
USOO7752212B2

(12) United States Patent (10) Patent No.: US 7,752,212 B2
Heifets et al. (45) Date of Patent: *Jul. 6, 2010

(54) ORTHOGONAL INTEGRATION OF (58) Field of Classification Search None
DE-SERALIZATION INTO AN See application file for complete search history.
INTERPRETIVE VALIDATING XML PARSER (56) References Cited

(75) Inventors: Abraham Heifets, Cambridge, MA U.S. PATENT DOCUMENTS
Rii. NES G. EMS 6,789,252 B1* 9/2004 Burke et al. 717/1OO

yosney or rangeyasa, 2001/0047385 A1* 11/2001 Tuatini TO9,203
Cambridge, MA (US); Eric Perkins, 2006/0259898 A1* 11/2006 Reinhardt 717/124
Boston, MA (US)

* cited by examiner
(73) Assignee: stational styhis Primary Examiner Sathyanarayan Pannala

p s s (74) Attorney, Agent, or Firm—Cuenot, Forsythe & Kim,
(*) Notice: Subject to any disclaimer, the term of this LLC

patent is extended or adjusted under 35
U.S.C. 154(b) by 411 days. (57) ABSTRACT

A computer-implemented method of creating a schema spe
This patent is Subject to a terminal dis- cific parser for processing Extensible Markup Language
Ca10. (XML) documents can include receiving an XML schema

comprising a plurality of components, determining a hierar
(21) Appl. No.: 11/758,054 chy of the plurality of components of the XML schema, and
(22) Filed: U.S. 2007 creating an execution plan specifying a hierarchy of XML

9 processing instructions. Each XML processing instruction
O O can be a SSOC1ated W1th an OCCSS1 inct1On Of a (65) Prior Publication Data b i d with an XML p ing functi f

virtual machine that performs an XML document processing
US 2008/O104O95A1 May 1, 2008 task. The hierarchy of XML processing instructions can be

O O determined according to the hierarchy of components of the
Related U.S. Application Data XML schema. An instruction causing the virtual machine to

(60) Provisional application No. 60/803,912, filed on Jun. invoke a de-serialization module that extracts at least one item
5, 2006. of information from the XML document can be inserted into

the execution plan. The execution plan can be compiled into
(51) Int. Cl. a bytecode version of the execution plan that is interpretable

G06F 7/30 (2006.01) by the virtual machine. The bytecode version of the execution
GO6F 7/OO (2006.01) plan can be output.

(52) U.S. Cl. 707/755; 707/999.101;
717/104; 717/149

00

XML
Document

215
XML

Processing
Function 225
210

Execution Plan
(Bytecode)

125

De-Serialization
Module
220

20 Claims, 9 Drawing Sheets

Virtual Machine
205

Validation
Result

De-Serialized
Information

230

U.S. Patent Jul. 6, 2010 Sheet 1 of 9 US 7,752,212 B2

100

Execution Plan
XML Schema Analyzer (Bytecode)

105 125

De-Serialization
Module
220

F.G. 1

XML Virtual Machine
Document 205

215

XML Validation
Processing Result
Function 225

210
Execution Plan
(Bytecode)

125

De-Serialization -

De-Serialized
Information

230

FIG. 2

U.S. Patent Jul. 6, 2010 Sheet 2 of 9 US 7,752,212 B2

300
305

Y Instruction
Dispatch Overhead

Instructi XML Processing
SLC1Ol Instruction

Dispatch Overhead
Instruction

Dispatch Overhead Execution Dispatch Overhead
Time

Instruction

Dispatch Overhead
XML Processing

Instruction Instruction

Dispatch Overhead
Instruction

Dispatch Overhead Dispatch Overhead

FIG 3

U.S. Patent Jul. 6, 2010

Instruction / Function Name

READ TAGISMIXED

READ TAG WITH QNAME ISMIXED
ONAME

READ END TAGISMIXED

READ EMPTY

READ SIMPLE CONTENT TYPEID

READ EOF

Sheet 3 of 9 US 7,752,212 B2

Functionality

Read forward to the end of the next tag in either mixed mode
(allowing both text characters and elements) or element-only
mode. The tag to be consumed may be any start or end tag.
End tags are checked for well-formedness against matching or
corresponding Start tags.

Read forward to the end of the next tag in either mixed mode or
element-only mode. While scanning, validate that the name of
the tag matches the given QName. The input stream can be
directly compared against a fixed tag name. Symbol table
lookup is avoided since the identifier is already known.

Read forward to the end of the next tag in either mixed mode or
element-only mode. While Scanning, verify that the tag is an
end tag, and match the end tag lexically against the balancing
start tag. Compares the input buffer against a known string, in
this case the balancing start tag.

Read thc ncxt tag, which must bc ancind tag, and must match
the corresponding and balancing start tag. Validate that there is
no intervcning character content. This instruction functions
similar to READ END TAG, except that it also validates that
no character content was rcad.

Read character data forward to the end of the next tag, which
must be an end tag, and must match its balancing Start tag.
Validate the intervening content using the built-in simple type
handler given by the type ID. Content is handled by a type
specific scanner that can validate the content as scanned. The
end tag can be handled as in READ ENDTAG.

Read forward to the end of the file, matching the XML
production for TrailingMisc, e.g., checking well-formedness of
comments, processing-instructions, white-space, etc.

FIG. 4

U.S. Patent Jul. 6, 2010 Sheet 4 of 9 US 7,752,212 B2

Instruction / Function Name Functionality

ASSERT TAG QNAME Assert that the current tag matches one of the members of the
ALLOWEDONAMES={ONAMEID. set of allowed QNames.

ASSERT ATTRS Assert that the attributes of the current tag obey the collective
ALLOWEDATTRIBUTESET attribute occurrence constraint as represented with two sets, one
REQUIREDATTRIBUTESET for excluded attributes and one for required attributes.

Check the attributes of the current tag for the given attribute
QNamc, and if prescnt, validatc content using thc built-in
simple type handler given by the type ID.

FAIL Unconditional assertion failure.

FGS

600

PUSH NEW ALL OCCURRENCE SET Push a new, empty set onto the all occurrence set stack.

TEST AND SET ENTRY II) Add the given ID to the current set, asserting that the given ID
was not already present.

Pop the current set off of the set stack and assert that the current
POPASSERT SET REOD SET Sct is a SupcrSct of thc given required IDs to check 'all group”

occurrence constraints of XML schema.

PUSH COUNTER Push a new counter onto the stack and initialize to Zero.

ASSERT ATTR CONTENT ONAMEID
TYPEID

INCREMENT COUNTER Increment the top counter on the stack.

POP COUNTER Discard the top counter on the stack.

JUMP COUNTER LESS VALUE LABEL Branch to the given label if the top counter is less than the
given Value.

ASSERT COUNTER GREATER OR Assert that the top counter is greater or equal to the given
EQUAL VALUE minimum value. Otherwise, fail.

FIG. 6

U.S. Patent Jul. 6, 2010 Sheet 5 Of 9 US 7,752,212 B2

Instruction / Function Name Functionality

JUMP TAG NOT EQUAL ONAMEID Branch to the instruction at the given offset if the tag does not
OFFSET match the given QName.

JUMP UNCONDITIONAL OFFSET Branch unconditionally to the given offset.

Dispatch to the content model for the current start tag. The
content model is determined either by the instance value of
Xsi:type or by the Supplied default type ID. The actual type ID
is checked against the type cxclusions Sct
(EXCLUDEDTYPESET). The excluded types aggregate the
various constraints on the runtime type of the elements as
specified by the element declaration and the type definition for
the default type. If the resolved type is complex, the parser
dispatches to the handler for that complex type, and resumes
processing. If the resolved type is simple, the corresponding
built-in simple type handler is used. The NIL argument tells
the complex type which processing is allowed for Xsi:nil in this
COnteXt.

RETURN R control from the current complex type handler to its

CALL TYPE NIL DEFAULTTYPE
EXCLUDEDTYPESET

Check the attributes of the current tag for the XSinil attribute.
If prescnt and bcaring thc valuc truc, read thc ncxt tag as in
READ EMPTY, and return control from the current complex
type handler to its caller. In all other cases, continue execution.

