
(12) United States Patent
Huang et al.

USOO6968539B1

(10) Patent No.:
(45) Date of Patent:

US 6,968,539 B1
Nov. 22, 2005

(54) METHODS AND APPARATUS FOR A WEB
APPLICATION PROCESSING SYSTEM

(75) Inventors: Yun-Wu Huang, Chappaqua, NY (US);
Robert David Johnson, Ridgefield, CT
(US); Sean James Martin, Boston, MA
(US); Simon L. Martin, Oxford (GB);
Moshe Morris Emanuel Matsa,
Cambridge, MA (US); Roger A. Pollak,
Pleasantville, NY (US); John J. Ponzo,
Cortlandt Manor, NY (US); Ronald
So-tse Woan, Somerville, MA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 999 days.

(21) Appl. No.: 09/633,037

(22) Filed: Aug. 4, 2000

Related U.S. Application Data
(60) Provisional application No. 60/156.872, filed on Sep.

30, 1999.

(51) Int. Cl." ... G06F 9/44
(52) U.S. Cl. .. 717/115
(58) Field of Search 717/139,115, 114,

717/136, 106, 143

(56) References Cited

U.S. PATENT DOCUMENTS

6,101,539 A * 8/2000 Kennelly et al. 709/223
6,144.991 A * 11/2000 England 709/205
6,275,938 B1* 8/2001 Bond et al. 713/200

2003/O154279 A1 8/2003 Aziz 709/225
2004/O187080 A1 9/2004 Brooke et al. 71.5/522

PRESENATION
PROCESS

READCE FROM
WBAPPLICAON

ExCEPTION HANING
PROCESS

OTHER PUBLICATIONS

Goschnick, Steve B; Design and Development of Melbourne
IT Creator-a System for Authoring and Management of
Online Education, p. 187-201, 1998 IEEE, retrieved Feb. 17,
2005.*
Hildyard, Alexander, “An XML Document to JavaScript
Object Converter', p. 63-69, ProQuest Computing Jan.
1999, retrieved Feb. 17, 2005.*
Lie, Hakon Wium; Saarela, Janne; “Multipurpose Web
Publishing', p. 95-101, Oct. 1999, Communications of the
ACM, retrieved Feb. 17, 2005.*
Price, Roger, “Beyond SGML', p. 172-181, 1998 ACM,
retrieved Feb. 17, 2005.*

* cited by examiner
Primary Examiner Tuan Dam
Assistant Examiner-Mary Steelman
(74) Attorney, Agent, or Firm--Douglas W. Cameron; Ryan,
Mason & Lewis, LLP

(57) ABSTRACT

A Software System is provided to allow a computer to install
and process web applications according to the invention.
Such web applications are written as web pages that have
access to the full range of operating System resources,
including those not accessible through a web browser.
Preferably, a web application is built using three types of
languages used for constructing Web pages, namely: (a) a
Visual presentation language; (2) a data modeling language;
and (3) a Scripting language for embedding logic. The
Software System preferably comprises a web application
manager, an operating System interface module, a Scripting
language interpreter, and optionally a web browser and/or a
data modeling language processor. Various other features
Such as data caching and Security filtering are provided in
accordance with Such a System.

10 Claims, 12 Drawing Sheets

O

DATA Runc
ANGUAGE

U.S. Patent Nov. 22, 2005 Sheet 1 of 12 US 6,968,539 B1

FIG. 1

INPUT/OUTPUT
DEVICES

KEYBOARD,
MOUSE,
SCREEN

103

104

CODE BEING
EXECUTED

105 MAIN MEMORY

SYSTEMS,
APPLICATIONS, 102

DATA
STORAGE
MEMORY

FIG. 2

201
WEB APPLICATION

III, WEB PAGE

204 205

VISUAL SCRIPT DATA
PRESENTATION LANGUAGE MODELING
LANGUAGE LANGUAGE

U.S. Patent Nov. 22, 2005 Sheet 2 of 12 US 6,968,539 B1

FIC. 3

WEB
APPLICATION

302

WEB APPLICATION MANAGER

OPERATING SYSTEM
INTERFACE MODULE

301

306

SCRIPT DATA MODELING
INTERPRETER LANGUAGE PARSER

307 OPERATING SYSTEM

U.S. Patent Nov. 22, 2005 Sheet 3 of 12 US 6,968,539 B1

FIC. 4

401

READ CODE FROM
WEB APPLICATION

402
END

OF CODE 2

NO 404 DATA
VISUAL CODE MODELING

PRESENTATION LANGUAGE LANGUAGE
TYPE

SCRIPT
LANGUAGE

SCRIPT PROCESS
VISUAL

PRESENTATION
PROCESS

408
EXTENDED
CALL

OS INTERFACE PROCESS

NO

YES

EXCEPTION HANDLING
PROCESS

TERMINATE 405

U.S. Patent Nov. 22, 2005 Sheet 4 of 12 US 6,968,539 B1

FIG. 5

CHECK INPUT VISUAL PRESENTATION
CODE FOR ANY WOLATIONS

502

AN WIOLATION OCCURS
503

GENERATE AN
EXCEPTION FOR
THIS WIOLATION

501

PROCESS WEB
BROWSER MODULE

ON THE INPUT VISUAL
PRESENTATION CODE

RETURN TO WEB APPLICATION
MANAGEMENT PROCESS

FIG. 6

GET INPUT DATA 60
MODELING CODE

PROCESS DATA
MODE ING MODULE
ONNPA 1602
MODELING CODE

RETURN TO WEB
APPLICATION 603
MANAGEMENT
PROCESS

U.S. Patent Nov. 22, 2005 Sheet 5 of 12 US 6,968,539 B1

FIG. 7

PROCESS SCRIPT INTERPRETER
TO PARSE AND INTERPRET THE

INPUT SCRIPT CODE

702

EXTENDED CALL

CHECK WIOLATIONS 2

705

ANY WIOLATIONS

GENERATE AN EXCEPTION
FOR WOLATION

RETURN TO WEB
APPLICATION MANAGEMENT

PROCESS

701

704

EXECUTE
THE CODE

707

FIG. 8

INPUT: AN EXTENDED
SCRIPT FUNCTION CALL 801

PROCESS THIS SCRIPT
CALL BY EXECUTING

OPERATING SYSTEM APIs
802

RETURN TO WEB
APPLICATION MANAGEMENT

PROCESS
803

U.S. Patent Nov. 22, 2005 Sheet 6 of 12 US 6,968,539 B1

FIG. 9

GENERAL INFORMATION, REQUIRED COMPONENTS,
DEPENDENCY INFORMATION, REGISTRY INFORMATION,

SHORT CUT INFORMATION, STORAGE QUOTA,
SECURITY SETTINGS, PRE-INSTALL SCRIPT,

POST-INSTAL SCRIPT........etc.

901

FIC. 10

1001 INSTALLATION 1002
APPLICATION DOCUMENT

INSTALL MANAGER 1003
1004 ?".

