
United States Patent
US006988101B2

(12) (10) Patent N0.: US 6,988,101 B2
Ham et al. (45) Date of Patent: Jan. 17, 2006

(54) METHOD, SYSTEM, AND COMPUTER 5,218,697 A 6/1993 Chung 395/650
PROGRAM PRODUCT FOR PROVIDING AN _
EXTENSIBLE FILE SYSTEM FOR (Con?rmed)
ACCESSING A FOREIGN FILE SYSTEM
FROM A LOCAL DATA PROCESSING FOREIGN PATENT DOCUMENTS

SYSTEM JP 6243020 A 9/1994
JP 7230396 A 8/1995

(75) Inventors: Jungkyoo Pamela Ham, San Jose, CA
(US); Brent Cecil Hawks, Hollister, (Continued)
CA (US); Sean James Martin, Boston,
MA (US); Moshe Morris Emanuel OTHER PUBLICATIONS
Matsa, Cambridge, MA (US); Gary I.
Mall), San Jose, CA (Us); Peter IBM Technical Disclosure Bulletin, “File Interface for
Nicholls, Scarborough (CA); Ira L- Migrating Applications to Enhanced Persistent Storage Plat
Sheftman, San Jose, CA (US); James forms”, vol. 35, No. 1A, Jun. 1992, pp. 182—183.

51111352?)zil€éiftxislgfgsg?s IBM Technical Disclosure Bulletin, “As/400 os/2 PC Sup
’ ’ port Shared Folders”, vol. 32, No. 7, Dec. 1989, pp.

(73) Assignee: International Business Machines 202_205'

Corporation, Armonk, NY (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner_Greta Robinson
U.S.C. 154(b) by 477 days. Assistant Examiner—Debbie M. Le

(74) Attorney, Agent, or Firm—David W. Victor; Konrad,
(21) Appl. No.: 09/872,054 Raynes & Victor LLP

(22) Filed: May 31, 2001 (57) ABSTRACT

(65) Prior Publication Data An extensible ?le access method for accessing a ?rst foreign
?le system from a data processing system With a ?rst native

Us 2003/0009473 A1 Jan' 9’ 2003 ?le system, said ?rst foreign ?le system and said ?rst native

(51) Int. Cl. ?le system implementing different ?le system protocols. The
G06F 17/30 (2006.01) foreign ?le system is accessed by issuing a request accord

ing to the native ?le system protocol for data stored in the
(52) us. Cl. 707/10, 707/102; 707/1041; foreign ?le System; translating the native ?le System request

709 /202; 709 /203 to an intermediate programming interface, Wherein the inter
(58) Field of Classi?cation Search 707/1—3, mediate Programming interface is different from both the

707/10, 102, 1041; 709/202, 203 native ?le system protocol and the foreign ?le system
See application ?le for Complete Search history protocol; translating the intermediate ?le system request to

the foreign ?le system protocol; and returning to the client
(56) References Cited a response from the foreign ?le system responsive to the

translated request.
U.S. PATENT DOCUMENTS

4,956,809 A 9/1990 George et al. 364/900 36 Claims, 4 Drawing Sheets

3°"\

qln
la in: rum d

"g .- request from a euem on
mental; Mum I0 open a

m

worksllllnn
an m- in me torolgn ?n

lnlsrlmrlqlll .
from both mu Illll

translating me nullve tile system mum In an mlirm‘dlltu
m wharlm lha lmlmladllla pr

v m- symm pmacol and

mgrammlng
ogrlmmlng um oe ll dilleve
we larelgn in. system pmlu

lranalanm ml int-"mulch

rolumlnq m lhl am processing aysmn a response
"am it» man ?le IySlIIII rlnpanslla lo the \mnslulld requa

egnmmmg lmerlau request
In (ha mmgn n I syztnm pmwcd

US 6,988,101 B2
Page 2

US. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS

5,363,487 A 11/1994 Willman et a1. 395/275 g 25337132 2 3133?
5,537,592 A * 7/1996 King et a1. 395/600 JP 10247155 A 8/1998

5,608,874 A 3/1997 Ogawa et a1. .. 709/246 JP 10260877 A 9/1998
5,680,618 A * 10/1997 Freund 707/7

5,742,818 A 4/1998 Shoroff et al. 395/616 _ OTHER PUBLICA_TIONS _ _
5752 005 A 5/1998 Jones 395/500 IBM Technlcal Dlsclosure Bulk/Hm “OS/2 Loglcal F116
5,864,853 A 1/1999 Kimura et a1. 707/10 System”> ‘'01- 34> NO- 12> May 1992> PP- 370—371~
5 911 776 A 6/1999 Guck 709/217 IBM Technical Disclosure Bulletin, “Implicit Mapping of

5,937,406 A 8/1999 Balabine et a1. 707/100 F116 Data”>_"°1- 33> N°~ 04>APr-_1995> P 523
5 987 463 A * 11/1999 Draaijer et aL _____________ __ 707/1O IBM Technical Disclosure Bulletin, “Method to Manage the

6,226,649 B1 * 5/2001 Bodamer et a1. 707/104.1 Mapping of Logical to Physical Record”> V01- 38> N°~ 12>
6,236,997 B1 * 5/2001 Bodamer et a1. 707/10 Dec- 1995> PP- 261—262~

6,643,652 B2 * 11/2003 Helgeson et a1. 707/10 * cited by examiner

U.S. Patent Jan. 17, 2006 Sheet 1 014 US 6,988,101 B2

-. .UE

ii 2.

I. OP .2 . E. m E, m m_.

VEOZCMZ

wm

55% E555 8 a:
#m

by E
mm

U.S. Patent Jan. 17,2006 Sheet 2 014

200 \

210 \

SMB server

285

\CIFS

US 6,988,101 B2

215 /

4

270

280

275

net use n 9‘ use

y: \\mysasmtorolabd

220 /

255
\

295 /

235 \

lSash lSaSh

FFSModule FFSModule 250

FFSHostSystem " r— FFSHostSystem " CCache * CCache ' \ \

225 230

260 \ 265 \ '
Client APls

stplex torolabd
MVS NF 8
system system

245

NT Client

U.S. Patent Jan. 17, 2006 Sheet 3 014 US 6,988,101 B2

300 310

\ (3/ begin

generating a request from a client on the workstation _ _
to the remote data processing system to open a foreign file in the torelgn file

320 /

r 330

determining the native file system protocol

/ 340

determining the foreign file system protocol

/ 350
Y

translating the native file system request to an intermediate programming
interface request, wherein the intermediate programming intertace is different
from both the native file system protocol and the foreign file system protocol

360

translating the intermediate programming interface request
to the foreign file system protocol

{1/370
Iissuing the translated request to the foreign file system

380

l /
returning to the data processing system a response

from the foreign file system responsive to the translated request

390

Fig. 3

U.S. Patent Jan. 17, 2006 Sheet 4 014 US 6,988,101 B2

400\
common
access

function?

