US007603655B1

a2 United States Patent

Heifets et al.

US 7,603,655 B1
Oct. 13, 2009

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR DYNAMICALLY STREAMING
AN XSLT TRANSFORMATION
(75) Inventors: Abraham Heifets, Toronto (CA); Moshe
Morris Emanuel Matsa, Cambridge,
MA (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 12/060,207
(22) Filed: Mar. 31,2008
(51) Imt.ClL
GO6F 9/44 (2006.01)
GO6F 15/16 (2006.01)
(52) US.CL ..o 717/106; 709/231; 709/232
(58) Field of Classification Search 717/100,
717/106-109; 709/231, 232
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,317,736 A 5/1994 BOWENc.cceeeeevennnne 395/600
6,507,857 B1* 1/2003 Yalcinalp 715/235
7,111,076 B2* 9/2006 Abjanic et al. 709/246
7,165,239 B2 1/2007 Hejlsberg et al. 717/114
7,328,403 B2* 2/2008 Ramaraoetal. 715/236
7,392,239 B2* 6/2008 Fontouraetal. 707/3
7,458,022 B2* 11/2008 Ramarao 715/236
2004/0034830 Al 2/2004 Fuchsetal. 715/501.1
2005/0086584 Al* 4/2005 Sampathkumar et al. . 715/501.1

2005/0273772 Al 12/2005 Matsakis etal. 717/136

OTHER PUBLICATIONS

Bar-Yossef et al., “On the Memory Requirements of XPath Evalua-
tion over XML Streams,” Jun. 2004, ACM, p. 177-188.*

100

102
RECEIVE AN ALGORITHM |-\/

(]

ANALYZE THE ALGORITHM FOR
DETERMINING WHICH INPUTS ARE 104
REQUIRED TO GENERATE CODE —\/
THAT IS STREAMING WITH
RESPECT TO ANY OTHER INPUTS

(]

CALCULATE AN ALGORITHM 106
WHICH, WHEN GIVEN THE
REQUIRED STREAMING-ENABLING
INFORMATION, WILL THEN
EXECUTE THE ENTIRE ALGORITHM
IN A STREAMING FASHION

(]

GENERATE CODE FOR
COMPUTING THE INPUTS THAT 10!
ARE REQUIRED FOR THE 8
CALCULATED STREAMING
ALGORITHM WHILE
SIMULTANEOUSLY BUFFERING
INCOMING DATA

Y 110 &/-
STORE THE GENERATED CODE I—\/

L/ REPLAY THE BUFFERED DATA THROUGH THE

Gouet al., “Efficient Algorithms for Evaluating XPath over Streams,”
Jun. 2007, ACM, p. 269-280.*

Dvorakova, Jana, “Automatic Streaming Processing of XSLT Trans-
formations Based on Tree Transducers,” Mar. 2008, p. 373-382.*
Dvorakova et al., “Using Input Buffers for Streaming XSLT Process-
ing,” <Date Unknown>.*

Schmidtet al., “Combined Static and Dynamic Analysis for Effective
Buffer Minimization in Streaming XQuery Evaluation” Saarland
University Database Group, Germany Data Engineering, 2007.
ICDE 2007. IEEE 23" International Conference on Apr. 15-20,2007;
pp. 236-245.

(Continued)

Primary Examiner—WeiY Zhen
Assistant Examiner—Qing Chen
(74) Attorney, Agent, or Firm—Zilka-Kotab, PC

(57) ABSTRACT

A method in one embodiment includes receiving an XSLT
transformation; analyzing the transformation for determining
which information about the input is required to generate
code that is streaming with respect to the rest of the input;
calculating an algorithm which when given the required input
information will then execute the entire XSLT transform in a
streaming fashion; and generating code for computing the
information about the input that is required for the calculated
streaming algorithm while simultaneously buffering all
incoming input data; storing the generated code; receiving
incoming input data; running the generated code for comput-
ing the information that is required for the calculated stream-
ing algorithm while simultaneously buffering incoming data;
and once the required information has been computed:
replaying the buffered data through the calculated streaming
algorithm in a streaming manner; and finishing any remaining
input through the calculated streaming version of the input
algorithm in a streaming manner.