OS
GENERAL INFORMATION ENVIRONMENT

COMPONENTS

DEPENDENCY

REGISTRIES

SHORT CUTS

STORAGE QUOTA

SECURITY SETTINGS

U.S. Patent Nov. 22, 2005 Sheet 7 of 12 US 6,968,539 B1

FIC. 1 f

1101 1102

NETWORK STORAGEMEDIA
(e.g., INTERNET) (e.g., DISKETTES, CDs)

DOWNLOAD INSTALL
CREATE
UPDATE INSTALLATION

DOCUMENT OF
AN APPLICATION

1103 INSTALL MANAGER

CONFIGURE

GRAPHIC INTERFACE PROGRAM

SYSTEM ADMINISTRATOR

1105

1106

FIG. 12

120

CHECK DEPENDENCY SETTING IN INSTALL
DOCUMENT OF THE TARGET APPLICATION

1202
AN

APPLICATION
THIS TARGET APPLICATION

DEPENDS ON IS NOT
INSTALLED

p

INSTALL THE
"DEPENDED'
APPLICATION

1205

SEEK USER CONFIRMATION ON INSTALLING NIHE
THE "DEPENDED' APPLICATION APPLICATION

CONFIRMED USER CONFIRMED 2

DECLINED

TERMINATE
1205

U.S. Patent Nov. 22, 2005 Sheet 8 of 12 US 6,968,539 B1

FIG. 13

TRADITIONAL l
APPLICATIONS

OTHER OS APIs / | \ OTHER OS APIs

NETWORK
APIs

1305-1 OPERATING SYSTEM

FIC. 14

1401

VIRTUAL
MACHINE
CAS

OTHER APIs

406 1 OPERATING SYSTEM

U.S. Patent Nov. 22, 2005 Sheet 9 of 12 US 6,968,539 B1

FIG. 16

1502

APPLICATION 2

APPLICATION 1

APPLICATION CALIS

1503

APPLICATION 3
1501

SECURITY
1504-1SNS

SECURITY
1505 SETTINGS 2 APPLICATION MANAGER

SECURITY
1506 SETTINGS 5

SECURITY | | |
FILTERED < OD
CALLS OTHER

FILE I/O NETWORK PROCESS APIs
APIs APIs APIs

FILE
SYSTEM NETWORK PROCESS

1508 1509 1510
OPERATING SYSTEM

1511

U.S. Patent Nov. 22, 2005 Sheet 10 of 12 US 6,968,539 B1

FIG. f6

OM RECEIVE A CALL FR
AN APPLICATION

CHECK THE SECURITY
SETTINGS OF THIS

APPLICATION FOR THIS CALL

1605

SECURITY WIOLATED 2

CALL OPERATING SYSTEM
APIs TO PROCESS THIS CALL

TERMINATE

1601

1602

1604

SECURITY
EXCEPTION
HANDING 1605

1606

INTERNE 1703

1706

U.S. Patent Nov. 22, 2005 Sheet 11 of 12 US 6,968,539 B1

FIG. 18

1801 WEB l
OBJECTS

INTERNET

1802 1803

WEB WEB
APPLICATION 1 APPLICATION 2

1804

WEB APPLICATION MANAGER

1806

WEB WEB
BROWSER 1 BROWSER 2

WEB CACHE 2
FOR HTTP OBJECTS FOR HTTP OBJECTS

WEB CACHE 1 FOR WEB CACHE 2 FOR
NON-HTTP OBJECTS NON-HTTP OBJECTS

WEB CACHE 1

1807 808

OPERATING SYSTEM

1809

U.S. Patent Nov. 22, 2005 Sheet 12 of 12 US 6,968,539 B1

FIG. 19

RECEIVE A REQUEST FOR HTTP
OBJECTS FROM AN APPLICATION

INVOKE THE WEB BROWSER
TO RETRIEVE THIS OBJECT

1903
EXCEPTION
OCCURS

SEND THE OBJECT RETURNED
BY THE WEB BROWSER TO

THE REQUESTING APPLICATION

TERMINATE

1901

HTTP WEB OBJECT
CACHE FOR THIS

APPLICATION

1902

1904

EXCEPTION
HANDLING PROCESS

1905

1906

FIC. 20

RECEIVE ACACHE MANAGEMENT APIL CALL FROM AN APPLICATION

CHECK ANY CACHE WIOLATIONS 2002

2003
2008 WIOLATION EXISTS 2 YES

C C NO
PROCESS THIS API BY EXECUTING
NATIVE OPERATING SYSTEM APIs

NON-HTTP WEB

2006

OBJECT CACHE FOR

WIOLATION EXISTS

NO

THIS APPLICATION

2004
EXCEPTION
HANDLING
PROCESS

TERMINATE

US 6,968,539 B1
1

METHODS AND APPARATUS FOR AWEB
APPLICATION PROCESSING SYSTEM

The present application claims priority to the U.S. pro
visional patent application identified by Ser. No. 60/156.872
filed on Sep. 30, 1999, the disclosure of which is incorpo
rated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to the field of
Software Systems that manage the life-cycle of Software
applications, e.g., installation, configuration, resource man
agement, Security management, execution, and de-installa
tion, and, more particularly, to methods and apparatus for
processing of web applications that are written in the form
of web pages which can be downloaded through the Internet
using web communication protocols, installed in local com
puters, and executed utilizing web components, Such as a
web browser and JavaScript'TM interpreter, in the local com
puters.

BACKGROUND OF THE INVENTION

The recent explosion of the popularity of the World Wide
Web (“Web” for short, and hereinafter referred to in the
lower case as “web' in the context of an adjective or adverb,
e.g., web pages) has made the Internet one of the most
important media for mass communication. The Web is used
for many applications Such as information retrieval, personal
communication, and electronic commerce and has been
rapidly adopted by a fast growing number of Internet users
in a large part of the World.

Using the Web, users can access remote information by
receiving web pages through the Hypertext Transfer Proto
col (HTTP). The information in a web page is described
using the Hypertext Markup Language (HTML) and eXten
Sive Markup Language (XML), and is displayed by Software
called web browser. Web pages of earlier design are con
sidered Static because they do not include any logic that can
dynamically change their appearances or provide computa
tions based on user input. Subsequently, the JavaTM (Sun
MicroSystems) programming language was incorporated in
web pages in the form of applets. An applet is a Small Java"
program that can be sent along with a web page to a user.
Java" applets can perform interactive animation, immedi
ate calculations, or other Simple tasks without having to Send
a user request back to the Server, thereby providing the
dynamic logic in web pages.

Java" is an object-oriented programming language
which can be used for creating Stand-alone applications.
Writing JavaTM programs typically requires different and
more extensive skills and training than composing web
pages. The learning curve for writing Java" programs is
typically longer than that for writing web pages. Not all web
page authors therefore are expert Java" programmerS.

Recently, to make it easier to embed logic in web pages,
an easy-to-write Script language called JavaScript" (Sun
MicroSystems) has been Supported by popular web browsers
to be incorporated into web pages. JavaScript'TM, capable of
embedding logic for computation based on user input, brings
dynamic and powerful capabilities to web pages. JavaS
criptTM, unlike JavaTM which is a full-fledged programming
language, has a simpler Syntax and is much easier to learn.
Because of this easy-to-write feature, JavaScriptTM has cur
rently become a popular way to embed logic in web pages
by many web page authors.