RETURN IF NIL

FIG. 7

U.S. Patent Jul. 6, 2010 Sheet 6 of 9 US 7,752,212 B2

8 () O

Receive XML schema as input
805

ReadXML Schema
810

Identify components of the XML schema
815

Determine hierarchy of XML schema
820

Map components of XML schema to XML processing
instructions and/or XML processing function

825

Receive input specifying item(s) of information to be
extracted from XML documents

83 ()

Generate execution plan specifying XML processing
instructions corresponding to XML processing

functions and de-serialization instructions
835

Compile execution plan into bytecode formatted
execution plan

840

Output compiled execution plan
845

FG. 8

U.S. Patent Jul. 6, 2010 Sheet 7 Of 9 US 7,752,212 B2

00

<xsd:complexType name="ExampleType">
<XSd:Sequences

<XSd:choice>
<xsdielement name="Name1" type="Type 1"/>
<xsdielement name="Name2" type="Type2"/>

</XSd:choice>
<xsd:element name="Name3" type="Type3"/>

</XSd: Sequences
<xsd: attribute name="attrl" type="xsd:string" use="required"/>
<xsd: attribute name="attr2" type="xsd:string"/>
<xsd: attribute name="attr3" type="xsd:string"/>
</xsd:complexTypes

FIG 9

1000

<exampleType attrl="foo" attr2="bar" attr3="baz">
<Name2> </Name2>
<Name3> </Name3>

</exampleTypes

FIG 10

U.S. Patent Jul. 6, 2010 Sheet 8 of 9 US 7,752,212 B2

110

DESERIALIZATION: type=JAXRPC action=push-bean stub=ExampleTypeBeanStub
ASSERT ATTRS AllowedAttributeSets={attrl, attr2, attr3; RequiredAttributeSet={“attr1;
ASSERT ATTR CONTENT “attrl Xsd:string
DESERIALIZATION: type=JAXRPC action=set-simple-field stub=ExampleTypeBeanStub

field name='attrl-name’
ASSERT ATTR CONTENT attr2 xsd:string
DESERIALIZATION: type=JAXRPC action=set-simple-field stub=ExampleTypeBeanStub

fieldname='attr2-name’
ASSERT ATTR CONTENT “attrixsd:string
DESERIALIZATION: type='JAXRPC' action=set-simple-field stub=ExampleTypeBeanStub

fieldname='attra-name’
READ TAG QNAMES element-only Allowed Names={Namel, 'Name2}
JUMP TAG NOT EQUAL Namel 4
CALL TYPE non-nillable defaultType=Type1 AllowedTypes={Type1}
DESERIALIZATION: type=JAXRPC action=pop-bean-and-set-field stub=ExampleTypeBeanStub

fieldname=''Name 1-name’
JUMP UNCONDITIONAL3
CALL TYPE non-nillable defaultType=Type2 AllowedTypes={Type2;
DESERIALIZATION: type=JAXRPC action=pop-bean-and-set-field stub=ExampleTypeBeanStub

fieldname=''Name2-name’
READ TAG WITH QNAME element-only 'Name3
CALL TYPE non-nillable defaultType=Type3 AllowedTypes={Type3}
DESERIALIZATION: type=JAXRPC action=pop-bean-and-set-field stub=ExampleTypeBeanStub

fieldname=''Name3-name’
READ END TAG
RETURN

FIG 11

U.S. Patent Jul. 6, 2010 Sheet 9 Of 9 US 7,752,212 B2

Load execution plan
1205

LoadXML document
1210

Begin executing execution plan
1215

Select bytecode instruction from
execution plan

220

De-serialization
Instruction

XML Processing
Instruction processing instruction or de

serialization instruction?

Invoke function of virtual machine Query de-serializers of list of
associated with selected bytecode available de-scrializers

instruction 1250
1235

No serialization modules
perform requested de
Scrialization opcration? Further

bytecode instructions in
execution plan to interpret?

1240 Yes

Select de-Serializer that performs
requested de-Serialization operation
and invoke selected de-serializer

1260

Output validation result and
optionally supplemental Ignore de-serialization instruction

information 1265
1245

F.G. 12

US 7,752,212 B2
1.

ORTHOGONAL INTEGRATION OF
DE-SERALIZATION INTO AN

INTERPRETIVE VALIDATING XML PARSER

CROSS-REFERENCE TO RELATED 5
APPLICATIONS

This application claims the benefit of Provisional Patent
Application No. 60/803,912, filed in the United States Patent
and Trademark Office on Jun. 5, 2006, the entirety of which is 10
fully incorporated herein by reference.

RESERVATION OF RIGHTS IN COPYRIGHTED
MATERIAL

15

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent 20
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION
25

Extensible Markup Language (XML) refers to a flexible
type of data encoding. XML coded messages can be
exchanged between computer programs of a system without
concern over aspects of the system such as the type of pro
gramming language in which each respective computer pro- 30
gram is implemented, the type of information processing
systems involved, or the manner of message transmission.
XML allows virtually any component of a system, e.g., a
UNIX program, to communicate with any other component
of the system, e.g., a program written in the C programming 35
language for execution within a Windows-type of computing
environment.
XML schemas specify classes of allowable XML docu

ments, or XML messages, that a system will accept. In gen
eral, an “XML schema’ refers to a type of XML document 40
that expresses constraints on the structure and content of
XML documents that can be accepted by a given system.
Publishing an XML schema allows a system to define the type
of messages that the system is willing to accept. A validating
parser can analyze received XML documents with respect to 45
an XML schema and discard non-conforming or invalid XML
documents.

BRIEF SUMMARY OF THE INVENTION
50

The present invention relates to parsing, validating, and
de-Serializing Extensible Markup Language (XML) docu
ments. One embodiment of the present invention can include
a computer-implemented method of creating a schema spe
cific parser for processing XML documents. The method can 55
include receiving an XML schema comprising a plurality of
components, determining a hierarchy of the plurality of com
ponents of the XML Schema, and creating an execution plan
specifying a hierarchy of XML processing instructions. Each
of the XML processing instructions can be associated withan 60
XML processing function of a virtual machine that performs
a task of processing an XML document. The hierarchy of
XML processing instructions can be determined according to
the hierarchy of components of the XML schema. An instruc
tion that causes the virtual machine to invoke a de-Serializa- 65
tion module that extracts at least one item of information from
the XML document can be inserted into the execution plan.

2
The execution plan can be compiled into a bytecode version
of the execution plan that is interpretable by the virtual
machine. The bytecode version of the execution plan can be
output.

Another embodiment of the present invention can include
a computer-implemented method of processing an XML
document. The method can include loading an execution plan
into a virtual machine, wherein the virtual machine consists
of XML processing functions and the execution plan repre
sents an XML schema, and selectively invoking XML pro
cessing functions available within the virtual machine
according to the execution plan, wherein the XML processing
functions operate upon the XML document conforming to the
XML schema represented by the execution plan. A de-serial
ization module can be selectively invoked according to the
execution plan, wherein the de-Serialization module is con
figured as a plug-in of the virtual machine and de-serializes at
least one item of information from the XML document. The
de-Serialized item of information can be output.

Yet another embodiment of the present invention can
include a computer program product including a computer
usable medium having computer-usable code that, when
executed, causes a machine to perform the various steps and/
or functions described herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a system that auto
matically generates an execution plan for processing an
Extensible Markup Language (XML) document in accor
dance with one embodiment of the present invention.

FIG. 2 is a block diagram illustrating a system for process
ing an XML document in accordance with another embodi
ment of the present invention.

FIG. 3 is a block diagram illustrating functionality of a
virtual machine in accordance with another embodiment of
the present invention.

FIG. 4 is a table illustrating XML processing instructions
and associated functions of a virtual machine in accordance
with another embodiment of the present invention.

FIG. 5 is a table illustrating XML processing instructions
and associated functions of a virtual machine in accordance
with another embodiment of the present invention.

FIG. 6 is a table illustrating XML processing instructions
and associated functions of a virtual machine in accordance
with another embodiment of the present invention.

FIG. 7 is a table illustrating XML processing instructions
and associated functions of a virtual machine in accordance
with another embodiment of the present invention.

FIG. 8 is a flow chart illustrating a method of creating an
execution plan in accordance with another embodiment of the
present invention.