Yes i

20
0 /4

translate common access function
from native file system protocol

to intermediate programming interface
and then to foreign file system protocol

440 V

extended
native function? Yes . 380 450

r /
Prepare a predetermined
response to the client return

extended
No foreign functon? Yes

/ 480
470

return error , /

pass through the extended foreign function to the
foreign file system in an untranslated form

Fig. 4

US 6,988,101 B2
1

METHOD, SYSTEM, AND COMPUTER
PROGRAM PRODUCT FOR PROVIDING AN

EXTENSIBLE FILE SYSTEM FOR
ACCESSING A FOREIGN FILE SYSTEM
FROM A LOCAL DATA PROCESSING

SYSTEM

A portion of the Disclosure of this patent document
contains material Which is subject to copyright protection.
The copyright oWner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it the Patent and Trademark Of?ce patent ?le
or records, but otherWise reserves all copyrights Whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to computer ?le
systems, and more particularly to an extensible ?le access
method for accessing a foreign ?le system from a data
processing system With a native ?le system, said foreign ?le
system and said native ?le system implementing different
?le system protocols.

2. Description of the Related Art
A ?le system comprises the logical structures and soft

Ware function routines used to store, organiZe, and access
information stored on a computer system’s logical or physi
cal storage media, such as a diskette, hard disk system, or
optical storage. A variety of ?le systems have been devel
oped to address various needs. For example, personal com
puter ?le systems comprise: File Allocation Table (FAT);
Virtual FAT (VFAT); 32-Bit FAT (FAT32); NeW Technology
File System (NTFS); and High Performance File System
(HPFS). File systems for mid-range computers comprise:
Unix File System (UFS), NetWork File System (NFS), and
AS/400. Mainframe computer ?le system offerings com
prise: Virtual Storage Access Method (VSAM); Sequential
Access Method (SAM); Partitioned Data Set (PDS); and
Object Access Method File systems are not limited
to these lists Which are merely illustrative subsets of the
numerous variety of ?le systems.

The various computer architectures and computer oper
ating systems may use different ?le systems, thus organiZing
and accessing the information in different Ways. Generally,
these different ?le systems are incompatible, meaning that
?les created by one ?le system may not be accessed by
another ?le system. A user may have a computer system
supporting a particular ?le system, a native ?le system, and
the user may Wish to access and use information stored in a
?le system other than the native ?le system, a foreign ?le
system. The user may need to access the foreign ?le system
information for any of a number of motivations, such as to
migrate the information to a replacement system, to archive
the information, or to share the information among different
systems.

Conventional systems have addressed this user need to
access foreign ?le systems in a number of Ways. The earliest
conventional approach Was to create a duplicate of the
information and to convert the information in this duplicate
from the native ?le system format to the foreign ?le system
format. This approach is exempli?ed by patents such as US.
Pat. No. 5,537,592, “System and Method for Reading and
Writing Disks Formatted for an Operating System Foreign to
the Host Computer;” US. Pat. No. 5,742,818, “Method and
System of Converting Data from a Source File System to a
Target File System;” Japan Patent Number 9231114A, “File
System Conversion System;” and “Japan Patent Number

10

15

20

25

30

35

40

45

50

55

60

65

2
6243020A, “File Conversion Device.” US. Pat. No. 5,537,
592 is representative of this approach, and in particular
teaches a set of processes and data structures that alloW
transfer of user speci?ed ?les betWeen differently formatted
disks. The processes identify the ?le format of the source
and destination disks, retrieve the source ?les in the source
?le format, store the source ?les in a common format in
memory that alloWs the directory hierarchy of the source
disk and destination disk to be maintained, translate the
contents of text source ?le records to the record format of the
destination ?le system if desired, create directories and
headers if necessary for the foreign disk for the transferred
?les, and store the ?les on the destination disk in a host ?le
format. The user can then access and modify the ?les in the
host ?le format using a host computer system. This approach
is only a partial solution in that it only converts and
reformats the information, it does not convert the softWare
functions. The native ?le system can still only access
information stored in the native ?le system format; it cannot
access information stored in the foreign ?le system format,
nor can it use the foreign ?le system softWare functions.

Another conventional solution is to install and support
both ?le systems on the same computer system., effectively
making the foreign ?le system an additional native ?le
system. This solution is taught by US. Pat. No. 5,363,487,
“Method and System for Dynamic Volume Tracking in an
Installable File System,” Which permits a single operating
system to access a storage medium formatted in accordance
With differing ?le systems. Generally, the operating system
identi?es Which of a plurality of ?le system drivers is
appropriate for reading a particular storage volume and,
thereafter, associates the identi?ed ?le system driver With
the particular storage volume. Similarly, US. Pat. No.
5,911,776, “Automatic Format Conversion System and Pub
lishing Methodology for Multi-user NetWork,” provides a
set of multiple shadoW ?le converters connected to a source
?le of an original document. Each shadoW ?le converter
enables the transformation of the original source ?le format
into a particular other speci?c type of ?le format. HoWever,
providing all the permutations of the different types of ?le
systems ported to the different types of operating systems
and computer hardWare architectures is probably not com
mercially feasible.
A more robust conventional approach is to directly con

vert ?le system requests from one ?le system protocol to
another. For example, a client system, having a native ?le
system protocol, may issue a request in the client’s native
?le system protocol to a server. HoWever, the server uses a
foreign ?le system protocol Which is different form the
client’s native ?le system protocol. A ?le system protocol
converter translates the client’s request from the client’s
native ?le system protocol to the server’s foreign ?le system
protocol. The ?le system converter may also convert the
server response by reformatting the response’s information
from the server’s foreign ?le system format to the client’s
native ?le system format. This type of direct ?le system
protocol conversion is taught by: US. Pat. No. 5,218,697,
“Method and System for NetWorking Computers Having
Varying File Architectures;” US. Pat. No. 5,752,005, “For
eign File System Establishing Method Which Uses a Native
File System Virtual Device Driver;” US. Pat. No. 5,937,
406, “File System Interface to a Database;” US. Pat. No.
5,864,853, “Portable File System Operable Under Various
Computer Environments;” and US. Pat. No. 4,956,809,
“Method for Canonical Ordering of Binary Data for Portable
Operating Systems.” Foreign patents representative of this
approach include: Japan Patent Number 10247155A, “File

US 6,988,101 B2
3

System Interface for Data Base;” Japan Patent Number
8137728A, “Portable File System and File Data Processing
Method;” Japan Patent Number 7230396A, “Mutual Con
stitution System for Different Kinds of File System Forms;”
and Japan Patent Number 10260877A, “Protocol Conver
sion System in Client Server System, Method Therefor and
Recording Medium Programmed and Recorded With the
Method.” Publications of this approach include: “File Inter
face for Migrating Applications to Enhanced Persistent
Storage Platforms,” IBM Technical Disclosure Bulletin,
June 1992, p. 182—183; “AS/400 OS/2 PC Support Shared
Folders,” id., December 1989, p. 202—205; “Method to
Manage the Mapping of Logical to Physical Record,” id.,
December 1995, p. 261—262; “Implicit Mapping of File
Data,” id., April 1995, p. 523—524; and “OS/2 Logical File
System,” id., May 1992, p. 370—371. Although this approach
is a signi?cant improvement over merely converting the
information format, it still suffers from the disadvantage of
even more permutations, Where the permutations for each
converter for a different pair of source and target ?le systems
ported to the different types of operating systems and
computer hardWare architectures is also probably not com
mercially feasible.