15

25

35

40

45

50

55

60

65

2
Although JavaScript'TM brings easy-to-write logic to web

pages, it is limited to browser functions and works with
HTML elements only. It can only be used to create simple
applications under the contexts of the browser, Such as
changing the web page's Visual presentation dynamically
and computing user input quickly without Sending a user
request back to the server (for Such computation). Thus, web
pages with JavaScript" logic cannot be used to create
Stand-alone applications that require access to a full range of
resources on the user's computer Such as the file System
management and the display area beyond the browser's
window. In general, web pages cannot be processed in
non-browser contexts.
At the present, Stand-alone applications are typically

written in traditional programming languages (also called
3GL for 3rd Generation Languages) Such as C, C++, and
Java TM, or Fourth Generation Languages (4GL) such as
Visual Basic". Through these languages, Stand-alone appli
cations interact directly with operating Systems through
operating System APIs (application programming interfaces)
or indirectly with library functions which may in turn call
these operating System APIs. The capability of accessing the
operating System APIs gives an application the control of
computing resources in a computer.

If web pages had embedded logic that could access a
whole range of computing resources enabled by these oper
ating System APIs, they could then be used to develop
Stand-alone applications just like any of the aforementioned
3GL and 4GL languages. Using web pages to develop
Stand-alone applications would have many advantages.
First, web page authors who do not possess the skill and
experience in writing 3GL/4GL applications could develop
Stand-alone applications using the web page technology they
profess.

Secondly, the web technology components that can pro
cess the Visual presentation language (e.g., HTML), the data
modeling language (e.g., XML), and the communication
protocol (e.g., HTTP) are available in most computers,
which can connect to the Internet through the Web. This
would provide an advantage in that using web pages to
develop applications, a developer could very efficiently
integrate these components. This is because, whereas 3GL/
4GL applications can integrate these components program
matically, web pages could integrate them declaratively
through languages Such as HTML and XML. In general, the
Shorter learning curve and development time of web pages,
as compared with 3GL/4GL programs, would result in a
shorter time and lower cost in the development of software
applications. The present invention addresses this issue by
providing methods and apparatus in a Software System that
manage the life-cycle of Software applications, which are
composed of web pages that are not limited to the browser
contexts and that have access to the full range of operating
System resources.

Another issue of the processing of computer Software
addressed by the present invention is the Software installa
tion proceSS. Typically, the installation of a Software appli
cation is achieved by a special-purpose program which
comes with this Software and is written only for the purpose
of installing this software. This is evident in the existence of
a "setup.eXe' or “install.exe' program in almost all Software
packages for PCs (personal computers). This method of
Software installation means that developerS for each Soft
ware application have to write a specific install program just
to install their software.

In general, an install program for an application needs to
configure a list of Settings that are used to establish a proper

US 6,968,539 B1
3

environment or context for this application before it can be
properly installed. These Settings may include, for example,
the basic operating System Setup Such as the registry entries,
location Setup Such as the directory or folder in which the
application is to be Stored, link Setup Such as the Short-cut
link to this application, the graphic Setup Such as the icon of
this application, and the dependency Setup Such as other
applications that this application depends on for execution.
To properly Setup each Setting, e.g., one of the aforemen

tioned Settings, the install program typically takes the deter
mined value of this Setting and processes an action specific
to this Setting. For example, the registry entry Setup action
may be to add the determined registry entry values to the
proper registry files, whereas the dependency Setup action
may be to investigate if all applications that the application
to be installed depends on are already installed and, if not,
to display an error message. Typically, the value of a Setting
is either determined by user input during the installation
process, Such as the directory where the application is to be
Stored, or predetermined by the install program, Such as the
list of applications that its application depends on.

In general, an install program first configures each Setting
by determining its value (by user input or pre-configuration)
and then invokes the Setup action for this Setting. Because
applications may have a different Set of pre-configured
Setting values, each application requires a unique install
program. Furthermore, if a new version of an application
changes the value of one of its install Settings, Such as a new
icon, the install program for this application has to be
rewritten to incorporate this new value.

It would be advantageous to the application developerS if
they did not need to write a new install program for each new
version of an application they develop. Instead, it would be
desirable, for each version of an application, to construct a
list of install Settings with pre-configured values for this
application using a data modeling language Such as XML,
which could be provided together with this application for
installation. This way, a Standardized install program would
then be deployed by the user's computer to decode the install
Settings and values and conduct proper installation for this
application based on these values. This Standardized install
program could then be used to install all applications whose
install Settings and values are modeled by a language
understood by this install program. With many applications
installed using a Standardized install program, the users
would also have a consistent experience in the installation
proceSS for all these applications.

The present invention addresses this issue by providing
methods and apparatus of Software installation in which a
Standardized install manager exists in a computer System to
perform the installation process for all Software applications
whose install Settings and values are modeled by a language
understood by this install program.

Yet another issue of today's computer Software addressed
by the present invention is the Security management of
Software applications. Traditional Stand-alone applications
based on programming languages Such as C and C++
typically have access to all the operating System resources
through the calling of operating System APIs. In this case,
the Security context, i.e., the limit of System resource access,
for these applications is the entire System. Based on this
Security context, it is possible that an application can,
inadvertently or maliciously, damage not only its own data
but those of other applications that share the same computer
System.

In a virtual machine environment, Such as the JavaTM
Virtual Machine, the Security context of an application (Such

15

25

35

40

45

50

55

60

65

4
a JavaTM program) is defined by the virtual machine. A
misbehaving application thus can only create external dam
age allowable by the virtual machine. However, there can be
many different types of applications running on the same
Virtual machine and while each one of them may have a
different Security need, they are forced to run under the same
Security context (that defined by the virtual machine).

It would be advantageous if each application had its own
Security context that is predetermined by the System man
agement policy. Thus, based on its level of Security risk, an
application could be associated with a Security context
which regulates the System resources to which this applica
tion can or cannot acceSS. This way, a misbehaving program
in an application with a restrictive Security context would
cause minimum damage to the System as a whole. The
present invention addresses this issue by providing methods
and apparatus of a computer System in which each applica
tion has its own Security context.

Yet another issue of today's computer Software addressed
by the present invention is the web cache System for
Software applications. Web caching is traditionally per
formed by the web browsers and web proxies whose primary
tasks include transmitting web objects over the network.
Web pages in the context of a web browser contain hyper
links to web objects through textual or graphic anchors. The
user requests a web object from a web page when this page
is displayed by the web browser and the user Selects, through
the mouse or other pointing mechanism, the anchor of this
object.
When a web object is requested through a web browser

with the web caching feature, the web browser first checks
to see if the object exists in its cache. If so, this object in the
browser's cache is returned to the request web page. If the
object does not exist in the browser's cache, the browser
uses the Uniform Resource Locator (URL) of this object to
locate its location in the Internet and retrieves it through a
data transfer protocol such as HTTP. When the browser
receives this object, it typically displays this object while
Storing a copy in its cache.

Applications accessing web objects could be composed
using web pages. However, if web pages are processed in the
context of the browser, the web objects requested by them in
a client computer can only be cached by the browser in the
computer. In other word, in a client computer, web page
based applications under the browser contexts use only the
browser's cache for web caching.

Different web applications however may acceSS web
objects with different characteristics. For example, one web
application may access web objects that rarely change over
time whereas another may acceSS web objects that change
highly frequently. It would be advantageous to deploy a
Sizable Space to cache Static web objects for the first appli
cation while little or no space for the Second because any
cached objects will be outdated immediately. In general, it
would be advantageous that each application has its own
web cache.