FIG.9 is an example of an XML schema fragment which is
useful for understanding embodiments of the present inven
tion.

FIG. 10 is an example of an XML document that is to be
processed according to the XML schema fragment of FIG.9.

FIG. 11 is an example of a fragment of an execution plan
that can be automatically generated by the system of FIG. 1 in
accordance with another embodiment of the present inven
tion.

FIG. 12 is a flow chart illustrating a method of operation of
a virtual machine in accordance with another embodiment of
the present invention.

US 7,752,212 B2
3

DETAILED DESCRIPTION OF THE INVENTION

As will be appreciated by one skilled in the art, the present
invention may be embodied as a method, system, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an entirely
Software embodiment, including firmware, resident Software,
micro-code, etc., or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit.” “module.” or “system.”

Furthermore, the invention may take the form of a com
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by, or in connection with, a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer-readable medium can be any
apparatus that can contain or store the program for use by, or
in connection with, the instruction execution system, appara
tus, or device.
Any Suitable computer-usable or computer-readable

medium may be utilized. For example, the medium can
include, but is not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device), or a propagation medium. A non-exhaustive
list of exemplary computer-readable media can include an
electrical connection having one or more wires, an optical
fiber, magnetic storage devices such as magnetic tape, a
removable computer diskette, a portable computer diskette, a
hard disk, a rigid magnetic disk, an optical storage medium,
Such as an optical disk including a compact disk-read only
memory (CD-ROM), a compact disk-read/write (CD-R/W),
or a DVD, or a semiconductor or solid state memory includ
ing, but not limited to, a random access memory (RAM), a
read-only memory (ROM), or an erasable programmable
read-only memory (EPROM or Flash memory).

In another aspect, the computer-usable or computer-read
able medium can be paper or another Suitable medium upon
which the program is printed, as the program can be electroni
cally captured, via, for instance, optical scanning of the paper
or other medium, then compiled, interpreted, or otherwise
processed in a suitable manner, if necessary, and then stored
in a computer memory.

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro
gramming language Such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera
tions of the present invention may also be written in conven
tional procedural programming languages. Such as the “C”
programming language or similar programming languages,
or in functional programming languages, such as Haskell,
Standard Meta Language (SML) or other similar program
ming languages. The program code may execute entirely on
the user's computer, partly on the user's computer, as a stand
alone software package, partly on the user's computer and
partly on a remote computer, or entirely on the remote com
puter or server. In the latter scenario, the remote computer
may be connected to the user's computer through a local area
network (LAN) or a wide area network (WAN), or the con
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor

10

15

25

30

35

40

45

50

55

60

65

4
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the cur
rently available types of network adapters.
The present invention is described below with reference to

flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus
trations and/or block diagrams, can be implemented by com
puter program instructions. These computer program instruc
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, Such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instruction means which implement the func
tion/act specified in the flowchart and/or block diagram block
or blocks.
The computer program instructions may also be loaded

onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
The embodiments disclosed herein relate to processing

Extensible Markup Language (XML) documents. A virtual
machine for use in parsing, validating, and de-serializing
XML documents can be provided. The virtual machine can be
configured solely for the purpose and use of processing XML
documents. The virtual machine can be configured to utilize
one or more de-serialization modules to de-serialize or
extract selected items of information from received XML
documents. The virtual machine can be configured such that
de-Serialization operations are orthogonal to the parsing and/
or validation tasks. Accordingly, the de-serialization modules
can be “pluggable' components of the virtual machine that
are independent of XML document processing functions.
This permits users to create and provide de-serialization mod
ules as needed without having to alter the underlying func
tionality of the virtual machine or associated parts of the
execution plan executed or interpreted by the virtual machine.

FIG. 1 is a block diagram illustrating a system 100 that can
automatically generate an execution plan 125 in accordance
with one embodiment of the present invention. The execution
plan 125, when executed by an appropriate virtual machine
(not shown), can implement a schema specific parser that can
process XML documents and ensure that Such documents

US 7,752,212 B2
5

conform to a given XML schema. As shown, the system 100
can include an XML schema analyzer 105. In general, the
XML schema analyzer 105, given an XML schema, such as
XML schema 115, as input, can generate and output an execu
tion plan 125.

In one embodiment, the execution plan 125 can be a hier
archically ordered listing of XML processing instructions
that correspond to XML processing functions that are avail
able within a virtual machine. The execution plan 125 can be
compiled into bytecode that is interpretable by the virtual
machine. In this sense, the execution plan 125 can be consid
ered to be a bytecode program that is executed by the virtual
machine.
As used herein, the term “bytecode' can refer to machine

independent code, which may be binary code, that can be
interpreted or executed by a virtual machine. Typically, a
program Written in a particular programming language is
compiled into a bytecode program. The phrase “virtual
machine, as used herein, can refer to a self-contained oper
ating environment that behaves like an independent computer
system. Virtual machines also are referred to as “interpreters'
or “runtime environments. Typically a virtual machine oper
ates in conjunction with, yet independently of a host operat
ing system. Virtual machines are configured to execute byte
code programs. Each instruction in a bytecode program can
reference a particular function embedded or otherwise
included within the virtual machine. As each bytecode
instruction is executed, the functionality within the virtual
machine that maps to, or is associated with, the executed
bytecode instruction can be invoked or executed.

In one embodiment of the present invention, a virtual
machine can be configured to include a plurality of functions
for XML document processing called XML processing func
tions (functions). Each function can be written at a high level
of granularity to perform a particular function that is needed
or related to processing an XML document with respect to a
given XML schema, XML Schema component and/or ele
ment. For example, a single function can perform an XML
processing function that, if written in a conventional high
level programming language Such as C or Java, would require
possibly hundreds of lines of code. In this regard, the XML
processing functions are "chunky' as each replaces a large
number of instructions in a conventional high level program
ming language. The bytecode instructions of the execution
plan 125 can map or indicate particular ones of the functions
of the virtual machine to invoke. In one embodiment, the
virtual machine can be limited to only offer or include such
XML processing functions and no other functionality.

The XML schema analyzer 105 can receive the XML
schema 115 as input. In general, the XML schema analyzer
105 can analyze the XML schema 115 on a component-by
component basis and determine the hierarchy of the XML
schema 115. For example, the XML schema analyzer 105 can
determine the arrangement of components of the XML
schema 115 as well as the structure of such components. In
one embodiment, the XML schema analyzer 105 can perform
a mapping of components of the XML schema 115 to avail
able functions of the virtual machine. Through this mapping
process, an execution plan specifying a hierarchy of XML
processing instructions referencing the functions can be gen
erated. The hierarchy of XML processing instructions, and
therefore functions, can mirror the hierarchy of the XML
schema 115, thereby specifying the allowable structure and
form of XML documents.

Conventional XML parser generators typically translate an
XML schema into an abstract form called "Deterministic
Finite Automata' (DFA) or other grammars. Such grammars

10

15

25

30

35

40

45

50

55

60

65

6
are a collection of States, with transitions between each state
specified on different possible inputs. Such grammars are a
representation of the XML schema that does not explicitly
encode any portion of the XML Schema semantics.

In accordance with the embodiments disclosed herein, a
substantial portion, if not all, of the execution plan 125 can be
mapped directly to the XML schema components. That is, the
execution plan 125 can explicitly encode one or more por
tions or all of the XML Schema 115 in the form of XML
processing instructions that, when converted to bytecode
instructions, invoke the functions of the virtual machine. The
XML schema analyzer 105 can compile the execution plan to
produce a bytecode implementation of the execution plan
125.
The system 100 further can include one or more de-serial

ization modules 220. In one embodiment, the de-serialization
modules 220 can analyze the XML schema 115 either prior to
the XML schema analyzer 105 or as requested by the XML
schema analyzer 105. The de-serialization module 220 can
insert de-Serialization instructions into the execution plan that
is being generated or instruct the XML schema analyzer 105
how to insert Such instructions. Each de-Serialization module
220 can include this “compile time functionality as well as
functionality to be described herein in greater detail with
respect to runtime.
The compile time functionality of the de-serialization

modules 220 can write new instructions, e.g., de-serialization
instructions, into the execution plan in an automated manner.
In one embodiment, the behavior of the de-serialization mod
ule 220 can be configured through an interface by a user. Once
specified, the behavior of the de-serialization modules 220
can be persisted.