Thus, there is a clearly felt need for a method, system and
computer program product for providing an improved exten
sible ?le access method for accessing a foreign ?le system
from a data processing system With a native ?le system, said
foreign ?le system and said native ?le system implementing
different ?le system protocols.

SUMMARY OF THE INVENTION

The present invention comprises an extensible ?le access
method for accessing a ?rst foreign ?le system from a data
processing system With a ?rst native ?le system, said ?rst
foreign ?le system and said ?rst native ?le system imple
menting different ?le system protocols.

In accordance With an aspect of a preferred embodiment
of the present invention, an extensible ?le access method for
accessing a foreign ?le system from a data processing
system With a native ?le system, said foreign ?le system and
said native ?le system implementing different ?le system
protocols, comprises the steps of:

issuing a request according to the native ?le system
protocol for data stored in the foreign ?le system;

translating the native ?le system request to an interme
diate programming interface, Wherein the intermediate pro
gramming interface is different from both the native ?le
system protocol and the foreign ?le system protocol;

translating the intermediate ?le system request to the
foreign ?le system protocol; and

returning to the data processing system a response from
the foreign ?le system responsive to the translated request.

In accordance With another aspect of a preferred embodi
ment of the present invention, the extensible ?le access
method is extended to support a second foreign ?le system
by determining the second foreign ?le system protocol and
by providing a translation from the intermediate program
ming interface to the second foreign ?le system protocol.

In accordance With another aspect of a preferred embodi
ment of the present invention, the extensible ?le access
method is extended to support a second native ?le system by
determining the native ?le system protocol and by providing
a translation from the second native ?le system protocol to
the intermediate programming interface.

In accordance With another aspect of a preferred embodi
ment of the present invention, the intermediate program

10

15

25

35

40

45

55

65

4
ming interface comprises a set of generic access functions
common to the native ?le system protocol and the foreign
?le system protocol, and comprises a set of ?le system
speci?c functions Which are not common to the ?le system
protocols.

In accordance With another aspect of a preferred embodi
ment of the present invention, the set of generic access
functions common to the native ?le system protocol and the
foreign ?le system protocol are translated from the native
?le system protocol to the intermediate programming inter
face Which is then translated to the foreign ?le system
protocol, and the set of ?le system speci?c functions Which
are not common to the ?le system protocols are not trans
lated from the native ?le system protocol to the intermediate
programming interface.

In accordance With another aspect of a preferred embodi
ment of the present invention, the set of ?le system speci?c
functions Which are not common to the ?le system protocols
further comprises a set of extended native ?le system
functions Which have no equivalent function in the foreign
?le system protocol.

In accordance With another aspect of a preferred embodi
ment of the present invention, the set of extended native ?le
system functions causes a predetermined response to be sent
to the data processing system.

In accordance With another aspect of a preferred embodi
ment of the present invention, the set of ?le system speci?c
functions Which are not common to the ?le system protocols
further comprises and a set of extended foreign ?le system
functions Which have no equivalent function in the native
?le system protocol.

In accordance With another aspect of a preferred embodi
ment of the present invention, the set of extended foreign ?le
system functions are passed through to the foreign ?le
system in an untranslated form.
A preferred embodiment of the present invention has the

advantage of providing a method for integrating existing
applications Which use a native ?le system With back-end
data management systems Which use a separate foreign ?le
system.
A preferred embodiment of the present invention has the

advantage of alloWing an application Written for the native
?le system to read and Write data to a back-end application
or back-end data store Without requiring ?le system modi
?cations of that application.
A preferred embodiment of the present invention has the

advantage of alloWing the native ?le system application to
create, vieW and manipulate the meta-data for the back-end
application from the native ?le system application.
A preferred embodiment of the present invention has the

advantage of alloWing the foreign ?le system application to
appear as if it is Written to the native ?le system.

A preferred embodiment of the present invention has the
advantage of alloWing the native ?le system application to
access the foreign ?le system as if it is a native ?le system.

A preferred embodiment of the present invention has the
advantage of reducing the complexity of supporting an
additional native ?le system.
A preferred embodiment of the present invention has the

advantage of reducing the complexity of supporting an
additional foreign ?le system.
A preferred embodiment of the present invention has the

advantage of reducing the complexity of translating from
multiple native ?le system protocols to multiple foreign ?le
system protocols.

US 6,988,101 B2
5

A preferred embodiment of the present invention has the
advantage of allowing the native ?le system application by
use of the virtual ?le system to seamlessly access statically
stored ?les (such as File Transfer Protocol (FTP), Hypertext
Transfer Protocol (HTTP), hierarchical data base ?les, rela
tional data base ?les, and object oriented database ?les) and
dynamically constructed ?les (such as Information Manage
ment System (IMS) transactions or Customer Information
Control System (CICS) transactions).
A preferred embodiment of the present invention has the

advantage of providing a consistent and potentially standard
method for accessing back-end storage systems.
A preferred embodiment of the present invention has the

advantage of providing a uni?ed storage access model Which
alloWs native ?le system applications and the native oper
ating system to seamlessly import and eXport data to back
end server systems via the virtual ?le system by presenting
the back-end systems in a Way as to be indistinguishable
from the local ?le system.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion and the advantages thereof, reference is noW made to
the Description of the Preferred Embodiment in conjunction
With the attached DraWings, in Which:

FIG. 1 is a block diagram of a distributed computer
system Which may be used in performing the method of an
embodiment of the present invention, forming part of the
apparatus of an embodiment of the present invention, and
Which may use the article of manufacture comprising a
computer-readable storage medium having a computer pro
gram embodied in said medium Which may cause the
computer system to practice an embodiment of the present
invention;

FIG. 2 is a block diagram of an architecture of a preferred
embodiment of the present invention; and

FIGS. 3 and 4 are ?oWcharts illustrating the operations
preferred in carrying out a preferred embodiment of the
present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring ?rst to FIG. 1, there is depicted a graphical
representation of a data processing system 8, Which may be
utiliZed to implement the present invention. As may be seen,
data processing system 8 may include a plurality of
netWorks, such as Local Area NetWorks (LAN) 10 and 32,
each of Which preferably includes a plurality of individual
computers 12 and 30, respectively. Of course, those skilled
in the art Will appreciate that a plurality of Intelligent Work
Stations (IWS) coupled to a host processor may be utiliZed
for each such netWork. Each said netWork may also consist
of a plurality of processors coupled via a communications
medium, such as shared memory, shared storage, or an
interconnection netWork. As is common in such data pro
cessing systems, each individual computer may be coupled
to a storage device 14 and/or a printer/output device 16 and
may be provided With a pointing device such as a mouse 17.

