponding target
data type Q 420, that provides access more appropriate or
Suited to the processing context at hand. The mappings may
be from one-many or many to one, usually depending on the
aggregation or Subdivision of the members of the respective
data types. The resulting replaced or substitution code 430
represents the mapped preferred data type Q.

US 7,752,223 B2
7

FIG. 4 is a flow diagram of rewriting a data access expres
sion according to configurations herein. Referring to FIG. 4.
an exemplary access expression 500 is defines a purchase
order shipping destination, and includes nested hierarchical
types A, B, C, D and E. Referring to type definitions 510,
definitions 510-2 and 510-3 are of type US address, which
includes a zip field. However, member E. 510-5 includes a
stand alone zip field. Accordingly, B 510-2 and C 510-3 are
redundant and unnecessary, since the Zip is included in E
510-5 and the ship to address is covered in D 510-4. The
replacement access statement 520 shows that A' replaces A.
and references B" and C", both no-ops, respectively, in light of
duplicate coverage already provided by more specific mem
bers D and E. Substitution member (field) C' includes D',
which references the original E510-5 field.

For example, if there is some code which iterates over an
array, checking for membership of some element, then an
inlining operation could eliminate a call to the function which
tests membership, but the array must still be created and each
element, in turn, checked. The fact that the code is written to
iterate over the array forces a linear Scan to find elements
taking time proportional to the number of elements (O(n)).
Element membership runs faster against hashtables (expected
constant time, O(1)), but no amount of inlining will transform
a linear Scan againstan array into a hashtable lookup. Instead,
the construction code, access code, and data aggregate types
must all be changed en masse.
The above example of rewriting array-iteration backed

membership tests as hashtable lookups is a simple example
where performance can be improved via different data orga
nization. However, the disclosed method is applicable beyond
arrays and hashtables to general data structures. Where there
are abstract data aggregation (setting elements in an array, for
the above example) and access (such as array iteration or
indexed element access, for the above example) these can be
remapped into aggregations with different properties (such as
adding entries to a hashtable, which permits fast lookup but
slow ordered access). In addition to enumerable collections of
data elements, construction and access of bound correlated
groupings of data (structs in C or data wrapper objects such as
JavaBeans in Java) can be remapped. For example, a standard
object example is a Cartesian Point, which contains an X and
Y coordinate.

type point={x: int:y: int;}

A graph may contain an array of Points, which can be drawn
on a screen. This data organization is convenient for program
mer because the logical connection between the X and Y
coordinates for each point is made clear. However, it also
incurs a memory and performance cost: each Point object
requires a memory representation and to access the coordi
nate data requires an indirection through the encapsulating
Point object. With the VDT, we can specify that getting the
coordinates for a point (a point.X and a point.y) should be
materialized as accesses into parallel integer arrays (one stor
ing the X coordinates and one storing the y coordinates),
which avoids ever creating real Point objects.
CDTs are constructed with a construct operation and the

member data is accessed via a deconstruction-match opera
tion. Streams are decomposed either by selecting a particular
stream-element or via iterate-ing (known as, in various tradi
tions, map, for each, fold, and reduce) over every element in
the stream.

Foran CDT-based program to interface efficiently with, for
example, an existing JavaObject based data structure, such a
program would need to be transformed, providing efficient

10

15

25

30

35

40

45

50

55

60

65

8
Java operations for the construct, deconstruction-match,
stream-element and iterate tasks. Iterate tasks may be trans
lated into code based on Java java. utiliterators or into
forO{ }statements iterating over Java arrays. Given such a
mapping, the compiler could walk an CDT based program
and transform each CDT reference to an equivalent Java data
aCCCSS,

Given an XML transforming program written in terms of
access against an abstract data aggregation and an extant
concrete instantiation of the data, we can apply views to
translate between the logical abstraction and the existing data
representation. This way, the compiler can generate efficient
access code without the need for runtime translations.

For example, the following code fragment depicting an
input-specialized program prints out the cost of all Items in a
Purchase Order:

match po with po(items list address total) in
foreach item in items list
do

match item with item(name, id., cost) in
print cost

done

The following code fragment depicting view definition maps
the abstract aggregations to a
pre-existing Java Beans object tree.

view po ::= com.example. PO
get items list from PO(po) ::= po.get items list()
view items list ::= java. util..List
foreach item in items list do ::=

java.util...Iterator i = items list.iterator();
while(i.hasNext() {
Item item = (Item)(i.next());

foreach item in items list done ::= }
view item ::= com.example.Item
get cost from item (item) ::= item...get cost()

By replacing the types and accessors for each aggregate
datatype with the specified types, we can run the input-spe
cialized program against existing data structures:

Java.util..List items list = po.get items list();
java.util...Iterator i = items list.iterator();
while(i.hasNext() {

Item item = (Item)(i.next());
int cost = item.get cost();
print cost;

FIGS. 5-7 are a flowchart of application program optimi
zation as disclosed herein. Referring to FIGS. 4-7, in an
exemplary arrangement, the method disclosed herein defines
a rule set 504 indicative of source data types 120, conditional
rule statements and corresponding preferred data types for
each of the conditional rule statements, as shown at step 300,
and invoking the rule set 504 for computing the alternate
access, as depicted at step 301. Using the rule set 504, the
view mapper 500 generates a mapping 506 of source data 120
types to preferred data types 512, such that the preferred data
types have access advantages over the Source data types, as
shown at step 302.