1 Claim, 2 Drawing Sheets

qo

RECEIVE INCOMING DATA l_\}1 2
[

RUN THE GENERATED CODE FOR
DETECTING THE INPUTS THAT
ARE REQUIRED FOR THE

CALCULATED STREAMING 114
ALGORITHMWHILE
SIMULTANEQUSLY BUFFERING
INCOMING DATA

116

REQUIRED
INPUTS
DETECTED?,

CALCULATED STREAMING VERSION OF THE
INPUT ALGORITHM IN A STREAMING MANNER

]

FINISH ANY REMAINING INPUT THROUGH THE
CALCULATED STREAMING VERSION OF THE
INPUT ALGORITHM IN A STREAMING MANNER

US 7,603,655 B1
Page 2

OTHER PUBLICATIONS “Extensible Stylesheet Language Transformations (XSLT)” http://
www.ibm.com/develperworks/xml/standards/x-xsltspec.html; IBM;

Quin, Liam, “Alternate Team Contact for the XSL Working Group: p. 1-3; Feb. 6, 2007; updated Apr. 25, 2007.

Extensible Stylesheet Language Family (XSL)” http://www.w3.org/
style/xsl/; W3C Architecture Domain; p. 1-5; Mar. 31, 2008. * cited by examiner

U.S. Patent Oct. 13, 2009 Sheet 1 of 2 US 7,603,655 B1

100

102
RECEIVE AN ALGORITHM

Y

ANALYZE THE ALGORITHM FOR
DETERMINING WHICH INPUTS ARE 104
REQUIRED TO GENERATE CODE
THAT IS STREAMING WITH
RESPECT TC ANY OTHER INPUTS

Y

CALCULATE AN ALGORITHM 106
WHICH, WHEN GIVEN THE
REQUIRED STREAMING-ENABLING
INFORMATION, WILL THEN
EXECUTE THE ENTIRE ALGORITHM
IN A STREAMING FASHION

v

GENERATE CODE FOR
COMPUTING THE INPUTS THAT
ARE REQUIRED FOR THE 108
CALCULATED STREAMING | N/
ALGORITHM WHILE
SIMULTANEOUSLY BUFFERING
INCOMING DATA

+ 110
STORE THE GENERATED CODE —\/

%

%

%

FIGURE 1A

U.S. Patent Oct. 13, 2009 Sheet 2 of 2 US 7,603,655 B1

RECEIVE INCOMING DATA .\/112

F

RUN THE GENERATED CODE FOR
DETECTING THE INPUTS THAT
ARE REQUIRED FOR THE

CALCULATED STREAMING 114

ALGORITHM WHILE N\

SIMULTANEOUSLY BUFFERING
INCOMING DATA

116

NO

REQUIRED
INPUTS
DETECTED?

118

REPLAY THE BUFFERED DATA THROUGH THE
CALCULATED STREAMING VERSION OF THE

INPUT ALGORITHM IN A STREAMING MANNER

120 +
v FINISH ANY REMAINING INPUT THROUGH THE

CALCULATED STREAMING VERSION OF THE
INPUT ALGORITHM IN A STREAMING MANNER

FIGURE 1B

US 7,603,655 B1

1

METHOD FOR DYNAMICALLY STREAMING
AN XSLT TRANSFORMATION

BACKGROUND

The present invention relates to streaming data, and more
particularly, this invention relates to optimizing the streaming
of data.

Many organizations, including banks, healthcare provid-
ers, and users of web services and service oriented architec-
tures, process large data sets in documents that are several
gigabytes or larger. Often, these documents do not fit into
memory on computer systems and, on many computer sys-
tems, even where enough storage is available, access to such
documents is very slow.