The data processing system 8 may also include multiple
mainframe computers, such as mainframe computer 18,
Which may be preferably coupled to LAN 10 by means of
communications link 22. The mainframe computer 18 may
also be coupled to a storage device 20 Which may serve as
remote storage for LAN 10. Similarly, LAN 10 may be
coupled via communications link 24 through a sub-system

15

25

35

40

45

55

65

6
control unit/communications controller 26 and communica
tions link 34 to a gateWay server 28. The gateWay server 28
is preferably an IWS Which serves to link LAN 32 to LAN
10.

With respect to LAN 32 and LAN 10, a plurality of
documents or resource objects may be stored Within storage
device 20 and controlled by mainframe computer 18, as
resource manager or library service for the resource objects
thus stored. Of course, those skilled in the art Will appreciate
that mainframe computer 18 may be located a great geo
graphic distance from LAN 10 and similarly, LAN 10 may
be located a substantial distance from LAN 32. For eXample,
LAN 32 may be located in California While LAN 10 may be
located Within North Carolina and mainframe computer 18
may be located in NeW York.

SoftWare program code Which employs the present inven
tion is typically stored in the memory of a storage device 14
of a stand alone Workstation or LAN server from Which a

developer may access the code for distribution purposes, the
softWare program code may be embodied on any of a variety
of knoWn media for use With a data processing system such
as a diskette or CD-ROM or may be distributed to users from

a memory of one computer system over a netWork of some
type to other computer systems for use by users of such other
systems. Such techniques and methods for embodying soft
Ware code on media and/or distributing softWare code are
Well-knoWn and Will not be further discussed herein.

As Will be appreciated upon reference to the foregoing, it
is often desirable for a user Working on a Workstation 12 to
be able to access information or ?les stored on host storage
device 20 on the host 18. Such ?les are usually stored on
host storage device 20 in accordance With a host ?le system
protocol Which is different from the Workstation ?le system
protocol used to store ?les on the Workstation 12. The
present invention provides an extensible ?le access method
and virtual ?le system Which alloWs an application execut
ing on the Workstation 12, having a native ?le system for
?les stored on the Workstation 12, to access ?les stored on
the host storage device 20, the host storage ?les being stored
in a foreign ?le system implementing a different ?le system
protocol from the Workstation or native ?le system protocol.

Referring neXt to FIG. 2, there is shoWn a block diagram
of an architecture of a preferred embodiment of the present
invention. The foreign ?le system 20 is accessed by issuing
a request according to the native ?le system protocol 285 for
data stored in the foreign ?le system 20; translating the
native ?le system request to an intermediate programming
interface 250, Wherein the intermediate programming inter
face 250 is different from both the native ?le system protocol
285 and the foreign ?le system protocol (255, 260, or 265);
translating the intermediate ?le system request to the foreign
?le system protocol; and returning to the data processing
system a response 295 from the foreign ?le system respon
sive to the translated request. Multiple foreign ?le systems
235 and 240 may be supported by determining a second
foreign ?le system protocol and by providing a translation
from the intermediate programming interface to the second
foreign ?le system protocol. Also, multiple native ?le sys
tems may be supported by determining a second native ?le
system protocol and by providing a translation from the
second native ?le system protocol to the intermediate pro
gramming interface.
The intermediate programming interface comprises a set

of generic access functions common to the native ?le system
protocol and the foreign ?le system protocol and a set of ?le
system speci?c functions Which are not common to the ?le

US 6,988,101 B2
7

system protocols. The set of generic access functions com
mon to the native ?le system protocol and the foreign ?le
system protocol are translated from the native ?le system
protocol to the intermediate programming interface Which is
then translated to the foreign ?le system protocol, and the set
of ?le system speci?c functions Which are not common to
the ?le system protocols are not translated from the native
?le system protocol to the intermediate programming inter
face Which is then translated to the foreign ?le system
protocol. Existing applications Which use a native ?le sys
tem may be more easily integrated With back-end data
management systems Which use a separate foreign ?le
system Without requiring ?le system modi?cations of the
existing application. A foreign ?le system application may
appear as if it is Written to the native ?le system, and a native
?le system application may access the foreign ?le system as
if it is a native ?le system. Adynamic virtual ?le system may
be constructed to support a consistent standard interface to
seamlessly access statically stored ?les and dynamically
constructed ?les.

Sash 200 is a replacement for a conventional Common
Internet File System (CIFS) server. It consists of a Server
Message Block (SMB) server 210 Which interfaces to a
client 215, and one or more FSModule backends 220, 225,
and 230 Which interface on one side to the SMB server 210
and on the other side to the backends 235, 240, and 245. The
SMB server 210 includes the server itself, the logging
system and the control ?le that manages the SMB server.
The design and implementation of the SMB server is based
on an Internet-Draft, A Common Internet File System
(CIFS) Protocol, http://msdn.microsoft.com/Workshop/
netWorking/cifs/default.asp.

1O

15

25

8
The backend, FFSModule 220, exposes ISash 250 Which

is a Common Object Model (COM) interface to communi
cate With the SMB server. The FFSModule receives requests
from the SMB server through ISash, translates them to
appropriate application programming interfaces (APIs) 255,
260, and 265 provided by client-API dynamic link libraries
(dlls). The FFSModule then returns the pertinent informa
tion to the SMB server.

A COM interface, ISash 250, de?nes the intermediate
programming interface betWeen the SMB 210 and the FFS
Module 220, 225, and 230. The ISash interface comprises
disk type calls and is described in Table A.

FFSModule is a COM object. When the netWork com
mand “net use devicename: \\SMBservername\sharename”
270 is issued, the SMB 210 creates a neW instance of
FFSModule object 220 associated With the given sharename
275 and acquires the ISash interface pointer. The “SMB
servername” 280 is the name of the SMB server, and
“sharename” 275 is a system name or a dataset name

provided by a user. After SMB gets the ISash pointer, it
sends the ?rst request to FFSModule to mount the share
name to a drive letter. Once a system 235 or a data set is

mounted, it is simply treated as if it Was a local native ?le
system drive.