US 7,752,223 B2

Generating the map 506 includes identifying a source data
type 120 as a target data type 410 operable for alternate
access, as shown at step 303. This typically involves comput
ing at least one of access speed, access frequency, bounds
limit of accessible elements, inlining access expressions, con
junctive access, and disjunctive access, as discussed above,
shown at step 304. The result is determination of a preferred
data type responsive to the alternate access, as depicted at step
305. Computing alternate access may further include identi
fying at least one of aggregation operation and access opera
tions and modifying the operation according to the mapping,
as shown at step 306.
The resulting map 506 enumerates an association from the

target data type to the preferred data type, as shown at Step
307. Typical mapping types include at least one of an index,
hash table, list, tree, array, and static element, which include
the types that are replaceable with others of these types
depending on the type affording optimal access, as depicted at
step 308. In the exemplary arrangement, generating the map
ping further include generating a mapping descriptor from the
mapping, in which the descriptor is indicative of the target
Source type 120 and at least one corresponding preferred data
type 512 indicative of specified code, as depicted at step 309.

Following definition of the map 506, the view mapper 500
receives a markup application program 190 having Source
data types, as disclosed at step 310. In the exemplary arrange
ment, the markup application program 190 has already been
input specialized from an XML application program 150
including DOM derived data elements 104. Applying the
preferred data types further includes, as depicted at step 311,
parsing the application program to identify occurrences of the
target data type 120. The data element reference parser 502
maps, using the generated mapping 506, each of the occur
rences of the source data types 410 to a preferred data type
420, as shown at step 312.
The data element reference parser 502 then applies the

mapped preferred data type 420 to occurrences of the corre
sponding source data type 410, as depicted at step 313. This
involves, at step replacing occurrences of the target data type
with the corresponding preferred data type, as shown at Step
314. In the exemplary configuration, this may involves rewrit
ing the access expression 410 including the redundant data
types with the no-ops, as shown at step 315. At step 316, the
data element reference parser 316 substitutes, using the
descriptor, specified code from the descriptor for the parsed
target source data type 410, as depicted at step 316.

In the exemplary arrangement, mapping of Source data
types 410 to preferred data types 420 may further include
identifying redundant data types including information
already represented, as shown at Step 317, and replacing the
redundant data types with no-ops, as disclosed at step 318.

Rewriting the access expression may further includes inlin
ing the access expression, such that inlining replaces a func
tion call with a string Substitution operable to provide equiva
lent access to the preferred data type, as depicted at step 319.
The view mapper 500 repeats the parsing and the mapping
until each target data type 410 in the source has been mapped
to the corresponding preferred data type 420, as shown at Step
32O.

The disclosed configurations may result in large amounts
of new code, Some parts of which are repetitive, some parts of
which have dangling references, and many parts of which can
be optimized. Configurations herein optimize this code using
partial evaluation in order to bring the code size back downto
the approximate size it was prior to input specialization and
View mapping.

10

15

25

30

35

40

45

50

55

60

65

10
Those skilled in the art should readily appreciate that the

programs and methods for processing markup data using
alternate views of an input specialized data structure as
defined herein are deliverable to a processing device in many
forms, including but not limited to a) information perma
nently stored on non-writeable storage media such as ROM
devices, b) information alterably stored on writeable storage
media Such as floppy disks, magnetic tapes, CDs, RAM
devices, and other magnetic and optical media, or c) informa
tion conveyed to a computer through communication media,
for example using baseband signaling or broadband signaling
techniques, as in an electronic network Such as the Internet or
telephone modem lines. The disclosed method may be in the
form of an encoded set of processor based instructions for
performing the operations and methods discussed above.
Such delivery may be in the form of a computer program
product having a computer readable medium operable to
store computer program logic embodied in computer pro
gram code encoded thereon, for example. The operations and
methods may be implemented in a software executable object
or as a set of instructions embedded in a carrier wave. Alter
natively, the operations and methods disclosed herein may be
embodied in whole or in part using hardware components,
such as Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs), state machines,
controllers or other hardware components or devices, or a
combination of hardware, Software, and firmware compo
nentS.

While the system and method for processing markup data
using alternate views of an input specialized data structure
has been particularly shown and described with references to
embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made
therein without departing from the scope of the invention
encompassed by the appended claims.
What is claimed is:
1. A computer-implemented method for performing a

method of representing computer parameter data in which a
computer system performs operations comprising:

receiving a markup application program having Source
data types;

generating a mapping of the source data types to preferred
data types,
identifying a source data type as a target data type oper

able for alternate access;
determining a preferred data type responsive to the alter

nate acceSS,
enumerating an association from the target data type to

the preferred data type:
the preferred data types having access advantages over the

Source data types;
mapping, using the generated mapping, the Source data

types to the preferred data types;
applying the mapped preferred data type to occurrences of

the corresponding source data type;
parsing the application program to identify occurrences

of the target data type; and
replacing occurrences of the target data type with the

corresponding preferred data type to generate a view
optimized program.