In one embodiment, the de-serialization modules 220 can
process and annotate the XML schema 115. The annotated
XML schema 115 can be provided to the XML schema ana
lyzer 105. The annotations can indicate how de-serialization
instructions are to be inserted into the execution plan 125
being generated for each respective de-serialization module
220. In another embodiment, the XML schema analyzer 105
can query the de-serialization modules 220 regarding differ
ent portions of the XML schema 115 being analyzed.
Whether through querying or annotations, the de-Serializa

tion modules 220 can specify, for example, for "Name1
element Start tags call the
DESERIALIZATION X NAME1 BEGIN' de-serializa
tion function of de-serialization module X. For "Name2
element Start tags call the
“DESERIALIZATION X NAME2 BEGIN’ de-serializa
tion function of de-serialization module X. For "Name3”
element start tags, no de-Serialization function is available.
Accordingly, in the case of Name3, no de-serialization
instructions would be added to the execution plan 125 and no
processing beyond parsing and/or validation would occur.

Consider the case where a de-serialization module 220 is a
JAX-RPC de-serialization module. The JAX-RPC de-serial
ization module can process the XML schema 115 and provide
information to the XML schema analyzer 105 specifying how
to handle de-serialization with respect to the JAX-RPC de
serialization module, e.g., at runtime. The de-serialization
module 220 need only be designed one time per de-serializa
tion scheme, but still can function across all XML Schemas.

In another embodiment, each de-serialization module 220
can be implemented as two individual modules where one
module embodies the compile time functionality and the
other module embodies the runtime functionality. The runt
ime functionality effectively understands de-serialization
instructions inserted into the execution plan 125. In such an

US 7,752,212 B2
7

embodiment, the runtime module need only be distributed or
deployed to runtime locations.

In another embodiment, the XML schema analyzer 105 can
include a user interface (not shown). The user interface can be
any of a variety of user interfaces, including graphical or 5
programmatic, through which a user or developer can provide
user input indicating the particular data to be extracted from
a received XML document. For example, the user can select
and/or annotate the XML schema 115 to specify one or more
items of information to be extracted from XML documents. 10
In one embodiment, having loaded and analyzed the XML
schema 115, a user can specify portions or sections of the
XML schema 115 that corresponds to the items of informa
tion that the user would like extracted from a received XML
document. 15
The XML schema analyzer 105, responsive to receiving

the user-specified items of information to be extracted, can
insert an instruction within the execution plan 125 being
generated. The instruction can be a de-serialization instruc
tion that causes the virtual machine to invoke a de-Serializa- 20
tion module. As used herein, “serialization' can refer to the
process of converting the State of an object into a form that can
be persisted or transported. The complement of serialization
is "de-serialization.” which can refer to converting a stream
into an object. 25

FIG. 2 is a block diagram illustrating a system 200 for
validating an XML document in accordance with another
embodiment of the present invention. The system 200 can
include a virtual machine 205. The virtual machine 205 can
include one or more functions 210. Each of the functions 210 30
can be associated with a given source code instruction, e.g.,
an XML processing instruction, or bytecode instruction. In
one embodiment, the virtual machine 205 can be configured
to only include functionality relating to XML document pro
cessing, e.g., parsing, validation, and/or de-serialization. 35
Accordingly, each of the functions 210 can relate solely to
XML document processing and perform Such a function. A
virtual machine configured in this manner has limited func
tionality, but increased performance in terms of XML docu
ment processing. In another embodiment, each of the func- 40
tions 210 included in the virtual machine 205 can be native
code implementations. That is, each of the functions 210
included as part of the virtual machine 205 can be available
for execution by the virtual machine 205 in the form of
compiled machine code. 45

In illustration of the XML processing functionality of the
virtual machine 205, one function 210 can read a section of
the XML document being processed. Another function 210
can check attributes allowed for that section. A “component.”
as used herein, can refer to a component as defined in section 50
3 of “XML Schema Part 1: Structures Second Edition, W3C.
and XML Schema Part 2: Datatypes Second Edition.” which
are incorporated herein by reference.

In one embodiment, the functions 210 of the virtual
machine 205 can be organized or combined to form handlers. 55
As such, each handler can include one or more functions. For
example, a handler that will be tasked with, among other
things, validating a date can include a function for validating
dates. The function may or may not be passed one or more
parameters that can be extracted from the XML schema. 60
Other functions can be included within different handlers as
may be required. In another embodiment, a handler can refer
to a collection of one or more functions that collectively
process a component. Without such “coarse-grained proce
dures and/or handlers, in reference to both handlers and func- 65
tions, processing an XML document would be implemented
using much lower level primitives, e.g., on the order of using

8
many individual programming statements rather than func
tions 210 directed to the component and/or element level of
an XML document.

As shown, the virtual machine 205 also can include one or
more de-serialization modules 220. If the de-serialization
modules 220 are implemented as separate compile time and
runtime modules, then the de-serialization modules 220
depicted in FIG. 2 can be runtime versions of the de-serial
ization modules, e.g., de-serialization modules that under
stand de-Serialization bytecode instructions. The de-Serial
ization modules 220 can be incorporated into the virtual
machine 205 as plug-in type functions. In one embodiment,
the de-serialization modules 220 can be machine code func
tions. By incorporating the de-serialization modules 220 into
the virtual machine 205 through a plug-in architecture, the
de-serialization modules 220 can be provided by third-par
ties, e.g., users or other vendors for use with the virtual
machine 205. In this manner, de-serialization modules 220
can be independent of the virtual machine 205 thereby allow
ing the addition or removal of de-serialization modules to or
from the collection of de-serialization modules 220 that are
accessible by the virtual machine 205. Each de-serialization
module 220 can be registered with the virtual machine 205.

In one embodiment, the de-serialization modules 220 can
be implemented as a generic extension framework. In this
regard, the de-serialization modules 220 can be configured to
perform further processing beyond parsing, validation, and/
or de-serialization that may be related to the XML schema.

In any case, this independence from the virtual machine
205 allows further de-serialization modules 220 to be added
that are suited for de-serializing or extracting a particular type
or item of information from an XML document. One de
serialization module 220, for example, can be configured to
de-Serialize shipping information. Another de-serialization
module 220 can be configured to de-serialize payment infor
mation. Further, each de-serialization module 220 can be
configured to output the de-serialized information 230 in any
suitable format.

For example, one de-serialization module 220 can output
de-serialized information 230 in the form of Java beans, while
another outputs de-serialized information 230 as a Document
Object Model (DOM) tree, as Simple Application Program
ming Interface (API) for XML (SAX) events, characters
including an XPath selection, or according to a custom
datatype definition. The particular functionality of each de
serialization module 220 in terms of the data that is extracted
from the XML document and the format of the de-serialized
data that is output by the de-serialization module 220 can be
driven by the particular system(s) to which each de-serializa
tion module 220 is providing data.

It should be appreciated that while the de-serialization
modules 220 have been depicted as being external to the
virtual machine 205, the de-serialization modules 220 may be
viewed as being part of the virtual machine 205. The de
serialization modules 220 largely are depicted external to the
virtual machine 205 as each can function as a plug-in that is
independent of the virtual machine 205 and functionality
provided to the virtual machine 205.
The virtual machine 205 can load an XML document 215

as well as the execution plan 125. Loading the execution plan
125 into the virtual machine 205, effectively, results in a
schema specific parser that can process the XML document
215 in accordance with a particular XML schema, e.g., the
XML schema 115 of FIG. 1 from which the execution plan
125 was generated. It further should be appreciated that the
virtual machine 205 effectively can be re-configured to

US 7,752,212 B2
9

implement a different schema specific parser simply by load
ing an execution plan derived from a different XML schema.
Upon loading and executing the execution plan 125, the

virtual machine 205 effectively is configured as a schema
specific parser. This configuration can include a scanning,
e.g., parsing, layer that can read XML document 215 byte
by-byte as well as a validation layer. A third layer, e.g., a
de-serialization layer, also can be included. The functions 210
can implement the layers such that when executed, the layers
can be intermingled. In illustration, the parsing functionality
can be mixed with the validation functionality such that when
a component or other section of an XML document is parsed,
as soon as enough information is scanned to determine
whether the component or section is valid or invalid, as the
case may be, the virtual machine 205 can make a determina
tion at that moment and output a validation result 225. Fur
ther, portions of the XML document can be de-serialized
during the parsing and/or validation process or at the conclu
sion of a parsing or validation operation for a given section of
the XML document 215. The validation result 225 can indi
cate whether the XML document 215 is valid or invalid.