The folloWing Table A is the list of requests that can come
into SMB (a native ?le system protocol), the translated
request (intermediate programming interface) to FFSMod
ule from SMB, and the translated API calls made by
FFSModule (foreign ?le system protocol) to obtain the
necessary data from the ?le system, an MVS ?le system in
this example:

TABLE A

Client to SMB Interface
SMB Call

SMB to ISash Interface
ISash Call

ISash to MVS
MVS Call

SMBiCOMiCHECKiDIRECTORY

SMBiCOMiCLOSE

SMBiCOMiCREATEiDIRECTORY
TRANS ZiCREATEiDIRECTORY

SMBiCOMiDELETE

SMBiQUERYiFILEiBASICiINFO
SMBiINFOiSTANDARD
SMBiINFOiQUERYiEAiSIZE
SMBiINFOiQUERYiEASiFROMiLIST
SMBiINFOiQUERYiALLiEAS
SMBiINFOiISiNAMEiVALID
TRANS ZiQUERYiPATHiINFORMAT ION
SMBiQUERYiFILEiSTANDARDiINFO
SMBiQUERYiFILEiEAiINFO
SMBiQUERYiFILEiNAMEiINFO
SMBiCOMiSETiINFORMAT ION
TRANS ZiSETiPATHiINFO RMATION

CheckDirectory

CloseFile

CreateDirectory

DeleteFile

FileAttributes

CheckDirectory(BSTR InDirName, BYTE Is8p3,
SashIDUnit uid, SashIDUnit pid, BSTR
*OutDirName, BYTE *DoesExist)
DirectoryListing *
DirectoryListing::getListingUmipHost, Quali?er);
neW DirectoryListing::Cursor(**ppDirList,

CsrPattern);
DirectoryListing::Cursor::setToFirst();
DirectoryListing::Cursor::isValid();
DirectoryListing::Cursor::element();
unsigned char FFSFileItem::isDirectoryO
CloseFile(SashFid Fid, BYTE Flags, SHORT
Options)
The ?le object created at open time Will be deleted.
CreateDirectory(BSTR NeWDirectory, SashIDUnit
uid, SashIDUnit pid)
Not supported.
DeleteFile(BSTR FileName, SashFileAttributes
FileAttributes, SashIDUnit uid, SashIDUnit pid)
FFSConnectedDrive *

HostSystem::returnConnection(O,FALSE);
Result *

FFSConnectedDrive::deleteFile(SlashName);
FileAttributes(BSTR FileName, SHORT Options,
SashFileAttributes InAttributes, SashDate InDate,
SashTime InTime, SashIDUnit uid, SashIDUnit
pid, LONG *OutSiZe,
SashFileAttributes *OutAttributes,
SashDate *OutDate SashTime *OutTime)

US 6,988,101 B2
10

TABLE A-continued

Client to SMB Interface
SMB Call

SMB to ISash Interface
ISash Call

ISash to MVS
MVS Call

TRANSZLSETLPATHLINFORMAT ION
SMBLINFOLSTANDARD
SMBLINFOLQUERYLEALSIZE

SMBLCOMLFINDLCLOSE, FINDLCLOSEZ
SMBLCOMLFIND
TRANSZLFINDLFIRSTZ
SMBiFINDiFILEiFULLiDIRECTORYiINFO
SMBLFINDLFILELBOTHLDIRECTORYLINFO

SMBLCOMLFIND
TRANSZiFINDiFIRSTZ
TRANSZLFINDLNEXTZ

SMBLCOMLFLUSH

Not applicable

TRANSZiQUERYiFILEiINFORMATION

FileDateTirne

FindFileClose
FindFirstFile

FindNeXtFile

FlushVolurne

GetCustornInterface

GetFileInfo

FileDateTirne(SashFid Fid, BYTE Flags,
SashDate InDate, SashTirne InTirne,
SashDate *OutDate, SashTirne *OutTirne)
Not called by SMB

FindFirstFile(BSTR SearchPattern,
SashFileAttributes SearchAttributes,
SashIDUnit uid, SashIDUnit pid,
BSTR *FileNarne, BSTR *ShortFileNarne,
SashDate *CreationDate,
SashTirne *CreationTirne,
SashDate *LastAccessDate,
SashTirne *LastAccessTirne,
SashDate *LastModifyDate,
SashTirne *LastModifyTirne,
SashFileAttributes *FileAttributes,
LONG *Size, FindHandle *hFind)
DirectoryListing *
DirectoryListing: :getListing(*rnipHost, Quali?er)
neW DirectoryListing::Cursor(**ppDirList,

CsrPattern)
DirectoryListing: :Curs0r::setToFirst()
DirectoryListing: :Cursor::isValid()
DirectoryListing: :Cursor::elernent()
unsigned char FFSFileItern::isFile()
const FFSFile & FFSFileItern::asFile()
const FFSFile & FFSFileItern::asDirectory()
FFSTirneStarnp::year()
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FindNeXtFile(FindHandle hFind, BYTE Flags,
BSTR *FileNarne, BSTR *ShortFileNarne,
SashDate *CreationDate,
SashTirne *CreationTirne,
SashDate *LastAccessDate,
SashTirne *LastAccessTirne,
SashDate *LastModifyDate,
SashTirne *LastModifyTirne,
SashFileAttributes *FileAttributes,
LONG *Size)
DirectoryListing: :Cursor::setToNeXt();
DirectoryListing: :Cursor::isValid()
DirectoryListing: :Cursor::elernent().isFile()
const FFSFile & FFSFileItern::asFile()
const FFSFile & FFSFileItern::asDirectory()
FFSTirneStarnp::year()
FFSTirneStarnp::rnonth()
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FFSTirneS tarnp ::
FFSTirneS tarnp ::

FlushV0lurne(BYTE Flags,
SashIDUnit uid, SashIDUnit pid)

GetCust0rnInterface(BSTR Path, [Unknown
**pIUnknoWn)
This call is currently not used. It Will be
inplernented if necessary.
GetFileInfo(SashFid Fid, BSTR *FileNarne,
BSTR

*ShortFileNarne,
BSTR *Path,
SashDate *CreationDate,
SashTirne *CreationTirne,
SashDate *LastAccessDate,
SashTirne *LastAccessTirne,
SashDate *LastModifyDate,
SashTirne *LastModifyTirne,
SashFileAttributes *FileAttributes, LONG *Size)
FFSFileFile::createdTirne()->year()

:createdTirne()->rnonth()
:createdTirne()->day()

FFSFileFile::createdTirne()->hour()