2. The method of claim 1 wherein the mapping of source
data types to preferred data types further comprises:

identifying redundant data types including information
already represented;

replacing the redundant data types with no-ops; and
rewriting an access expression including the redundant

data types with the no-ops.

US 7,752,223 B2
11

3. The method of claim 2 wherein rewriting the access
expression further includes inlining the access expression,
inlining replacing a function call with a Substitution operable
to provide equivalent access to the preferred data type.

4. The method of claim 3 further comprising repeating the
parsing and the mapping until each target data type in the
Source has been mapped to the corresponding preferred data
type.

5. The method of claim 4 wherein mapping types include at
least one of:

an index;
a hash table;
a list, tree;
an array; and
a static element.
6. The method of claim 1 wherein generating the mapping

further comprises:
generating a mapping descriptor from the mapping, the

descriptor indicative of the target source type and at least
one corresponding preferred data type indicative of
specified code; and

Substituting, using the descriptor, specified code from the
descriptor for the identified target Source data type.

7. The method of claim 6 wherein identifying alternate
access further comprises computing at least one of access
speed, access frequency, bounds limit of accessible elements,
inlining access expressions, conjunctive access, disjunctive
aCCCSS,

8. The method of claim 7 wherein computing alternate
access further comprises identifying at least one of aggrega
tion operation and access operations and modifying the
operation according to the mapping.

9. The method of claim 8 further comprising
defining a rule set indicative of Source data types, condi

tional rule statements and corresponding preferred data
types for each of the conditional rule Statements; and

invoking the rule set for computing the alternate access.
10. The method of claim 1 wherein generating a mapping

of source data types further includes interpreting rules
according to an encoded set of instructions operable to inter
pret the rules in view of the input specialized data types.

11. The method of claim 1 wherein generating a mapping
further comprises using code file development to provide
enumeration of available preferred data types.

12. The method of claim 1 wherein the view optimized
program is then optimized via partial evaluation in order to
reduce code size down to a similar size as the markup appli
cation program.

13. The method of claim 1 wherein the preferred data types
differ structurally from corresponding source data types to
provide speedier access.

14. The method of claim 1 wherein the access advantages
are speed advantages.

15. A computer readable storage medium having computer
readable instructions thereon for representing computer
parameter data, the medium including instruction in which a
computer system performs operations comprising:

generating an input specialized definition of a set of data
elements;

parsing an application program to identify data element
references to data elements in the generated input spe
cialized definitions of data elements;

computing an input specialized definition corresponding to
each of the identified references data element refer
ences,

10

15

25

30

35

40

45

50

55

60

12
replacing the identified data element references with the

corresponding input specialized definition;
generating a mapping of Source data types in the replaced

input specialized definitions to preferred data types, the
preferred data types having access advantages over the
Source data types;

mapping, using the generated mapping, the Source data
type to the preferred data type; and

applying the mapped preferred data type to occurrences of
the corresponding source data type.

16. A view mapper comprising an a computer readable
storage medium having computer readable instructions
thereon for defining views of input specialized data struc
tures, the medium including instruction in which a computer
system performs operations comprising:

a set of rules for generating mapping of source data types to
preferred data types, the preferred data types having
access advantages over the source data types;

a parser operable to receive a markup application program
having source data types, the parser operable to:
map, using the generated mapping, the source data types

to the preferred data types; and
apply the mapped preferred data type to occurrences of

the corresponding Source data type, the view mapper
responsive to the rules and operable to generate the
map by:

identifying a source data type as a target data type oper
able for alternate access;

determining a preferred data type responsive to the alter
nate access; and

enumerating an association from the target data type to
the preferred data type.

17. A computer program product having a computer read
able medium operable to store computer program logic
embodied in computer program code encoded thereon for
defining views of input specialized data structures in which a
computer system performs operations comprising:

generating an input specialized definition of a set of data
elements;

parsing an application program to identify data element
references to data elements in the generated input spe
cialized definitions of data elements;

computing an input specialized definition corresponding to
each of the identified references data element refer
ences,

replacing the identified data element references with the
corresponding input specialized definition;

generating a mapping of Source data types in the replaced
input specialized definitions to preferred data types, the
preferred data types having access advantages over the
Source data types;

mapping, using the generated mapping, the Source data
type to the preferred data type; and

applying the mapped preferred data type to occurrences of
the corresponding source data type,

wherein the mapping of Source data types comprising:
identifying a source data type as a target data type oper

able for alternate access;
determining a preferred data type responsive to the alter

nate access; and
enumerating an association from the target data type to

the preferred data type.