SUMMARY

A method in one embodiment includes receiving an exten-
sible stylesheet language transformations (XSLT) transfor-
mation; analyzing the transformation for determining which
information about the input is required to generate code that
is streaming with respect to the rest of the input; calculating
an algorithm which, when given the required streaming-en-
abling information, will then execute the entire XSLT trans-
form in a streaming fashion; and generating code for: com-
puting the information about the input that is required for the
calculated streaming algorithm while simultaneously bufter-
ing all incoming input data. The method further includes
storing the generated code; receiving incoming input data;
running the generated code for computing the input informa-
tion that is required for the calculated streaming algorithm
while simultaneously buffering incoming data; and once the
required information has been computed: replaying the buff-
ered data through the calculated streaming algorithm in a
streaming manner; and finishing any remaining input through
the calculated streaming version of the input algorithm in a
streaming manner.

Other aspects, advantages and embodiments of the present
invention will become apparent from the following detailed
description, which, when taken in conjunction with the draw-
ings, illustrate by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIGS.1A-1B show a method for dynamically streaming an
algorithm, in accordance with one embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of illus-
trating the general principles of the present invention and is
not meant to limit the inventive concepts claimed herein.
Further, particular features described herein can be used in
combination with other described features in each of the
various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an” and “the”
include plural referents unless otherwise specified.

20

25

30

35

40

45

50

55

60

2

In one general embodiment, a method comprises receiving
an XSLT transformation; analyzing the transformation for
determining which information about the input is required to
generate code that is streaming with respect to the rest of the
input; calculating an algorithm which given the required input
information will then execute the entire XSLT transform in a
streaming fashion; and generating code for: computing the
information about the input that enables the use of the calcu-
lated streaming algorithm while simultaneously buffering all
incoming input data. The method further includes storing the
generated code; receiving incoming input data; running the
generated code for computing the input information that is
required for the calculated streaming algorithm while simul-
taneously buffering incoming data; and once the required
information has been computed: replaying the buffered data
through the calculated streaming algorithm in a streaming
manner; and finishing any remaining input through the cal-
culated streaming version of the input algorithm in a stream-
ing manner.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIGS. 1A-1B show a method 100 for dynamically stream-
ing an algorithm, in accordance with one embodiment. As
shown in FIG. 1A, an algorithm such as an XSLT transfor-
mation is received. See operation 102. Additionally, the algo-
rithm is analyzed for determining which inputs are required to
generate code that is streaming with respect to any other
inputs. See operation 104.

Furthermore, an input algorithm is calculated in a stream-
ing fashion with respect to any other inputs. Preferably, an
algorithm is calculated which, when given the required
streaming-enabling information, will then execute the entire
XSLT transform in a streaming fashion. See operation 106. In
addition, code is generated for computing the inputs that are
required for the calculated streaming algorithm while simul-
taneously buffering incoming data. See operation 108.

Further, the generated code is stored. See operation 110.
Additionally, as shown in FIG. 1B, incoming data is received.
See operation 112. Still yet, the generated code is executed for
detecting the inputs that are required for the calculated
streaming algorithm while simultaneously buffering incom-
ing data. See operation 114. Note that the calculated stream-
ing algorithm may take the detected information as its initial
input.

Once the required inputs have been detected, and the
required computation performed, the buffered data is
replayed through the calculated streaming version of the
input algorithm in a streaming manner and any remaining
input is also processed as it is received by the calculated
streaming version of the input algorithm. See operations 116,
118, and 120.

In “static” streaming implementations, the processing
algorithm of an associated input document is analyzed ahead
of'time (e.g. at compile time, or system configuration time) to
determine streamability, and the processing algorithm is
transformed to operate over small, briefly-retained pieces of
the input document. Unfortunately, the analysis that can be
performed statically, at compile time, is typically extremely
conservative because the transformations must be safe for any
input document presented at runtime. Since many processing
languages often do not specity an ordering on relevant por-

US 7,603,655 B1

3

tions of the input document [e.g. extensible stylesheet lan-
guage transformations (XSLT)], it is difficult to inform the
compiler about optimization opportunities for streaming
based on the expected shape of the input data.

On the other hand, dynamic streaming, as discussed with
respect to the method 100, provides for streaming or nearly-
streaming performance and memory characteristics, even
when static streaming is not possible. With dynamic stream-
ing, an analysis pass may determine that if certain input is
received, then static streaming will not be possible, but given
a little more of the input then static streaming would be
possible. Thus, code may be generated or configured such that
when the data is received, the input data will be buffered and
processed, in parallel, until the appropriate streaming path
can be determined. Subsequently, the program may back up
and process the buffered data in a streaming manner.