11
US 6,988,101 B2

12

TABLE A-continued

Client to SMB Interface
SMB Call

SMB to ISash Interface
ISash Call

ISash to MVS
MVS Call

SMBLQUERYLFSLSIZELINFO
TRANSZLQUERYLFSLINFORMATION

Not applicable

SMBLCOMLOPEN
SMB_COM_CREATE
SMBLCOMLNTLCREATELANDX

SMBLINFOLVOLUME
TRANSZiQUERYiFSiINFORMATION
SMBLQUERYLFSLVOLUMELINFO
SMBLCOMLQUERYLINFORMATIONLDISK

SMBiCOMiREAD
SMBLCOMLLOCKLANDLREAD
SMBLCOMLREADLRAW
SMBLCOMLREADLMPX
SMBiCOMiREADiANDX
SMBLCOMLDELETELDIRECTORY

SMBiCOMiRENAME
SMBLCOMLNTLRENAME

GetFSFreeSpace

Init

OpenFile

QueryVolumeInfo

Read

RemoveDirectory

Rename

FFSFileFile: :createdTime()->minute()
FFSFileFile::createdTime()->second()
FFSFileFile::lastReadTime()->year()
FFSFileFile: :lastReadTime()->month()
FFSFileFile::lastReadTime()->day()
FFSFileFile::lastReadTime()->hour()
FFSFileFile: :lastReadTime()->minute()
FFSFileFil :lastReadTime()->second()
FFSFileFile::lastModi?edTime()—>year()
FFSFileFile: :lastModi?edTime()->month()
FFSFileFile: :lastModi?edTime()->day()
FfSFileFile::lastModi?edTime()—>hour()
FileFile::lastModi?edTimeO->minute()
FFSFileFile::lastModi?edTime()—>second()
FFSFileFile::length();
GetFSFreeSpace(BSTR FSName,
SashIDUnit uid, SashIDUnit pid,
LONG *SectorsPerCluster,
LONG *BytesPerSector,
LONG *NumOfFreeClusters,
LONG *TotalNumberOfClusters)
This call is not applicable to MVS. Provide
dummy data to satisfy SMB.
*SectorsPerCluster = 256;

*BytesPerSector = 256;
*NumOfFreeClusters = 126;

*TotalNumherOfClusters = 4096;

Init(BSTR Paths, BYTE *UseCompletePath)
FFSControl::loadSystemXMLO;
HostSystem *
FFSControl::getSystem(ServerName);
OpenFile(BSTR FileName, SashFileAttributes
Attribs, SHORT Options, BYTE Flags,
SashIDUnit uid, SashIDUnit pid, SHORT
*Result, SashFid *Fid)
DirectoryListing *
DirectoryListing: :getListing(*mipHost, Quali?er);
neW DirectoryListing::Cursor(**ppDirList,

CsrPattern);
DirectoryListing: :Cursor: :setToFirst();
DirectoryListing: :Cursor: :isValid();
DirectoryListing: :Cursor: :element();
unsigned char FFSFileItem::isDirectory()
neW

FFSFileDirectory(SlashName,Attr,mipCurrentHost);
neW

FFSFileFile(SlashName,Attr,mipCurrentHost);
FFSFileFile::flush();
QueryVolumeInfo(SashIDUnit uid, SashIDUnit
pid, BSTR *VolumeName,
LONG *VolumeSerialNumber)
This call is not applicable to MVS. Provide
dummy data to satisfy SMB.
Read(SashFid Fid, LONG Offset, LONG Count,
SAFEARRAY **buf, LONG *BytesRead)
FFSFileFile::get(Offset,Count);

RemoveDirectory(BSTR Directory,
SashIDUnit uid, SashIDUnit pid)
Not supported.
Rename(BSTR OldFileName,
SashFileAttributes FileAttributesl,
BSTR NeWFileName,
SashFileAttributes FileAttributesZ,
SashIDUnit uid, SashIDUnit pid,
BYTE Reserved)
FFSConnectedDrive *

HostSytem::returnConnection(O,FALSE);
DirectoryListing *
DirectoryListing: :getListing(*mipHost,
Quali?er);
neW DirectoryListing::Cursor(**ppDirList,

CsrPattern);
DirectoryListing: :Cursor: :setToFirst();
DirectoryListing: :Cursor: :isValid();

US 6,988,101 B2
13 14

TABLE A-continued

Client to SMB Interface SMB to ISash Interface ISash to MVS
SMB Call ISash Call MVS Call

DirectoryListing: :Cursor: :element();
unsigned char FFSFileItem::isDirectory()
Result * FFSConnectedDrive::renameFile

(SlashOldName,SlashNeWName);
SMBLCOMLSEEK Seek Seek(SashFid Fid, LONG Offset, BYTE Mode,

LONG *NeWOffset)
FFSFileFile::seek(CurrPos + Offset);
FFSFileFile::tell();
FFSFileFile::seekToEnd();

SMBiCOMiTREEiDISCONNECT UnInit UnInit()
TREELDISCONNECI‘ Destroy all the ?le objects created.

Destroy all the DirectoryListing created.
SMBLCOMLLOCKINGLANDX UnlockFile UnlockFile(SashFid Fid)
SMBiCOMiWRITEiANDiUNLOCK Not called by SMB
SMBiCOMiTREEiDISCONNECT
SMBLCOMLWRITE Write Write(SashFid Fid, LONG Offset, LONG Count,
SMBLCOMLWRITELPRINTLFILE
SMBLCOMLWRITELANDLUNLOCK

SMBLCOMLREADLRAW
SMBLCOMLWRITELMPX
SMBLCOMLWRITELRAW
SMBiCOMiWRITEiCOMPLETE
SMBLCOMLWRITELMPXLSECONDARY
SMBLCOMLWRITELANDLCLOSE
SMBLCOMLWRITELANDX
SMBiCOMiWRITEiBULK
SMBLCOMLWRITELBULKLDATA

SAFEARRAY *buf, LONG *BytesWritten)
FFSFileFile::put((const char")&RaWBuffer,
Offset,
Count); FFSFile::seekToEnd();

Referring noW to FIG. 3 and FIG. 4, the ?oWcharts
illustrate the operations preferred in carrying out the pre
ferred embodiment of the present invention. In the
?oWcharts, the graphical conventions of a diamond for a test
or decision and a rectangle for a process or function are used.
These conventions are Well understood by those skilled in
the art, and the ?oWcharts are sufficient to enable one of
ordinary skill to Write code in any suitable computer pro
gramming language for an assembler, interpreter, or com
piler.

Referring ?rst to FIG. 3, after the start 310 of the process
300, a native request from a client on the Workstation to the
remote data processing system to open a foreign ?le in the
foreign ?le is generated in process block 320. Responsive to
the request, process block 330 determines the native ?le
system protocol; and process block 340 determines the
foreign ?le system protocol. Thereafter, process block 350
translates the native ?le system request to an intermediate
programming interface, Wherein the intermediate program
ming interface is different from both the native ?le system
protocol and the foreign ?le system protocol. Process block
360 then translates the intermediate ?le system request to the
foreign ?le system protocol. Thereafter, process block 370
issues the translated request to the foreign ?le system; and
process block 380 returns to the client a response from the
foreign ?le system responsive to the translated request. The
process then ends at process block 390.