For example, a simple content component can be read Such
as a date. The validation layer can determine whether the data
is of the correct type prior to proceeding, or scanning, a next
component. If not a date, for example, the virtual machine
205, in executing the execution plan 125, can indicate that the
XML document 215 is invalid immediately upon determining
the nonconforming component or element rather than con
tinue validation processing until an end tag is encountered.
As noted, the functions 210 of the virtual machine 205 can

be configured so that each function, or selected functions,
implement both the scanning and validation layers. This
allows data items such as dates or integers to be scanned and
validated. In other words, after reading each character and
checking that the characters that were read are legal XML
data characters, the functions further can be configured to
Verify that the data item is legal, e.g., a legal date or integer
character, in the read location. The data can be stored for
validation. A de-serialization function further can be applied
to the characters prior to moving to a next portion of data for
processing.

For example, consider a decimal that the XML schema
restricts to be less than 100. A decimal starting with "2 can
continue only with 0-9, dot (“ ”), or finish. Accordingly, the
function 210 need not determine that the next character is any
valid character, but one of the enumerated choices noted
above. If, for example, the next character is “6” the function
210 can determine that the decimal is now "26.” When the end
of the decimal is identified, a check can be performed to
determine whether the decimal is less than 100. As such, the
data does not have to be revisited after parsing for validation
to be performed. A separate pass of the data need not be
performed solely for validation. The same sort of processing
can be performed for dates. With respect to tag-reading, func
tions can perform similar functionality when tag names are
not only valid XML name characters, but also are valid for
exactly that tag name.
As bytecode instructions of the execution plan 125 are

executed or interpreted by the virtual machine 205, functions
210 of the virtual machine 205 associated with the bytecode
instructions can be executed or invoked. Similarly, as a par
ticular de-serialization instruction is executed, the virtual
machine 205 can select the de-serialization module 220 that
offers the functionality needed to de-serialize the information
indicated by the de-serialization instruction.

In one embodiment, as a de-serialization instruction is
read, the virtual machine 205 can identify the particular type

10

15

25

30

35

40

45

50

55

60

65

10
of information to be extracted from the XML document, e.g.,
identify attributes relating to the de-serialization function to
be performed. The virtual machine can begin querying each
de-serialization module 220 on a list of de-serialization mod
ules 220 available to the virtual machine 205, e.g., each reg
istered de-serialization module 220, to determine whether
one of the de-serialization modules 220 does perform the
needed de-serialization operation. When the virtual machine
205 determines that one of the de-serialization modules 220
does perform the needed de-serialization operation, the vir
tual machine 205 can invoke that de-serialization module
220. In another embodiment, one or more de-serialization
schemes can be built into the virtual machine 205 such as
SAX or another known de-serialization scheme.

In illustration, when the virtual machine 205 interprets the
execution plan 125 and encounters a de-serialization byte
code instruction, the virtual machine 205 may not know how
to interpret Such an instruction. Accordingly, the virtual
machine 205 can query the de-serialization modules 220,
effectively asking the de-serialization modules 220 to execute
the de-serialization bytecode instruction. Any needed infor
mation needed by the de-serialization module 220 can be
obtained from the bytecode de-serialization instruction and
passed from the virtual machine 205 to the de-serialization
module 220.
As noted, the plug-in architecture which incorporates the

de-serialization modules 220 into the virtual machine 205
allows any de-serialization module to be added or removed at
runtime of the virtual machine 205 without changing the
execution plan 125 other than by adding and/or removing
de-Serialization instructions or bytecodes. In one embodi
ment, because de-serialization modules 220 can be queried
for data extraction capabilities, rather than according to a
reference to a particular de-serialization module 220, one
de-serialization module 220 can be replaced with another
without modification of the execution plan 125. In the event
that no de-serialization module 220 in the list handles the
de-serialization operation needed, the virtual machine 205
can ignore the de-serialization instruction and proceed to the
next bytecode instruction of the execution plan 125 for inter
pretation.

In one embodiment, each de-serialization bytecode
instruction can operate on the current piece of data. In illus
tration, if a begin-element tag has just been validated, de
serialization bytecode instructions that throw SAX or SAX
like events can be inserted immediately after the bytecode
instruction that validates the piece of data. The events can
pass through the name of the element and attribute-name/
value pairs. In another embodiment, the de-serialization byte
code instructions inserted can cause a new Java object to be
constructed to represent the element corresponding to the
begin tag.

It should be appreciated that one de-serialization instruc
tion can be inserted immediately following a given XML
processing instruction or multiple de-Serialization instruc
tions can be inserted immediately following a given XML
processing instruction. When more than one de-serialization
instruction immediately follows a given XML processing
instruction, each Such de-serialization instruction can invoke
a different de-serialization operation and/or module. The de
serialization modules and operations invoked by each respec
tive de-serialization instruction, when both immediately fol
lowing the same XML processing instruction of the execution
plan, can operate upon the same input data, and produce
different results, whether extracting different types of infor
mation from the input data, producing a different type of
output formatting, or the like.

US 7,752,212 B2
11

FIG. 3 is a block diagram 300 illustrating the functionality
of a virtual machine in accordance with another embodiment
of the present invention. Block 305 illustrates virtual machine
execution of a conventional bytecode program with low level
primitives as instructions. Between each instruction, dispatch
overhead is incurred which represents the time needed for the
virtual machine to determine the appropriate virtual machine
function for a given bytecode instruction.

Block 310 illustrates virtual machine execution of an
execution plan in accordance with the embodiments dis
closed herein. While dispatch overhead still occurs between
each XML processing instruction (or resulting bytecode
instruction after compilation), the course-grained nature of
the functions executed for each respective bytecode instruc
tion serves to reduce the dispatch overhead relative to the
amount of work performed. Block 310 illustrates that when
fewer instructions, e.g., course-grained instructions, are used
to accomplish an amount of work that otherwise would
require many more bytecode instructions, dispatch overhead
decreases and operational efficiency increases. More work is
performed per unit of dispatch overhead. Moreover, as the
range of operations Supported by the virtual machine is lim
ited to XML document processing, the virtual machine imple
mentation can be smaller and more efficient. In other words,
if a given amount of work performed by two simple instruc
tions can be performed by a single, more complex instruction,
the dispatch overhead is reduced, resulting in a more efficient
system.

FIGS. 4-7, taken collectively, illustrate a variety of instruc
tions that can be included within execution plans and corre
sponding functions, referenced by the XML processing
instructions, that can be included within the virtual machine.
The functions of FIGS. 4-7 represent basic primitives of XML
scanning and validation and, as such, are designed to be
coarse-gained. The XML processing instructions are shown
in capital letters while parameters of the XML processing
instructions are indicated in italics.

It should be appreciated that qualified names can be repre
sented in a number of ways Such as character Strings or
symbol table ID numbers. Sets can be represented as bit
vectors, linked lists, arrays, hash-maps, or the like. Control
flow may be represented with any of a variety of common
techniques such as jumps to offsets, 'gotos' to labels, or
branching constructs such as if/then/else, Switch, choose/
when/otherwise, or whilefolofend. Allowed and forbidden
may be interchangeable representations, e.g., through set
negation. The functions illustrated herein are intended to
demonstrate the high level of granularity used, e.g., “chunky
functions, as compared to conventional techniques that utilize
low level code. Other alternative logic types or constructs
similar to those noted above can be used in place of those
illustrated in the tables.

FIG. 4 is a table 400 illustrating XML processing instruc
tions and associated functions of a virtual machine configured
in accordance with another embodiment of the present inven
tion. As noted, the XML schema analyzer of FIG. 1 can create
an execution plan including XML processing instructions
that reference the functions of the virtual machine. The order
and hierarchy in which the functions are referenced can be
determined according to the hierarchy and/or structure of the
XML Schema being analyzed.