Furthermore, traditional web caching by browsers only
cache web objects of certain types that are defined in HTTP.
Some applications may need to retrieve objects from the
Web with types not defined in HTTP. Examples of object
types not defined by HTTP may include executable files,
Spreadsheet files, and documents with proprietary Structures.
Caching these non-HTTP-defined objects could provide a
performance advantage to applications that retrieve objects
of these types through the Web.
The present invention addresses the issue of web caching

for applications by providing methods and apparatus to

US 6,968,539 B1
S

provide each web application a separate cache for both the
HTTP-defined and non-HTTP-defined objects from the
Web.

SUMMARY OF THE INVENTION

In accordance with the aforementioned needs, the present
invention is directed to a System in which applications are
written as web pages that have access to the full range of
operating System resources, including those not accessible
through the web browser. The applications described in the
present invention are called web applications. In a preferred
embodiment of the present invention, three types of lan
guages used for constructing web pages are used for build
ing web applications. They are: (1) a visual presentation
language; (2) a data modeling language; and (3) a Scripting
language for embedding logic. Those skilled in the art will
appreciate that currently the three most commonly used
languages in web pages are HTML for visual presentation,
XML for data modeling, and JavaScriptTM for scripting.

According to the present invention, a Software System is
provided to allow a computer to install and process web
applications. This System preferably comprises a web appli
cation manager, an operating System interface module, a
Scripting language interpreter, and optionally a web browser
and/or a data modeling language processor. The web appli
cation manager manages the life-cycle for applications,
which may include the installation, execution, de-installa
tion of these applications, as well as the Security control and
web caching for these applications. The Script language
interpreter (Such as the JavaScript" interpreter) parses and
interprets the Scripting language embedded in the web
pages. The operating System interface module is used to
convert the Scripting language calls that request access to
System resources into appropriate native operating System
APIs. The web browser can be used to display the content of
web applications and transfer databased on the data transfer
protocol deployed by the browser (such as HTTP). The data
modeling language processor (Such as the XML parser)
decodes the contents in the web applications that are written
in the data modeling language (such as XML).

According to the present invention, a Software System is
provided to allow a computer to install and process web
applications. This System preferably comprises a web appli
cation manager, an operating System interface module, a
Scripting language interpreter, and optionally a web browser
and/or a data modeling language processor. The web appli
cation manager manages the life-cycle for applications,
which may include the installation, execution, de-installa
tion of these applications, as well as the Security control and
web caching for these applications. The Script language
interpreter (Such as the JavaScript interpreter) parses and
interprets the Scripting language embedded in the web
pages. The operating System interface module is used to
convert the Scripting language calls that request access to
System resources into appropriate native operating System
APIs. The web browser can be used to display the content of
web applications and transfer databased on the data transfer
protocol deployed by the browser (such as HTTP). The data
modeling language processor (Such as the XML parser)
decodes the contents in the web applications that are written
in the data modeling language (such as XML).

According to one feature of the present invention, the
Scripting language used in Web pages that are typically
restricted to the web browser functions can be extended to
include function calls that access System resources normally
beyond the limit of browser functions. Those skilled in the

15

25

35

40

45

50

55

60

65

6
art will appreciate that Screen display outside of the browser
window and general file System management are two
examples of the types of System resources beyond browser's
control.

According to yet another feature of the present invention,
the operating System interface module can accept an
extended Scripting language function call that acceSS oper
ating System resources beyond the browser contexts and,
based on the type of this function call, execute code that
includes calls to the native operating System APIs.

According to yet another feature of the present invention,
the Web application manager can manage installation for all
web applications by invoking its install manager module. To
install a web application, the install manager first obtains a
copy of this application and the install document associated
with this application. In a preferred embodiment of the
present invention, the install manager can obtain the appli
cation and its install document by a network download
process through the Web or other data transfer protocols.
The install document for a web application contains a Set of
install Settings and their values, which are modeled in
language understood by the install manager. The install
document for a web application can be written by the creator
of this application. When installing this application, the
install manager decodes the Settings and their values in the
install document of this application, and configures each
Setting based on its value accordingly.

According to yet another feature the present invention, the
web application manager can conduct Security control for a
web application based on the Security context of this appli
cation. According to the present invention, the Security
context of a web application is the limits of access to the
operating System resources this application is restricted to.
The Security context of an application can be modeled with
a list of Security Settings for this application. Each Security
Setting regulates the behavior of its host application in terms
of a specific Security feature. In a preferred embodiment of
the present invention, the Security context of a web appli
cation can be pre-configured by the creator or Supplier of this
application, and obtained by the user together with its
application when this application is downloaded for instal
lation. In this preferred embodiment, the Security context of
a web application can also be modified by the administrator
of a Software System in which this application is deployed.
According to the present invention, when a web application
is being executed, the web application manager can check
each Setting in the Security context of this application to
ensure that no Security rules, based on the Settings config
ured in the Security context of this application, are violated
at any time while this application is running.
According to yet another feature of the present invention,

the web application manager can create a web cache for each
application it installs. The cacheable web objects include
both the HTTP-defined objects and non-HTTP-defined ones.
In a preferred embodiment of the present invention, the two
types of web objects can be stored in two different pools of
the same cache for an application. The Settings of the cache
for an application can be pre-configured and obtained
together with this application by a client computer. They can
also be modified by the administrator of the system in which
their application is installed.

According to yet another feature of the present invention,
the Scripting language used in web pages that are typically
restricted to the web browser functions can be extended to
include function calls that manage the web cache for each
application. Those skilled in the art will appreciate that

US 6,968,539 B1
7

typical cache APIs may include the Search, insertion, and
deletion of an object, as well as the reset of the whole cache.

According to yet another feature of the present invention,
when the web application manager executes an extended
cache management API for a Web application, it checks the
cache Settings for this application and may take proper cache
management action to ensure that these cache Settings are
not violated.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example of an architecture of a Server or a
client of the present invention;

FIG. 2 is an example of an architecture of a web appli
cation of the present invention;

FIG. 3 is an example of an architecture of a web appli
cation process System of the present invention;

FIG. 4 is an example of a web application manager
process of the present invention;

FIG. 5 is an example of a Visual presentation process of
the present invention;

FIG. 6 is an example of a data model process of the
present invention;

FIG. 7 is an example of a Script process of the present
invention;

FIG. 8 is an example of an operating System interface
process of the present invention;

FIG. 9 is an example of an install document of the present
invention;

FIG. 10 is an example of an architecture of a system
deploying the install manager of the present invention;

FIG. 11 is an example of a process of obtaining or
updating an install document of the present invention;

FIG. 12 is an example of a dependency install process of
the present invention;

FIG. 13 is an example of a security context for traditional
applications,

FIG. 14 is an example of a security context for virtual
machine based applications,

FIG. 15 is an example of a Security context for applica
tions managed by a System of the present invention;

FIG. 16 is an example of a Security manager process of the
present invention;

FIG. 17 is an example of an architecture of a web caching
System of traditional web applications,

FIG. 18 is an example of the architecture of a web caching
System for web applications of the present invention;

FIG. 19 is an example of a web caching management
proceSS utilizing a web browser caching mechanism of the
present invention;