Referring noW to FIG. 4, process 400 is an expansion of
the translation process steps 340, 350, 360, and 370 of FIG.
3. Decision block 410 determines if the native ?le system
request is a common access function, an access function
common to both the native ?le system protocol and the
foreign ?le system protocol. If the native ?le system request
is a common access function, then process block 420 trans
lates the common access function from the native ?le system
protocol to the intermediate programming interface and then
translates it from the intermediate system protocol to the
foreign ?le system protocol. Thereafter, processing contin
ues to process block 380 Which returns the response to the
client.

30

35

40

45

55

65

Returning noW to decision block 410, if the native ?le
system request is not a common access function, then
decision block 440 determines if the native ?le system
request is an extended native function, a native ?le system
functions Which have no equivalent function in the foreign
?le system protocol. If the native ?le system request is an
extended native function, then process block 450 prepare a
predetermined response to be sent to the client, preferably
indicating the inability of the foreign ?le system to service
the request. Thereafter, processing continues to process
block 380 Which returns the response to the client.

Returning noW to decision block 440, if the native ?le
system request is not an extended native function, then
decision block 460 determines if the native ?le system
request is an extended foreign function, a foreign ?le system
function Which has no equivalent function in the native ?le
system protocol. If the native ?le system request is an
extended foreign function, then process block 470 passes
through the extended foreign function to the foreign ?le
system in an untranslated form. Thereafter, processing con
tinues to process block 380 Which returns the response from
the extended foreign function to the client.

Returning noW to decision block 460, if the native ?le
system request is not an extended foreign function, then
process block 480 returns an error to the client as the request
Was neither a common, extended native, nor extended for
eign function.

Using the foregoing speci?cation, the invention may be
implemented using standard programming and/or engineer
ing techniques using computer programming softWare,
?rmware, hardware or any combination or sub-combination
thereof. Any such resulting program(s), having computer
readable program code means, may be embodied Within one
or more computer usable media such as ?xed (hard) drives,
disk, diskettes, optical disks, magnetic tape, semiconductor
memories such as Read-Only Memory (ROM), Program
mable Read-Only Memory (PROM), etc., or any memory or
transmitting device, thereby making a computer program
product, i.e., an article of manufacture, according to the

US 6,988,101 B2
15

invention. The article of manufacture containing the com
puter programming code may be made and/or used by
executing the code directly or indirectly from one medium,
by copying the code from one medium to another medium,
or by transmitting the code over a netWork. An apparatus for
making, using, or selling the invention may be one or more
processing systems including, but not limited to, central
processing unit (CPU), memory, storage devices, commu
nication links, communication devices, servers, input/output
(I/O) devices, or any sub-components or individual parts of
one or more processing systems, including softWare,
?rmWare, hardWare or any combination or sub-combination
thereof, Which embody the invention as set forth in the
claims.

User input may be received from the keyboard, mouse,
pen, voice, touch screen, or any other means by Which a
human can input data to a computer, including through other
programs such as application programs.

One skilled in the art of computer science Will easily be
able to combine the softWare created as described With
appropriate general purpose or special purpose computer
hardWare to create a computer system and/or computer
sub-components embodying the invention and to create a
computer system and/or computer sub-components for car
rying out the method of the invention. Although the present
invention has been particularly shoWn and described With
reference to a preferred embodiment, it should be apparent
that modi?cations and adaptations to that embodiment may
occur to one skilled in the art Without departing from the
spirit or scope of the present invention as set forth in the
folloWing claims.
We claim:
1. An extensible ?le access method for accessing a foreign

?le system from a data processing system With a native ?le
system, said foreign ?le system and said native ?le system
implementing different ?le system protocols, and Wherein
?les created by the foreign ?le system may not be accessed
using a native ?le system protocol, said ?le access method
comprising:

issuing a request according to the native ?le system
protocol to perform a ?le system operation With respect
to the foreign ?le system;

translating the native ?le system request to an interme
diate programming interface, Wherein the intermediate
programming interface is different from both the native
?le system protocol and a foreign ?le system protocol,
and Wherein the intermediate programming interface
comprises a set of generic access functions common to
the native ?le system protocol and the foreign ?le
system protocol;

translating the intermediate programming interface to a
?le system request according to the foreign ?le system
protocol;

using the translated ?le system request according to the
foreign ?le system protocol to perform the requested
?le system operation With respect to the foreign ?le
system; and

returning to the data processing system a response from
the foreign ?le system responsive to the translated
request in the foreign ?le system protocol.

2. The ?le access method of claim 1, Wherein the ?le
access method is extended to support a second foreign ?le
system by providing a translation from the intermediate
programming interface to the second foreign ?le system
protocol, said method further comprising:

determining the foreign ?le system protocol.
3. The ?le access method of claim 1, Wherein the ?le

access method is extended to support a second native ?le
system by providing a translation from the second native ?le

15

25

35

40

55

65

16
system protocol to the intermediate programming interface,
said method further comprising:

determining the native ?le system protocol.
4. The ?le access method of claim 1, Wherein the inter

mediate programming interface further comprises a set of
?le system speci?c functions Which are not common to the
?le system protocols.

5. The ?le access method of claim 4, Wherein the set of
generic access functions common to the native ?le system
protocol and the foreign ?le system protocol are translated
from the native ?le system protocol to the intermediate
programming interface Which is then translated to the for
eign ?le system protocol, and Wherein the set of ?le system
speci?c functions Which are not common to the ?le system
protocols are not translated from the native ?le system
protocol to the intermediate programming interface Which is
then translated to the foreign ?le system protocol.

6. The ?le access method of claim 5, Wherein the set of ?le
system speci?c functions Which are not common to the ?le
system protocols further comprises a set of extended native
?le system functions Which have no equivalent function in
the foreign ?le system protocol.

7. The ?le access method of claim 6, Wherein the set of
extended native ?le system functions causes a predeter
mined response to be sent to the data processing system.

8. The ?le access method of claim 5, Wherein the set of ?le
system speci?c functions Which are not common to the ?le
system protocols further comprises a set of extended foreign
?le system functions Which have no equivalent function in
the native ?le system protocol.

9. The ?le access method of claim 8, Wherein the set of
extended foreign ?le system functions are passed through to
the foreign ?le system in an untranslated form.