Table 400 illustrates various functions that read compo
nents and/or sections of an XML document into the virtual
machine. Portions of the XML document being validated can
be read into the virtual machine on a byte-by-byte level.
Decisions affecting execution of the Scanning, validation,
and/or de-serialization can occur on a component-by-compo

10

15

25

30

35

40

45

50

55

60

65

12
nent level. In this regard, one or more of the functions can be
combined, or called, to parse and/or validate a particular type
of component of the XML Schema, e.g., simple, complex,
mixed, etc. It should be appreciated that, with respect to the
descriptions of the various functions, the term “tag” can refer
to any start or end tag, including all of the attributes of a tag.
Empty element tags can be treated as if the empty element
tags have been expressed in an equivalent syntax using sepa
rate start and end tags, with no intervening content.

FIG. 5 is a table 500 illustrating XML processing instruc
tions and associated functions of a virtual machine configured
in accordance with another embodiment of the present inven
tion. The functions listed in table 500 illustrate functions for
checking that a section, once read, matches the type of the
component to which the section is to correspond per the XML
schema. For example, an open tag must contain the attributes
and child elements specified by the declaration type of the
component of the tag. A close tag must match the matching
open component tag. The functions listed in table 500 check
that a component or section can legally occur in the current
XML document position and that the section is the correct
type.

FIG. 6 is a table 600 illustrating XML processing instruc
tions and associated functions of a virtual machine configured
in accordance with another embodiment of the present inven
tion. The functions listed in table 600 manipulate counters
that can be used in counting and/or otherwise dealing with
Sub-components. Since child elements can be constrained to
have a minimum and/or a maximum number of occurrences
within a component, the functions listed in table 600 provide
mechanisms for monitoring the number of Such occurrences
and comparing the occurrences with the minimum and/or
maximum number of occurrences specified in the XML
schema.

"All group’ occurrence constraints in an XML Schema
allow one to specify that an element needs to include several
different children. If any one of the needed children is miss
ing, validation of the XML document fails. This aspect of
XML is useful, for example, for representing records such as
C structs and/or Java objects, where values are accessed by
named fields and are not ordered.

In one embodiment, when validating an input, a set corre
sponding to the all-group constraint can be maintained within
the virtual machine. The set may be empty if the XML schema
does not use all-group constraints. When a new child is
encountered in an all-group constraint, the occurrence of the
child is marked or recorded in the set corresponding to the
all-group constraint. When the end of the portion defining the
all-group constraint is encountered in the XML document
being validated, a check can be performed to ensure that each
required child of the all-group constraint was encountered,
and thus marked within the set corresponding to the all-group
constraint. If a given required child is not encountered, the
XML document fails. Since all-group constraints can be
nested, a stack of such sets can be used. When a new all-group
constraint is encountered, a new set is pushed onto the stack.
The set can be popped off of the stack to return to the previous
constraint.

FIG. 7 is a table 700 illustrating XML processing instruc
tions and associated functions of a virtual machine configured
in accordance with another embodiment of the present inven
tion. The functions listed in table 700 provide mechanisms for
flow control. The functions of table 700 allow the appropriate
function to be located for processing a next component type
or section of an XML document being validated.

FIG. 8 is a flow chart illustrating a method 800 of creating
an execution plan in accordance with another embodiment of

US 7,752,212 B2
13

the present invention. The method 800 can be implemented
by an XML schema analyzer as described with reference to
FIG. 1. Accordingly, in step 805, the XML schema analyzer
can receive an XML schema as input. The XML schema
analyzer can load the XML schema.

In step 810, the XML schema analyzer can read the XML
schema. In step 815, the XML schema analyzer can identify
the various components of the XML schema. In step 820, the
XML schema analyzer can determine a hierarchy of the XML
schema. The hierarchy of the XML schema reflects the struc
ture of the XML schema, as well as the structure of the XML
documents to be validated against the XML schema. For
example, the nesting of components and Sub-components can
be determined.

In step 825, the components of the XML schema can be
mapped to a plurality of bytecode instructions, e.g., XML
processing instructions, and therefore functions of the virtual
machine. In step 830, an input specifying one or more items of
data to be de-serialized from an XML document can be
received. The input further can specify de-serialization
instructions in addition to items of information to be
extracted. In step 835, an execution plan specifying a hierar
chy of XML processing instructions can be generated. Each
of the instructions can reference a particular function of the
virtual machine. The hierarchy of instructions specified by
the execution plan can match or correspond to the hierarchy
of components of the XML schema. Within the execution
plan, one or more de-serialization instructions can be inserted
according to which items of information are to be extracted
from XML documents. As noted, each de-serialization
instruction can indicate the particular items of information to
be extracted, e.g., component type(s), an output format of the
extracted data, and/or a particular de-serialization module to
be used.

For example, in one embodiment, a de-serialization
instruction can specify a de-serialization module by name.
Multiple de-serialization modules, however, may answer by
that name. The de-serialization instruction further can specify
which instruction in the named de-Serialization module is to
be called and for what purpose. The de-serialization instruc
tion can specify that for “Name1 elements, call the SAX
module for “new element found.” In that case, the compiler
can place a de-serialization instruction after the location in
the execution plan where it is proved that a new "Name1
element is found. The inserted instruction can cause the Vir
tual machine to call some appropriate function in the de
serialization module such as “SAX NEW ELEMENT' or
the like based upon the name of the de-serialization instruc
tion. The function can be passed the new element kind of
information, e.g., the name of the new element. The called
function in the de-serialization module can pass back a token,
for example, when attributes on the element are located. In
Some implementations, the token can be a pointer to a data
structure that is being used to de-serialize the data.

In step 840, the execution plan can be compiled into a
bytecode program or version of the execution plan. In com
piling the execution plan, any dependent references can be
resolved. Various parameters needed by particular functions,
e.g., minimum and/or maximum component occurrences, can
be determined. In this manner, the instructions can be param
eterized according to the components of the XML Schema.
The parameterized execution plan can be converted into byte
code. Parameters of the bytecode instructions can be passed
to the function(s) within the virtual machine when the execu
tion plan is executed. In step 845, the parser-generator can
output the compiled execution plan. The execution plan rep

10

15

25

30

35

40

45

50

55

60

65

14
resents the XML schema. As noted, one or more portions of
the execution plan can correspond directly to one or more
portions of the XML schema.

FIG. 9 is an example of an XML schema fragment 900
which is useful for understanding the embodiments disclosed
herein. The XML schema fragment 900 defines a component,
and more particularly, a complex type component “Example
Type.” The ExampleType component has three attributes
denoted as “attr1.” “attr2, and “attr3 as well as a sequence
of several components, e.g., Sub-components. The sequence
of sub-components can include either one of “Name 1 or
“Name2 followed by “Name3.”

FIG.9 further illustrates an embodiment in which the XML
schema fragment 900 has been input into an XML schema
analyzer as illustrated in FIG.1. In this example, a user input
has been received indicating that either "Name 1” or
“Name2, e.g., whichever is specified by the XML document,
is to be extracted or de-serialized. The XML schema analyzer
can insert a de-serialization instruction into the execution
plan that will cause the virtual machine to query the available
de-serializers to determine whether one of the de-serializers
does extract the “Name 1 or “Name2 sub-components.
Further, as noted, the user-input can specify a desired output
format for the extracted information which can be part of the
query performed by the virtual machine when attempting to
locate a de-serializer.

FIG. 10 is an example of an XML document 1000 that is to
be validated against the XML Schema fragment pictured in
FIG. 9. The XML document 1000 includes a sequence of
elements including “Name2 followed by “Name3”. The
XML document 1000 further specifies values for each of
attributes attr1, attr2, and attr3.

FIG. 11 is an example of a fragment of an execution plan
1100 that can be automatically generated by the system of
FIG. 1 in accordance with another embodiment of the present
invention. The execution plan fragment 1100 represents a
parameterized, source code version of the implementation
plan, e.g., prior to compilation or conversion to bytecode. As
used herein, “source code' can refer to a code listing or source
listing. As noted, execution of the execution plan fragment
1100 by a virtual machine as disclosed herein requires the
virtual machine to implement the necessary functions to
parse, validate, and/or de-serialize an XML document, e.g.,
XML document 1000, per a given XML schema, e.g., XML
schema fragment 900. As each XML processing instruction
can be associated with a function of the virtual machine, it
should be appreciated that reference to an XML processing
instruction in discussing execution plan fragment 1100 fur
ther can reference the function that is invoked within the
virtual machine that corresponds to the XML processing
instruction.