For further explanation, two examples of dynamic stream-
ing may be considered. The first example occurs within XSLT
processing. In one case, an XML document may contain
sibling HEADER and BODY elements, as in a SOAP mes-
sage. In one common scenario, an XSLT stylesheet might
process the BODY element differently, depending on the
contents of the HEADER. Typically, HEADERSs are small
compared to BODY elements and, if the HEADER came first
in the XML document, the BODY may be processed in a
streaming fashion. Unfortunately, XSLT provides no general
mechanism to specify the order of elements in an input docu-
ment. Thus, given most XSLT transformations, it will be
unclear whether an input document might have the HEADER
element after the BODY, and therefore a static XSLT com-
piler would generate a transform that requires the buffering of
both elements.

In one embodiment, dynamic streaming may be imple-
mented such that two code paths are generated, one which
assumes the HEADER will be first and stream the processing
of the BODY element, and the other which buffers both the
HEADER and BODY elements. The decision as to which
path to execute may be delayed until runtime, when one of
these elements is encountered and it may be determined
which code path is appropriate. Note that these dual-code
paths may be generated at a plurality of points in the gener-
ated transformation code, and even recursively inside code
paths that are themselves speculative in the same manner of
this invention.

As a second example, a process flow environment may be
considered, where a message is received and it can not yet be
determined which flow is to be executed. With dynamic
streaming, an auxiliary streaming or non-streaming flow may
be used to gather data to determine which flow should be
executed. In the meantime, the input data may be buffered.
When the decision of which flow is to be executed can be
made, and it is determined that the processing flow may be
streamed, then the processing flow may be streamed starting
with the buffered data and continuing with the rest of the data
in a streaming manner.

It should be noted that the method 100 may also be used to
enable maximal use of specialized acceleration resources,
such as hardware acceleration or specially tuned and pur-
posed software, in addition to streaming. Moreover, all of this
may be achieved without requiring that any auxiliary struc-
tural information, such as an XML schema or document type
definition (DTD), be provided to describe the document
structure.

Although, the XML schema or DTD information may be
utilized if available, primary knowledge of a task may be
derived from analysis of the application code being opti-
mized. As such, the method 100 may be applicable to general

20

25

30

35

40

45

50

55

60

65

4

XML processing tasks where the structure of the input docu-
ment is not known at the time of optimization. Furthermore,
fail-over code paths that handle any input may be generated,
even if streaming is inappropriate. Additionally, this process
may be applied for any input to an algorithm, not only XML..
It should be noted that any analysis may be accomplished
either by a compiler at compile time, or by runtime code at
configuration time. It should also be noted that, the invention
can take the form of an embodiment containing both hard-
ware and software elements. In one embodiment, the inven-
tion may be implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.
Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk—read only memory (CD-
ROM), compact disk—read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.
While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.
What is claimed is:
1. A method for dynamically streaming an extensible
stylesheet language transformations (XSLT) transformation,
comprising:
receiving an XSLT transformation;
analyzing the XSLT transformation for determining which
information about an input is required to generate code
that is streaming with respect to the rest of the input;

calculating a streaming version of an input algorithm
which when given the required information about the
input will then execute the entire XSLT transformation
in a streaming fashion;

US 7,603,655 B1

5 6
generating code for: once the required information about the input has been
detecting the information about the input that is required detected:
fgr the cal.culaFed streaming Versmn.of the input algo- replaying the buffered all incoming input data through
rlthm thl.le simultaneously buffering all incoming the calculated streaming version of the input algo-
1nput data; 5 rithm in a streaming manner; and

storing the generated code;

receiving incoming input data;

running the generated code for detecting the information >
about the input that is required for the calculated stream- 1ng manner.
ing version of the input algorithm while simultaneously 10
buffering all incoming input data; and L

finishing any remaining input through the calculated
streaming version of the input algorithm in a stream-