FIG. 20 is an example of a web caching management
proceSS for web applications of the present invention to
manage their own caches.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Referring initially to FIG. 1, an example is shown of a
computing device that is capable of implementing the fea
tures of the present invention. This computing device can be,
for example, a PC (personal computer), a workStation, or a
mainframe, and may typically include elements Such as: one

15

25

35

40

45

50

55

60

65

8
or more processors, e.g., CPUs (central processing units)
101; input and output devices 103 such as a keyboard, a
mouse and a Screen monitor, main memory 104 Such as
RAM (random access memory); and storage memory 102
Such as disks. These elements are interconnected through a
bus 105 on which information can travel. AS is known, the
main memory 104 stores code being executed by the CPU
and the Storage memory 102 Serves as the permanent Storage
for the Systems (such as the operating System), the applica
tions (Such as the Software System of the present invention),
as well as the data.
More generally, it is to be appreciated that the term

“processor as used herein is intended to include any pro
cessing device Such as, for example, one that includes a CPU
(as illustrated in FIG. 1) and/or other processing circuitry.
The term “memory' as used herein is more generally
intended to include memory associated with a processor or
CPU, such as, for example, RAM (as illustrated in FIG. 1),
ROM, a fixed memory device such as a hard disk (as
illustrated in FIG. 1), a removable memory device (e.g.,
diskette), flash memory, etc. In addition, the term "input and
output devices” as used herein is more generally intended to
include any computer-based input and output devices, for
example, one or more input devices, e.g., keyboard and
mouse (as illustrated in FIG. 1), for entering data to the
processing unit, and/or one or more output devices, e.g.,
display monitor (as illustrated in FIG. 1) and/or printer, for
presenting results associated with the processing unit. It is
also to be understood that the term “processor” may refer to
more than one processing device and that various elements
asSociated with a processing device may be shared by other
processing devices. Accordingly, Software components
including instructions or code for performing the method
ologies of the invention, as described herein, may be Stored
in one or more of the associated memory devices (e.g.,
ROM, fixed or removable memory) and, when ready to be
utilized, loaded in part or in whole (e.g., into RAM) and
executed by a CPU.

Referring now to FIG. 2, an example is shown of a web
application of the present invention. AS Shown, a web
application 201 comprises one or more web pages 202. In a
preferred embodiment of the present invention, each web
page 202 of a web application 201 contains text composed
in any combinations of three types of languages: a visual
presentation language 203, a Script language 204 and a data
modeling language 205.
The Visual presentation language is used to provide a

graphic user interface (GUI) on the browser window. It can
be used to visually present the text or linked objects (Such as
a voice or a graphic file), to receive user input, and transfer
data to and from a remote host through web browser. Those
skilled in the art will appreciate that currently the most
commonly used Visual presentation language for browserS is
HTML and the data transfer protocol used by browsers is
HTTP
The Script interpreter is used to parse and interpret the text

of the web page that is written in a Script language. Those
skilled in the art will appreciate that currently the most
commonly used Script language in web pages is JavaScript.
Script in a web page provides a way to embed logic that
creates dynamic visual displayS or conducts immediate
computations when its web page is processed. Traditional
Script language used in web pages is limited to the browser
functions and HTML elements. According to a feature of the
present invention, the Script language used in a web appli
cation of the present invention can be extended to contain
function calls that have access to a full range of operating

US 6,968,539 B1
9

System resources, including those beyond the browser con
texts (details depicted in FIGS. 4 and 8).

The data modeling language is used to describe certain
data in web applications Such that their structures and
definitions of data elements inside them can be easily
applied by other applications that understand the same
language and uses the same definitions for data elements.
This way no specialized code is needed to decode data
received from other applications. Those skilled in the art will
appreciated that currently the most common language used
for data modeling on the Web is XML.

FIG. 3 depicts an overall software system architecture of
a preferred embodiment of the present invention. In this
embodiment, the Software System having the features of the
present invention comprises five Software components. They
are the web application manager 302, the web browser 303,
the operating System interface module 304, the Script inter
preter 305 and the data modeling language parser 306. As
depicted in FIG. 3, the four modules 303 through 306 can
directly acceSS operating System 307 resources by calling the
operating System APIs (depicted as the four links between
block 307 and the four modules 303 through 306, respec
tively). The web application manager 302 is the top-level
module that executes web applications by driving the other
four modules. It does so by taking a web application 301 as
input and executes the various language codes in this
applications web pages and invokes the other four modules
(303 through 306). FIG. 4 provides a more detailed depic
tion of the process of the web application manager.

Those skilled in the art will appreciate that there are a
number of ways for one software module to drive other
software modules. For example, in an object-oriented
approach, with all modules modeled as classes, a driving
class can create an instance of a driven class and calls the
methods associated with this driven class to invoke the
behavior of the former. In a non-object-oriented approach,
the driven modules can be invoked by the driving module
through the API functions provided by the former.

Referring now to FIG. 4, the process of the web applica
tion manager is shown. AS depicted in FIG. 4, the web
application manager executes a web application by first
reading the language code in the web pages of this appli
cation (step 401), and does not terminate (block 403) until
all code has been processed (step 402). For each unit of code
read, the web application manager determines the language
type of this code (step 404).

If the language type of this code is visual presentation
language, the web application invokes the Visual presenta
tion process (step 405) that takes this code as input. If the
language type of this code is the data modeling language, the
web application manager invokes the data modeling proceSS
(step 406) that takes this code as the input. If the language
type is the Script language, the web application manager
invokes the script process (step 407) that takes this code as
input.
When the visual presentation process (step 405) and the

data modeling process (step 406) terminate, they return
control back to the web application manager and indicate to
the latter if an exception has occurred (step 410). If so, the
web application manager invokes the exception handling
process (step 411) and then terminates this execution (block
403). If no exception occurs, the web application manager
goes on to read the next code unit (step 401).
When the script process (step 407) terminates and returns

control back to the web application manager, it returns
information about the Script code it just processed in terms
of whether this Script code belongs to the original Script

15

25

35

40

45

50

55

60

65

10
language under the browser contexts, or it is extended code
based on the features of the present invention to have acceSS
to a full range of operating system APIs (step 408). If this
Script code is part of the original web page Script language,
it had already been parsed, decoded, and executed by the
script interpreter (module 305 in FIG.3) in the script process
(step 407). In this case, in this embodiment exemplified in
FIG. 4, the web application goes on to check if an exception
has occurred (step 410). If this script code is an extended
call, then it has been parsed, decoded, but not executed by
the script interpreter (module 305 in FIG. 3) in the script
process (step 407). Instead, the decoded information of this
Script code is passed to the operating System interface
process (step 409) for execution. When the operating system
interface process (step 409) completes the execution for this
Script, it returns control back to the web application manager
which then checks for an exception (step 410) and processes
the exception handling process (step 411) if an exception has
occurred, or, if not, goes on to read the next code unit (Step
401). The details of the visual presentation process (step
405), the data modeling process (step 406), the script
process (Step 407) and the operating System interface pro
cess (step 408) are explained below in the context of FIGS.
5, 6, 7 and 8, respectively.