10. An article of manufacture for use in a computer
system for providing an extensible ?le access method for
accessing a foreign ?le system from a data processing
system With a native ?le system, said foreign ?le system and
said native ?le system implementing different ?le system
protocols, and Wherein ?les created by the foreign ?le
system may not be accessed using a native ?le system
protocol, said article of manufacture comprising a computer
readable storage medium having a computer program
embodied in said medium Which causes the computer sys
tem to execute the access method comprising:

issuing a request according to the native ?le system
protocol to perform a ?le system operation With respect
to the foreign ?le system;

translating the native ?le system request to an interme
diate programming interface, Wherein the intermediate
programming interface is different from both the native
?le system protocol and a foreign ?le system protocol,
and Wherein the intermediate programming interface
comprises a set of generic access functions common to
the native ?le system protocol and the foreign ?le
system protocol;

translating the intermediate programming interface to a
?le system request according to the foreign ?le system
protocol;

using the translated ?le system request according to the
foreign ?le system protocol to perform the requested
?le system operation With respect to the foreign ?le
system; and

returning to the data processing system a response from
the foreign ?le system responsive to the translated
request in the foreign ?le system protocol.

11. The article of manufacture of claim 10, Wherein the
?le access method is extended to support a second foreign
?le system by providing a translation from the intermediate
programming interface to the second foreign ?le system
protocol, said method further comprising:
determining the foreign ?le system protocol.

US 6,988,101 B2
17

12. The article of manufacture of claim 10, wherein the
?le access method is extended to support a second native ?le
system by providing a translation from the second native ?le
system protocol to the intermediate programming interface,
said method further comprising:

determining the native ?le system protocol.
13. The article of manufacture of claim 10, Wherein the

intermediate programming interface further comprises a set
of ?le system speci?c functions Which are not common to
the ?le system protocols.

14. The article of manufacture of claim 13, Wherein the set
of generic access functions common to the native ?le system
protocol and the foreign ?le system protocol are translated
from the native ?le system protocol to the intermediate
programming interface Which is then translated to the for
eign ?le system protocol, and Wherein the set of ?le system
speci?c functions Which are not common to the ?le system
protocols are not translated from the native ?le system
protocol to the intermediate programming interface Which is
then translated to the foreign ?le system protocol.

15. The article of manufacture of claim 14, Wherein the set
of ?le system speci?c functions Which are not common to
the ?le system protocols further comprises a set of extended
native ?le system functions Which have no equivalent func
tion in the foreign ?le system protocol.

16. The article of manufacture of claim 15, Wherein the set
of extended native ?le system functions causes a predeter
mined response to be sent to the data processing system.

17. The article of manufacture of claim 14, Wherein the set
of ?le system speci?c functions Which are not common to
the ?le system protocols further comprises a set of extended
foreign ?le system functions Which have no equivalent
function in the native ?le system protocol.

18. The article of manufacture of claim 17, Wherein the set
of extended foreign ?le system functions are passed through
to the foreign ?le system in an untranslated form.

19. An extensible ?le access system for accessing a
foreign ?le system from a data processing system With a
native ?le system, said foreign ?le system and said native
?le system implementing different ?le system protocols, and
Wherein ?les created by the foreign ?le system may not be
accessed using a native ?le system protocol, said ?le access
system comprising:

a request issued according to the native ?le system
protocol to perform a ?le system operation With respect
to the foreign ?le system;

a translator for translating the native ?le system request to
an intermediate programming interface, Wherein the
intermediate programming interface is different from
both the native ?le system protocol and a foreign ?le
system protocol, and Wherein the intermediate pro
gramming interface comprises a set of generic access
functions common to the native ?le system protocol
and the foreign ?le system protocol;

a translator for translating the intermediate programming
interface to a ?le system request according to the
foreign ?le system protocol;

using the translated ?le system request according to the
foreign ?le system protocol to perform the requested
?le system operation With respect to the foreign ?le
system; and

a response returned to the data processing system from the
foreign ?le system responsive to the translated request
in the foreign ?le system protocol.

20. The ?le access system of claim 19, Wherein the ?le
access system is extended to support a second foreign ?le
system by providing a translator for translation from the
intermediate programming interface to the second foreign
?le system protocol.

21. The ?le access system of claim 19, Wherein the ?le
access system is extended to support a second native ?le

15

25

35

40

45

55

65

18
system by providing a translator for translation from the
second native ?le system protocol to the intermediate pro
gramming interface.

22. The ?le access system of claim 19, Wherein the
intermediate programming interface further comprises a set
of ?le system speci?c functions Which are not common to
the ?le system protocols.

23. The ?le access system of claim 22, Wherein the set of
generic access functions common to the native ?le system
protocol and the foreign ?le system protocol are translated
from the native ?le system protocol to the intermediate
programming interface Which is then translated to the for
eign ?le system protocol, and Wherein the set of ?le system
speci?c functions Which are not common to the ?le system
protocols are not translated from the native ?le system
protocol to the intermediate programming interface Which is
then translated to the foreign ?le system protocol.

24. The ?le access system of claim 23, Wherein the set of
?le system speci?c functions Which are not common to the
?le system protocols further comprises a set of extended
native ?le system functions Which have no equivalent func
tion in the foreign ?le system protocol.

25. The ?le access system of claim 24, Wherein the set of
extended native ?le system functions causes a predeter
mined response to be sent to the data processing system.

26. The ?le access system of claim 23, Wherein the set of
?le system speci?c functions Which are not common to the
?le system protocols further comprises a set of extended
foreign ?le system functions Which have no equivalent
function in the native ?le system protocol.

27. The ?le access system of claim 26, Wherein the set of
extended foreign ?le system functions are passed through to
the foreign ?le system in an untranslated form.

28. The ?le access method of claim 1, Wherein the request
to perform the ?le system operation With respect to the
foreign ?le system comprises a request to create or delete a
directory in the foreign ?le system.

29. The ?le access method of claim 1, Wherein request to
perform the ?le system operation With respect to the foreign
?le system comprises a request to delete a ?le in the foreign
?le system.

30. The ?le access method of claim 1, Wherein request to
perform the ?le system operation With respect to the foreign
?le system comprises a request to rename a ?le in the foreign
?le system.

31. The article of manufacture of claim 10, Wherein the
request to perform the ?le system operation With respect to
the foreign ?le system comprises a request to create or delete
a directory in the foreign ?le system.

32. The article of manufacture of claim 10, Wherein
request to perform the ?le system operation With respect to
the foreign ?le system comprises a request to delete a ?le in
the foreign ?le system.

33. The article of manufacture of claim 10, Wherein
request to perform the ?le system operation With respect to
the foreign ?le system comprises a request to rename a ?le
in the foreign ?le system.

34. The ?le access system of claim 19, Wherein the
request to perform the ?le system operation With respect to
the foreign ?le system comprises a request to create or delete
a directory in the foreign ?le system.

35. The ?le access system of claim 19, Wherein request to
perform the ?le system operation With respect to the foreign
?le system comprises a request to delete a ?le in the foreign
?le system.

36. The ?le access system of claim 19, Wherein request to
perform the ?le system operation With respect to the foreign
?le system comprises a request to rename a ?le in the foreign
?le system.