Since the XML schema fragment provides for three
attributes, one of which is required, the “ASSERT ATTRS'
XML processing instruction is inserted with parameters per
mitting the attributes and requiring one. After, three ASSER
T ATTR CONTENT XML processing instructions are
inserted into the execution plan fragment 1100 to ensure that
the type of the attribute content is as specified in the XML
schema fragment. The “READ TAG QNAMES XML pro
cessing instruction obtains the next block of data from the
instance document, in this case the XML document being
validated as pictured in FIG. 10 and checks that the next
element, in this case “Name2.' is a legal follower of the
previous component. The “READ TAG QNAMES XML
processing instruction ensures that the found tag is in the set
of permitted tags. The “JUMP TAG NOT EQUAL XML
processing instruction causes flow control to branch to the

US 7,752,212 B2
15

specified jump offset when the current element name does not
match the required component name. The “CALL TYPE
XML processing instruction checks the instance element for
Xsi-type declarations and jumps to the appropriate complex
handler for the determined type (whether from the instance or 5
the XML schema specified default type). The remaining func
tions referenced in the execution plan fragment 1100 perform
functions similar to those already discussed.
The execution plan 1100 further includes de-serialization

instructions with the operand “DESERIALIZATION.” In the 10
embodiment pictured in FIG. 11, after each piece of data, e.g.,
an attribute or element, a call to JAXRPC is added to new-up
a corresponding Java object. The embodiment pictured in
FIG. 11 will represent the entire complexType “Example
Type.” The complex-type “ExampleType' is an object that 15
has a simple named field for each attribute, and an object field
for each contained complexType.

It should be appreciated that while a de-serialization
instruction has been inserted between the various XML pro
cessing instructions of the execution plan, de-serialization
instructions may be specified only where needed as opposed
to after each instruction. Moreover, a plurality of de-serial
ization instructions can be inserted immediately following a
particular XML processing instruction, where each de-Seri
alization instruction performs a different function with
respect to data that has just been parsed and/or validated. Each
de-Serialization instruction can, for example, produce a dif
ferent type of output or route extracted information to a dif
ferent destination.

FIG. 12 is a flow chart illustrating a method 1200 of opera
tion of a virtual machine in accordance with another embodi
ment of the present invention. The method 1200 can be imple
mented by a virtual machine configured as discussed herein,
e.g., the virtual machine of FIG. 2. Accordingly, in step 1205,
the virtual machine can load an execution plan. In step 1210.
the virtual machine can load an XML document to be pro
cessed. In step 1215, the virtual machine can begin executing
the execution plan.

In step 1220, the virtual machine can select a bytecode
instruction from the execution plan. For example, the virtual
machine can read and/or interpret the bytecode instructions of
the execution plan and select a first, or next as the case may be,
bytecode instruction. In step 1225, the virtual machine can
determine whether the selected bytecode instruction corre
sponds to an XML processing instruction or to a de-serializa
tion instruction.

25

30

35

40

45

In one embodiment, if the bytecode instruction is not rec
ognized by the virtual machine, the virtual machine can
assume the bytecode instruction to be a de-serialization so
instruction. In another embodiment, the virtual machine can
be configured to recognize the opcode or other mnemonic of
the bytecode instruction as a de-serialization instruction. If
the virtual machine determines the selected bytecode instruc
tion corresponds to an XML processing instruction, the ss
method can continue to step 1235. Otherwise, the method can
proceed to step 1250.

In step 1235, a function of the virtual machine that is
associated with the selected bytecode instruction can be
invoked. Any parameters needed by the function can be 60
obtained or passed in from the selected bytecode instruction.
In step 1240, the virtual machine can determine whether any
further bytecode instructions remain in the execution plan for
interpretation. If so, the method can loop back to step 1220 to
continue execution of the execution plan. If not, the method 65
can proceed to step 1245. The virtual machine can read the
bytecode instructions of the execution plan and invoke the

16
function(s) corresponding to each respective bytecode
instruction as executed or interpreted.

Continuing with step 1250, where the selected bytecode
instruction was determined to be a de-Serialization instruc
tion, the virtual machine can query the de-Serialization mod
ules registered with the virtual machine. For example, the
virtual machine can query each de-Serialization module one
by-one. The virtual machine can continue until a de-Serial
ization module is identified that performs the needed de
serialization operation, as specified by the de-serialization
bytecode instruction, or until all of the de-registered serial
ization modules have been queried and the virtual machine
determines that no registered de-serialization module per
forms the requested de-serialization operation.
The manner in which de-serialization modules are queried

can be implementation dependent. For example, if de-Serial
ization instructions can be specific to de-Serialization mod
ules, when a de-Serialization module is found for a given
de-Serialization bytecode instruction, the querying can termi
nate. If, for example, several de-serialization modules require
the same input data, every de-Serialization module may be
queried by the virtual machine, even when a particular de
serialization module responds in the affirmative. In another
embodiment, where a portion of the input data can be used by
only one de-serialization module, when a de-serialization
module responds in the affirmative to the query issued by the
virtual machine, as an optimization, no further de-Serializa
tion modules need be queried. Further, the choice whether to
stop querying at a first matching-handler or query each han
dler can be a switch or preference within the virtual machine.

In step 1255, a determination can be made by the virtual
machine as to whether any registered de-serialization mod
ules perform the de-serialization operation specified by the
de-Serialization bytecode instruction. If a de-serialization
module responds indicating that it can perform the requested
de-Serialization operation, the method can proceed to step
1260. If no registered de-serialization modules perform the
requested de-Serialization operation, the method can proceed
to step 1265.

In one embodiment, answers corresponding to queries can
be cached for future use. Caching answers may allow the
virtual machine to avoid the query process in a Subsequent
loop or decision process. It should be appreciated that the
de-Serialization instructions correspond to a given namespace
within the execution plan. Accordingly, the de-serialization
modules further Support a given namespace, which can
reduce the amount of querying required.

In step 1260, the virtual machine can select the de-serial
ization module that responds in the affirmative, e.g., can
select the de-serialization module that can perform the
requested de-Serialization operation. Accordingly, the virtual
machine can invoke the selected de-serialization module. The
de-Serialization module can be configured to extract the infor
mation specified by the de-serialization bytecode instruction
and provide that information to a designated recipient system
or program as well as in a specified format. The virtual
machine further can pass any parameters specified as part of
the de-serialization bytecode instruction to the selected de
serialization module that may be required. After step 1260.
the method can proceed to step 1240.

In step 1265, where no de-serialization module is identi
fied, the virtual machine can ignore the de-serialization byte
code instruction. In this manner, the lack of a de-serialization
module will not affect the operation of the virtual machine in
terms of parsing and/or validation of the XML document. It
should be appreciated, however, that if so desired, a failure
condition or other warning indication can be provided. In step

US 7,752,212 B2
17

1245, the virtual machine executing the execution plan can
output a validation result for the XML document. The vali
dation result can be determined via operation of the functions,
as selected by the execution plan, upon the XML document.

In one embodiment, the validation result can specify
whether the received XML document was valid or not. In
another embodiment, the validation result can specify Supple
mental information including, but not limited to, a Post
Schema Validation Infoset (PSVI) in any of a variety of for
mats. A PSVI, for example, can specify information about
how validation occurred or other Supplemental information
indicating various internal parameters of the virtual machine
during parsing and/or validation.

It should be appreciated that the de-serialization module
may include code that checks the final status of the XML
document, e.g., being valid or not, prior to sending any de
serialized data to a recipient system or Subsystem. In another
embodiment, the de-Serialization module can send the de
serialized information and the recipient can include code that
checks the status of the XML document. In that case, the
recipient can include functionality to reverse any processing
of the de-serialized information in the event that the XML
document is not valid. For example, the recipient can buffer
the received de-serialized information until such time that an
indication of the validity of the XML document is received
from the virtual machine.