FIG. 5 is a detailed depiction of the visual presentation
process (step 405 in FIG. 4). As depicted in FIG. 5, the visual
presentation process takes, as input, Visual presentation code
and checks to see if this code incurs any violations against
the System policy as manifested by Security and cache
Settings of the web application currently being executed
(step 501). For example, one Security Setting for an appli
cation may regulate that it can only link to a fixed external
URL (uniform resource locator). If in the visual presentation
process of an HTML code of this application, a link different
from that in the aforementioned Setting exists, then this link
causes a violation.

If a violation occurs (step 502), the visual presentation
process generates an exception (step 503) and then returns
this exception to the web application management process
(step 505) depicted in FIG. 4. Those skilled in the art can
appreciate that exceptions can be implemented in various
ways, including for example using error codes and using
objects of the object-oriented model to represent exceptions.
If the input visual presentation code causes no violations, the
Visual presentation proceSS passes this code to the web
browser module for execution (step 504).
The web browser module (303 in FIG. 3) can be the web

browser software available in most computers in the world.
The most popular web browsers are Netscape TM and
Microsoft's Internet ExplorerTM. These two web browsers
Serve as client programs that use the HTTP to make requests
of web servers throughout the Internet on behalf of the
browser user. They also provide a graphic user interface to
display the retrieved web objects and to interact with the
user by accepting user input. Those skilled in the art can
appreciated that these two browser Software packages can be
incorporated by a Software System using various methods,
including for example linking and invoking APIs calls they
provide or incorporating their Source code for compilation.
In a preferred embodiment of the present invention, the web
application manager incorporates web browser Software and
drives it based on the processes depicted in FIGS. 3 and 4.

FIG. 6 is a detailed depiction of the data modeling process
(step 406 in FIG. 4). As depicted in FIG. 6, the data
modeling process takes, as input, data modeling code (Step
601) and runs the data modeling module (306 in FIG. 3) to
decode the data types and values encoded in the input data

US 6,968,539 B1
11

modeling code (step 602). After the data modeling module
is completed, the data modeling process returns control back
to the web application manager (step 603). Those skilled in
the art will appreciate that currently the most commonly
used data modeling language for web data is XML. The data
modeling module processing (step 602) in this embodiment
of FIG. 6 may therefore correspond to an XML parser.
Similar to the web browser Software, various versions of
XML parser software are available to be incorporated by a
Software System using the aforementioned methods in incor
porating the web browser Software.

FIG. 7 is a detailed depiction of the script process (step
407 in FIG. 4). As depicted in FIG. 7, the script process takes
a Script code as input, then parses and interprets this code
(701). If the code is a function call, the script process checks
to See if this function is a Standard function that is under the
web browser contexts or an extended function created based
on the features of the present invention to access the
operating System resources beyond the browser contexts
(step 702). If the function being interpreted is a standard
function, the script process executes it (step 703). If it is an
extended function, without executing it, the Script proceSS
checks to see if this function call would cause any violations
against any management policies (step 704).

In a preferred embodiment of the present invention, an
extended function can cause a management policy violation
by requesting operating System resources that are configured
by the System management to be beyond the access of the
underlying web application. For example, the administrator
of a Software System having the features of the present
invention can Set a limit of disk Storage quota for a specific
application. During an execution of this application, if an
extended Script function call requests to allocate disk space
that exceeds the disk quota for this application, this call then
causes a management policy violation.
As depicted in FIG. 7, if a violation occurs (step 705), the

Script process generates an exception for this violation (Step
706). Next, the script process terminates and returns control
back to the web application manager (step 707).

Those skilled in the art will appreciated that currently the
most commonly used Scripting language for web pages is
JavaScript. The parsing and interpreting process (step 701)
and the executing Step (Step 703) in the Script processing of
this preferred embodiment of FIG. 7 may therefore corre
spond to the parsing, interpreting and executing processes of
the JavaScript software. Similar to the web browser soft
ware, the JavaScript Software can be incorporated by a
Software System using the aforementioned methods in incor
porating the web browser Software, and modified Such that
when an extended function call is parsed and interpreted,
instead of attempting to execute this call, it returns and gives
the information about this call to the web application man
ager, which then uses the information about this call as input
and calls the operating System interface process (step 409 in
FIG. 4) to execute it.

Referring now to FIG. 8, the operating system interface
process (step 409 in FIG. 4) that is called by the web
application manager to execute an extended Script call is
shown. AS depicted in FIG. 8, the operating System interface
process takes an input which is information of an extended
script function call (step 801) and, for each extended script
call, it executes a regular code that was written with the
native operating System APIs to perform the task of its
associated Script call (step 802). After the processing of the
native operating System APIs for executing the Script func
tion call, the operating System interface process returns
control to the web application manager (step 803).

15

25

35

40

45

50

55

60

65

12
FIG. 9 depicts an example 901 of an install document of

an application used in accordance with the present invention
to properly install this application. As depicted by FIG. 9,
the install document of an application may include, but is not
limited to, general information, various required compo
nents, dependency information, registry information, short
cut information, Storage quota, and Security Settings of this
application.

Those skilled in the art will appreciate that the general
information of an application may include, for example, the
Global Unique ID, title, author, description, versions of this
application. The required components of an application may
include, for example, the icon of this application, HTML
pages, Scripts, and other documents required to run this
application. The dependency information of an application
may include, for example, all applications that this applica
tion depends on in order to execute. The registry information
of an application may include, for example, all registry
entries required for this application to execute properly. The
Short cuts for an application may include, for example, the
directory or the location in the Storage management System
in which this application is to be Stored, as well as all the
links in the operating System graphic user interface from
which the icon of this application is visible and can be used
to directly invoke the running of this application. The
Storage quota for an application may include, for example,
information that limits the maximum disk Space which this
application may use. The Security information for an appli
cation may include, for example, the abilities of this appli
cation to acceSS operating System resources, Such as, for
example, the abilities to Spawn new processes, to connect to
certain external hosts, to execute dynamic link library calls,
to access file I/O (inputs/outputs), to create short-cuts and to
acceSS network and interface ports. The install document
may also include pre-install and post-install Scripts which
are logic in the form of Scripting language that is required to
execute before and after the installation, respectively.

FIG. 10 depicts an example of the tasks performed by an
install manager of the present invention. AS depicted by FIG.
10, to install an application, the install manager or program
1003 of the present invention takes two inputs: the applica
tion to be installed (block 1001) and the install document for
this application (block 1002). Next, the install program 1003
Sets up each Setting in the install document of this applica
tion (e.g., general information, components, dependency,
etc.) in order to establish an operating System environment
or context 1004 under which this application can be properly
executed.

FIG. 11 is an example depicting how the install manager
1103 having the features of the present invention can be
deployed to create or update an install document 1104 for an
application. AS depicted by FIG. 11, an install document
1104 for an application can be downloaded from a network
such as the Internet 1101. It can also be installed through
storage media such as diskettes or CD-ROMs 1102. The
install manager can also provide a graphic interface 1105 for
the System administrator 1106 to configure an existing install
document 1104. Those skilled in the art will appreciate that
the install document for an application can be written in a
data modeling language Such as XML that is widely used for
modeling electronic documents.

Referring now to FIG. 12, the dependency installation
feature of an install manager of the present invention is
shown. AS depicted in FIG. 12, the install manager first
checks the install document of the application to be installed
(step 1201) to see if any applications this target application
depends on are no yet installed (step 1202). If an application

US 6,968,539 B1
13

the target application depends on is not installed, the install
manager may display a message about the “depended”
application and ask for the user's confirmation to install this
“depended” application first (step 1204). If the user confirms
(step 1206), the install manager may go to the network to
retrieve and install this “depended' application or asks the
user to enter the proper portable Storage media Such as
diskettes or CD-ROMs to install it (step 1207). If the user
declines to install this “depended' application, the install
manager terminates the installation process (step 1205). If
all applications that the target application depends on are
installed (step 1202), the install manager installs the target
application (step 1203) before it terminates the installation
process (step 1205).

FIG. 13 depicts the security context of traditional appli
cations, e.g., applications written in traditional 3GL/4GL
programming languages. The Security context of a tradi
tional application is the limits of access to the operating
System resources this application is restricted to. Traditional
applications typically call operating System APIs to acceSS
operating System resources. AS depicted by FIG. 13, tradi
tional applications 1301 can call file I/O APIs to access the
file system 1302. They can call network APIs to access the
operating system's network services 1303. For process
management, the applications may call process APIs to
request operating System's proceSS management Services
1304. They can also call other operating systems APIs to
access other Services provided by the operating Systems. In
general, in this type of System, the Security context for an
application is the entire operating System 1305.

In this Security model, it is possible that a traditional
application can, inadvertently or maliciously, damage not
only its own data but those of other applications that share
the same computer System through the call of operating
system APIs.

FIG. 14 depicts the security context of virtual machine
(VM) based applications. As depicted in FIG. 14, direct
calling of operating system 1406 APIs from the applications
is eliminated. Instead, applications 1401 request System
resources through calls made to the virtual machine 1402. It
is the Virtual machine 1402 that makes the operating Sys
tems APIs access operating System Services Such as the file
system 1403, network services 1404, process services 1405,
and other operating System Services on behalf of the appli
cations.

In a virtual machine environment, Such as the JavaTM
Virtual Machine, the Security context of an application (Such
as a JavaTM program) is therefore defined by the virtual
machine. A misbehaving application thus can only create
external damage allowable by the Virtual machine. However,
there can be many different types of applications running on
the same Virtual machine and while each one of them may
have a different Security need, they are forced to run under
the same security context (that defined by the virtual
machine).

Referring now to FIG. 15, an example of an architecture
of a Security management System of the present invention is
shown. As depicted by the example in FIG. 15, instead of
Sharing one Security context, applications each may have a
unique list of Security Settings that define the Security
context for each application. In FIG. 15, the security context
for application 1 (1503) is defined by security settings 1
(1504); the security context for application 2 (1502) is
defined by security settings 2 (1505); and the security
context for application 3 (1503) is defined by security
settings 3 (1506).

15

25

35

40

45

50

55

60

65

14
Based on this preferred embodiment of the present inven

tion, applications calls that request operating System 1511
resources from the applications go through the application
manager 1507 for security filtering. For example, upon
receiving a call from application 1 (1501), the application
manager 1507 checks the Security Settings of this application
(1504) and makes sure that this call does not violate any of
the Security Settings before it can be executed. The Security
filtered calls may then be passed onto the APIs associated
with the file system 1508, the network services 1509 and the
process services 1510 of the operating system 1511.

FIG. 16 depicts a Security filtering process of the appli
cation manager (1507 in FIG. 15) having the features of the
present invention. AS depicted by FIG. 16, the application
manager first receives a call from an application (step 1601).
Next, it checks the Security Settings of this application for
this call (step 1602).

If a violation against the Security Settings exists for this
call (step 1603), the application manager may initiate a
security exception handling step (step 1604) before it ter
minates the process (step 1606) without executing this call.
A typical action to handle an exception may be to display an
error message and then exit the processing for the applica
tion that caused this exception. If no violations exist (Step
1603), the application manager processes this call by execut
ing operating system APIs (step 1605) before it terminates
the process (step 1606).

Referring to FIG. 17, an architecture is shown of a web
caching System deployed by State-of-the-art browsers in
processing applications which comprise web pages. AS
depicted in FIG. 17, a user 1707 may use the browser 1704
to process applications (1701, 1702), such as a web-based
online purchasing application, or to Simply display Web
pages. The web caching System in this model is based on one
cache 1705 for all HTTP web objects displayed through this
browser 1704.

Based on this model, when the user requests a HTTP web
object through the web browser 1704, the browser first
checks its cache 1705 to see if the requested web object
exists in the cache (as shown, the web browser and cache are
associated with operating system 1706). If so, the browser
retrieves this object from the cache. If not, the browser goes
to the source host of this object on the Internet 1703 and
retrieves it through the Internet. In this case, the browser
may also insert this newly retrieved object in its cache.

For web browsers and web proxies that deploy a conven
tional web caching System, Such as the one depicted in FIG.
17, certain Strategies may be used to remove objects from
the cache that are deemed out of date. One Strategy may be
to retrieve the meta-data from the Internet Source of the
requested object and compare that with the meta-data of the
Same data in the cache to determine if the cached one is
outdated. Another Strategy may be to Set a time window and
to re-retrieve or to process the meta-data comparison based
on the above Strategy for any objects that have been cached
longer than this time window. A third Strategy may be to do
nothing and only to retrieve an object through the Internet if
it is not found in the cache or when the user requests So by
pressing the Reload button on the browser Screen.

It is to be appreciated that cache coherency algorithms are
not a feature of the present invention, hence any reasonable
cache coherency algorithm can be deployed by a web
caching System of the present invention, as explained below
in the context of FIG. 18.

FIG. 18 depicts an architecture of a web caching system
of the present invention. As depicted in FIG. 18, web objects
(1801) are retrieved via the Internet by the web application

US 6,968,539 B1
15

manager (1804). For each web application (1802 or 1803),
the web application manager creates a separate web cache
(1807 or 1808). In a preferred embodiment of the present
invention, the web cache for an application contains two
pools, one for HTTP objects and the other one for non-HTTP
objects. In this preferred embodiment, the web application
manager runs a separate copy of the web browser Software
(1805 or 1806) for each web application, and uses the web
browser's web caching system to cache HTTP objects for
each application. Those skilled in the art can appreciate that
browser Software can be incorporated by the present inven
tion using various methods, including for example linking
and invoking APIs calls they provide or incorporating their
Source code for compilation. Alternatively, the web appli
cation manager can be developed with the capabilities to
create and manage a cache for HTTP objects for each
application without the incorporation of the browser's cach
ing System.

In a preferred implementation of the present invention,
the web application manager provides cache management
APIs to web applications to let them manage their own
caches for non-HTTP objects. Each web application can
manage a separate cache for non-HTTP web objects by
issuing these cache management APIs. Upon receiving these
API calls, the web application manager may then, on behalf
of the application issuing these calls, conduct cache man
agement tasks directly using the native operating System
1809 APIS.

FIG. 19 depicts an example of an HTTP web object
retrieval process of a web application manager having the
features of the present invention. As depicted by FIG. 19, the
web application manager first receives a request for an
HTTP web object from an application (step 1901). Next, the
web application manager invokes web browser Software to
retrieve this HTTP web object (step 1902). The web browser
will retrieve this HTTP web object by first checking its web
cache 1907. If the web browser returns an exception in
retrieving this object (step 1903), the web application man
ager invokes the exception handling process (Step 1904)
before it terminates the process (step 1906). If no exception
occurred (step 1903), the web application manager sends the
object returned by the browser to the requesting application
(step 1905) and then terminates the process (step 1906).