In another embodiment, the de-serialization instruction
can be modified Such that the user can specify the particular
de-serialization module that is to be used. In that case, the
specified de-serialization module can be invoked. If the speci
fied de-serialization module is not available, the virtual
machine can ignore the de-serialization instruction. In
another embodiment, the virtual machine can query for a
de-Serialization module that can perform the de-serialization
operation that was to be performed by the user-specified
de-Serialization module. If an alternate de-Serialization mod
ule is identified, the alternate de-serialization module can be
selected and invoked.

In another embodiment, the particular execution plan that
is loaded by the virtual machine can be selected from a plu
rality of different execution plans, where each execution plan
is derived from a different XML schema. In this regard, the
virtual machine effectively can implement any of a variety of
different XML schema specific parsers according to the par
ticular execution plan that is loaded into the virtual machine.
Thus, a first execution plan can be loaded to validate a first
XML document against a first XML schema. A second execu
tion plan then can be loaded to validate a second XML docu
ment against a second XML schema, etc. The process of
loading and/or unloading different execution plans further
can be programmatically automated, follow a predetermined
pattern, and/or be dynamically determined, for example, by
another system communicatively linked with the virtual
machine.
The flowcharts and block diagrams in the figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowcharts or block

10

15

25

30

35

40

45

50

55

diagrams may represent a module, segment, or portion of 60
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in Some alternative implementations, the
functions noted in the blocks may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,

65

18
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks in the block dia
grams and/or flowchart illustrations, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Having thus described the invention of the present appli
cation in detail and by reference to the embodiments thereof,
it will be apparent that modifications and variations are pos
sible without departing from the scope of the invention
defined in the appended claims.
What is claimed is:
1. Within a system comprising a processor and a memory,

a method of creating a schema specific parser for processing
Extensible Markup Language (XML) documents, the method
comprising:

receiving an XML schema comprising a plurality of com
ponents;

determining, via the processor, a hierarchy of the plurality
of components of the XML schema and storing the hier
archy in a memory;

creating, via the processor, an execution plan specifying a
hierarchy of XML processing instructions, wherein each
of said XML processing instructions is associated with
an XML processing function of a virtual machine,
wherein each XML processing function instructs the

virtual machine to automatically perform a process
ing task upon an XML document, and said hierarchy
of XML processing instructions is determined
according to the hierarchy of components of the XML
schema:

inserting into the execution plan, via the processor, at least
one instruction that causes the virtual machine to invoke
a de-Serialization module that extracts at least one item
of information from the XML document;

compiling, via the processor, the execution plan into a
bytecode version of the execution plan that is interpret
able by the virtual machine; and

US 7,752,212 B2
19

outputting the bytecode version of the execution plan to the
memory.

2. The method of claim 1, wherein the de-serialization
module is incorporated into the virtual machine through an
XML extension and performs at least one additional schema
related processing function.

3. The method of claim 1, wherein inserting into the execu
tion plan further comprises defining the instruction to specify
the item of information to be extracted according to the XML
schema.

4. Within a system comprising a processor and a memory,
a method of processing an Extensible Markup Language
(XML) document, the method comprising:

loading, via the processor, an execution plan into a virtual
machine and storing the execution plan in a memory,
wherein the virtual machine consists of XML processing
functions and the execution plan represents an XML
Schema:

Selectively invoking, via the processor, XML processing
functions available within the virtual machine according
to the execution plan, wherein the XML processing
functions operate upon an XML document conforming
to the XML schema represented by the execution plan;

Selectively invoking, via the processor, a de-serialization
module according to the execution plan, wherein the
de-Serialization module is configured as a plug-in of the
virtual machine and de-Serializes at least one item of
information from the XML document; and

outputting the de-serialized item of information to the
memory.

5. The computer-implemented method of claim 4, wherein
selectively invoking XML processing functions comprises:

identifying a bytecode instruction within the execution
plan;

Selecting an XML processing function that is associated
with the bytecode instruction from a plurality of XML
processing functions of the virtual machine; and

executing the selected XML processing function.
6. The computer-implemented method of claim 4, wherein

selectively invoking a de-serialization module further com
prises:

identifying a de-Serialization bytecode instruction within
the execution plan; and

selecting a de-Serialization module that de-Serializes the item
of information according to the de-serialization bytecode
instruction from a plurality of de-serialization modules.

7. The computer-implemented method of claim 6, wherein
selecting a de-serialization module further comprises query
ing at least one of the plurality of de-serialization modules
whether the de-serialization module performs a de-serializa
tion operation specified by the de-serialization bytecode
instruction.

8. The computer-implemented method of claim 4, wherein
selectively invoking a de-serialization module further com
prises:

identifying a de-Serialization bytecode instruction within
the execution plan;

determining that no de-serialization module of a plurality
of de-serialization

modules performs a de-Serialization operation specified by
the de-Serialization bytecode instruction; and

ignoring the de-Serialization bytecode instruction.
9. The computer-implemented method of claim 4, wherein

the de-serialization module is incorporated into the virtual
machine through an XML extension and performs at least one
additional schema related processing function.

10

15

25

30

35

40

45

50

55

60

65

20
10. The computer-implemented method of claim 4,

wherein selectively invoking XML processing functions fur
ther comprises selecting an XML processing function that
reads a section of the XML document according to an
expected component type of the section.

11. The computer-implemented method of claim 4,
wherein selectively invoking XML processing functions fur
ther comprises selecting an XML processing function that
checks a section of the XML document against a component
type associated with the section.

12. The computer-implemented method of claim 4,
wherein selectively invoking XML processing functions fur
ther comprises selecting at least one of an XML processing
function that counts a number of occurrences of a component
in the XML document or an XML processing function that
performs flow control within the virtual machine.

13. The computer-implemented method of claim 4,
wherein the de-serialization module selects a portion of the
XML document for de-serialization according to a de-Serial
ization bytecode identified within the execution plan.

14. A computer program product comprising:
a computer-usable storage medium having stored thereon

computer-usable program code that, when executed by a
system comprising a processor and a memory, causes the
system to perform a method of processing an Extensible
Markup Language (XML) document, the method com
prising:

loading an execution plan into a virtual machine, wherein
the virtual machine consists of XML processing func
tions and the execution plan represents an XML schema:

selectively invoking XML processing functions available
within the virtual machine according to the execution
plan, wherein the XML processing functions operate
upon an XML document conforming to the XML
Schema represented by the execution plan;

selectively invoking a de-Serialization module according to
the execution plan, wherein the de-Serialization module
is configured as a plug-in of the virtual machine and
de-serializes at least one item of information from the
XML document; and

outputting the de-serialized item of information.
15. The computer program product of claim 14, wherein

selectively invoking XML processing functions comprises:
identifying a bytecode instruction within the execution

plan;
selecting an XML processing function that is associated

with the bytecode instruction from a plurality of XML
processing functions of the virtual machine; and

executing the selected XML processing function.
16. The computer program product of claim 14, wherein

selectively invoking a de-serialization module further com
prises:

identifying a de-serialization bytecode instruction within
the execution plan; and

selecting a de-Serialization module that de-serializes the
item of information according to the de-serialization
bytecode instruction from a plurality of de-serialization
modules.

17. The computer program product of claim 16, selecting a
de-Serialization module further comprises querying at least
one of the plurality of de-serialization modules whether the
de-Serialization module performs a de-serialization operation
specified by the de-serialization bytecode instruction.

18. The computer program product of claim 14, wherein
selectively invoking a de-serialization module further com
prises:

US 7,752,212 B2
21

identifying a de-Serialization bytecode instruction within
the execution plan;

determining that no de-serialization module of a plurality
of de-Serialization modules performs a de-serialization
operation specified by the de-serialization bytecode
instruction; and

ignoring the de-Serialization bytecode instruction.
19. The computer program product of claim 14, wherein

the de-serialization module is incorporated into the virtual

22
machine through an XML extension and performs at least one
additional schema related processing function.

20. The computer program product of claim 14, wherein
selectively invoking a de-serialization module further com

5 prises:
selecting a portion of the XML document for de-serializa

tion according to a de-serialization bytecode identified
within the execution plan.

k k k k k