FIG. 20 depicts a process of the web application manager
of the present invention that executes non-HTTP web object
cache management APIs. According to the present inven
tion, a web application manages its own non-HTTP web
object cache by calling cache management APIs. AS
depicted in FIG. 20, upon receiving a cache management
API call (step 2001), the web application manager first
checks to see if this API call will result in any violations
against the cache Settings for the application that issues this
call (step 2002). For example, a cache violation may be
caused by a cache management API requesting Space for its
non-HTTP object cache that will result in the total storage
Space for the whole application exceeding that allowed for
this application.

If a violation occurs (step 2003), the web application
manager invokes the exception handling process (step 2004)
to handle this violation. A typical action may be to display
an error message and then exit the processing for the
application that caused this error. Next, if no violations
occur (step 2003), the web application manager processes
this API by executing native operating System APIs (step
2005) that directly manage the non-HTTP object cache 2008
for this application. Next, if any exceptions exist during the
cache management (Step 2006), the exception handling

15

25

35

40

45

50

55

60

65

16
process is invoked (step 2004). Otherwise, the API process
ing is complete and the process terminates (step 2007).

Although illustrative embodiments of the present inven
tion have been described herein with reference to the accom
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
other changes and modifications may be affected therein by
one skilled in the art without departing from the Scope or
spirit of the invention.
What is claimed is:
1. A method of generating a web-based application, the

method comprising the Steps of
composing one or more web pages in accordance with a

Scripting language to form the application;
embedding one or more extended function calls in the one

or more web pages in accordance with the Scripting
language Such that the application, when executed by a
computer System in which the application is installed,
has access to one or more operating System resources of
the computer System that are not associated with a
context of a web browser through the one or more
extended function calls,

wherein the one or more embedded extended function
calls cause one or more application programming inter
faces of an operating System to be executed in order to
access the one or more operating System resources that
are not associated with a context of a web browser; and

providing an application manager that manages a life
cycle associated with the web-based application in
accordance with the computer System, wherein the
application manager is operative to: (i) process code in
each web page of the application; (ii) invoke the web
browser to proceSS code that is of a Visual presentation
type; (iii) invoke a data modeling language parser to
parse code that is of a data modeling language type; (iv)
invoke a Scripting language interpreter to parse code
that is of the Scripting language type Such that the
Scripting language interpreter may execute code that is
of the original Scripting language type used by the web
browser; and (v) invoke an operating System interface
module to execute code, Successfully parsed by the
Scripting language interpreter, that executes the one or
more application programming interfaces.

2. The method of claim 1, wherein the Scripting language
includes code for accessing one or more operating System
resources of the computer System that are associated with a
context of a web browser.

3. A Software System for processing a web-based appli
cation in accordance with a computer System, the Software
System comprising:

an application manager that manages a life-cycle associ
ated with the web-based application in accordance with
the computer System, wherein the application is com
posed of one or more web pages and has access to one
or more operating System resources of the computer
System that are not associated with a context of a web
browser;

a Scripting language interpreter that interprets Scripting
language associated with the one or more web pages of
the application; and

an operating System interface module which converts one
or more calls embedded in the interpreted Scripting
language associated with the one or more web pages
into code that executes one or more application pro
gramming interfaces So as to access the one or more
operating System resources of the computer System that
are not associated with a context of a web browser;

US 6,968,539 B1
17

wherein the application manager is operative to: (i) pro
cess code in each web page of the application; (ii)
invoke the web browser to process code that is of a
Visual presentation type; (iii) invoke a data modeling
language parser to parse code that is of a data modeling
language type; (iv) invoke the Scripting language inter
preter to parse code that is of the Scripting language
type Such that the Scripting language interpreter may
execute code that is of the original Scripting language
type used by the web browser; and (v) invoke the
operating System interface module to execute code,
Successfully parsed by the Scripting language inter
preter, that executes one or more application program
ming interfaces.

4. The Software System of claim 3, further comprising a
web browser to at least one of retrieve web objects, send web
requests, and provide a graphical user interface in accor
dance with the execution of the web-based application.

5. The software system of claim 3, further comprising a
data modeling language parser to decode information in the
web-based application written in a corresponding data mod
eling language.

6. The software system of claim 5, wherein the data
modeling language parser is an XML parser.

7. The software system of claim 3, wherein the scripting
language is JavaScript".

8. The software system of claim 3, wherein the scripting
language interpreter is a JavaScript' interpreter.

9. A Software System for processing a web-based appli
cation in accordance with a computer System, the Software
System comprising:

an application manager that manages a life-cycle associ
ated with the web-based application in accordance with
the computer System, wherein the application is com
posed of one or more web pages and has access to one
or more operating System resources of the computer
System that are not associated with a context of a web
browser;

a Scripting language interpreter that interprets Scripting
language associated with the one or more web pages of
the application;

an operating System interface module which converts one
or more calls embedded in the interpreted Scripting
language associated with the one or more web pages
into code that executes one or more application pro
gramming interfaces So as to access the one or more
operating System resources of the computer System that
are not associated with a context of a web browser,
wherein the one or more operating System resources of
the computer System that are not associated with a
context of a web browser comprise a Screen display
outside of a window of the web browser;

a web browser; and
a data modeling language parser;
wherein the application manager is operative to: (i) pro

cess code in each web page of the application; (ii)

15

25

35

40

45

50

55

18
invoke the web browser to process code that is of a
Visual presentation type; (iii) invoke the data modeling
language parser to parse code that is of a data modeling
language type; (iv) invoke the Scripting language inter
preter to parse code that is of the Scripting language
type Such that the Scripting language interpreter may
execute code that is of the original Scripting language
type used by the web browser; and (v) invoke the
operating System interface module to execute code,
Successfully parsed by the Scripting language inter
preter, that executes the one or more application pro
gramming interfaces.

10. A Software System for processing a web-based appli
cation in accordance with a computer System, the Software
System comprising:

an application manager that manages a life-cycle associ
ated with the web-based application in accordance with
the computer System, wherein the application is com
posed of one or more web pages and has access to one
or more operating System resources of the computer
System that are not associated with a context of a web
browser;

a Scripting language interpreter that interprets Scripting
language associated with the one or more web pages of
the application;

an operating System interface module which converts one
or more calls embedded in the interpreted Scripting
language associated with the one or more web pages
into code that executes one or more application pro
gramming interfaces So as to access the one or more
operating System resources of the computer System that
are not associated with a context of a web browser,
wherein the one or more operating System resources of
the computer System that are not associated with a
context of a web browser comprise a file management
System;

a web browser; and
a data modeling language parser;
wherein the application manager is operative to: (i) pro

cess code in each web page of the application; (ii)
invoke the web browser to process code that is of a
Visual presentation type; (iii) invoke the data modeling
language parser to parse code that is of a data modeling
language type; (iv) invoke the Scripting language inter
preter to parse code that is of the Scripting language
type Such that the Scripting language interpreter may
execute code that is of the original Scripting language
type used by the web browser; and (v) invoke the
operating System interface module to execute code,
Successfully parsed by the Scripting language inter
preter, that executes the one or more application pro
gramming interfaces.

