
US 20150378698A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0378698 A1

Boag et al. (43) Pub. Date: Dec. 31, 2015

(54) INTEGRATED COMPILATION MODES FOR Publication Classification
DATA FLOW CODE GENERATION

(51) Int. Cl.
(71) Applicant: International Business Machines G06F 9/45 (2006.01)

Corporation, Armonk, NY (US) G06F 9/44 (2006.01)
(52) U.S. Cl.

(72) Inventors: Scott Boag, Woburn, MA (US); Moshe CPC. G06F 8/49 (2013.01); G06F 8/30 (2013.01)
M. E. Matsa, Cambridge, MA (US); (57) ABSTRACT
Kristoffer H. Rose, Poughkeepsie, NY Aspects of the present invention provide a solution for com
(US); Naoto Sato, Kawasaki-shi (J.P); piling data in a plurality of modes. In an embodiment, at least
Lionel A. S. Villard, Yorktown Heights, one optimal mode is specified for each of a set of program
NY (US) language constructs and each of a set of language primitives

in a first language. A set of optimal mode code is generated in
the at least one mode in a second language. A set of bridge

(21) Appl. No.: 14/317,265 code is generated. A set of additional mode code is generated
in a plurality of other modes in the second language, wherein
the generating utilizes the bridge code. The generated optimal

(22) Filed: Jun. 27, 2014 mode code and additional mode code is compiled.

COMPUTING DEVICE 104

MEMORY 11

COMPILER PROGRAM 140
OPTIMIAL MODE

PROCESSING SPECIFICATION MODULE
COMPONENT 142

106 OPTIMAL CODE
GENERATION MODULE

144

BRIDGE CODE
USER I/O GENERATION MODULE
120 COMPONENT 146

114
ADDITIONAL CODE

GENERATION MODULE
148

COMPLERMODULE 1.

STORAGE SYSTEM 118

US 2015/0378.698 A1 Dec. 31, 2015 Sheet 2 of 2 Patent Application Publication

CHOIO O CICHLWRIGINGIÐ [HTI, IIANOO (HOTOO [HOTOIN TVNOILIGIOIV (HJILWRIGINGIÐ GIOIO O GIOCITRI8I (HALVRIGH NGH5O CHOIO O CHOIOLAN TVIA?ILIO CHILWYRIGHINGIÐ CHOIOIA TVIAI,L,HO AHTOCH, IS

US 2015/0378.698 A1

INTEGRATED COMPLATION MODES FOR
DATA FLOW CODE GENERATION

STATEMENT REGARDING PRIOR
DISCLOSURE BY THE INVENTOR OR A JOINT

INVENTOR

0001. The following disclosure is submitted under 35 U.S.
C. 102(b)(1)(a): DISCLOSURE: “IBM Websphere
DataPower firmware release 6.0.0 available to the public on
Jun. 28, 2013.

TECHNICAL FIELD

0002 The subject matter of this invention relates generally
to software compilers. More specifically, aspects of the
present invention provide a solution for improved integrated
compilation modes for data flow generation.

BACKGROUND

0003 Software compilers are used extensively for trans
lating Source code in a first language to a second target lan
guage. This can be done in certain modes, for instance a
streaming mode, a memory-store mode, an object model cre
ation mode, and many others. Traditionally, compilers for
data processing languages have been designed to work in a
single mode. For instance, the generation of SAX vs DOM
code for the XML language is designed to work best in one
mode. This design results in code that is generated to favor
certain workloads over other possible modes.
0004. In recent years, work has been done to design cur
sor Application Programming Interfaces (APIs) capable of
accessing data using multiple modes. However, these
attempts require later conversion of data after compilation.

SUMMARY

0005. In general, aspects of the present invention provide
a solution for compiling data in a plurality of modes. In an
embodiment, at least one optimal mode is specified for each
of a set of program language constructs and each of a set of
language primitives in a first language. A set of optimal mode
code is generated in the at least one mode in a second lan
guage. A set of bridge code is generated. A set of additional
mode code is generated in a plurality of other modes in the
second language, wherein the generating utilizes the bridge
code. The generated optimal mode code and additional mode
code is compiled.
0006. A first aspect of the invention provides a method for
compiling data in a plurality of modes, the method compris
ing: specifying at least one optimal mode for each of a set of
program language constructs and each of a set of language
primitives in a first language; generating a set of optimal
mode code in the at least one mode in a second language;
generating a set of bridge code; generating a set of additional
mode code in a plurality of other modes in the second lan
guage, wherein the generating utilizes the bridge code; and
compiling the generated optimal mode code and additional
mode code.
0007. A second aspect of the invention provides a system
for compiling data in a plurality of modes, comprising at least
one computer device that performs a method, comprising:
specifying at least one optimal mode for each of a set of
program language constructs and each of a set of language
primitives in a first language; generating a set of optimal
mode code in the at least one mode in a second language;

Dec. 31, 2015

generating a set of bridge code; generating a set of additional
mode code in a plurality of other modes in the second lan
guage, wherein the generating utilizes the bridge code; and
compiling the generated optimal mode code and additional
mode code.
0008. A third aspect of the invention provides a computer
program product embodied in a computer readable hardware
medium for compiling data in a plurality of modes, which,
when executed, performs a method comprising: specifying at
least one optimal mode for each of a set of program language
constructs and each of a set of language primitives in a first
language; generating a set of optimal mode code in the at least
one mode in a second language; generating a set of bridge
code; generating a set of additional mode code in a plurality of
other modes in the second language, wherein the generating
utilizes the bridge code; and compiling the generated optimal
mode code and additional mode code.
0009. A fourth aspect of the present invention provides a
method for deploying an application for compiling data in a
plurality of modes, comprising: providing a computer infra
structure being operable to: Specify at least one optimal mode
for each of a set of program language constructs and each of
a set of language primitives in a first language; generate a set
of optimal mode code in the at least one mode in a second
language; generate a set of bridge code; generate a set of
additional mode code in a plurality of other modes in the
second language, wherein the generating utilizes the bridge
code; and compile the generated optimal mode code and
additional mode code.
0010 Still yet, any of the components of the present inven
tion could be deployed, managed, serviced, etc., by a service
provider who offers to implement passive monitoring in a
computer system.
0011 Embodiments of the present invention also provide
related systems, methods and/or program products.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. These and other features of this invention will be
more readily understood from the following detailed descrip
tion of the various aspects of the invention taken in conjunc
tion with the accompanying drawings in which:
0013 FIG. 1 shows an illustrative computer system
according to embodiments of the present invention.
0014 FIG.2 shows an example flow diagram according to
embodiments of the invention.
0015 The drawings are not necessarily to scale. The draw
ings are merely schematic representations, not intended to
portray specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DETAILED DESCRIPTION

0016 Current methods of compiling code for data pro
cessing languages tend to favor a certain workload or mode
over others. Attempts have been made to develop APIs that
can dynamically access data using multiple modes, but code
is not generated in a manner that mixes the compilation
modes opportunistically. Embodiments of the current method
of compiling include Such mixing of compilation modes,
utilizing bridge code generated by the compiler from special
integrated local compilation modes included in the compiler.

US 2015/0378.698 A1

This allows for an opportunistic code generation using
higher-order rewriting in order to define all language con
structs and language primitives in each desired mode in a
single workload.
0017. As indicated above, aspects of the present invention
provide a solution for compiling data in a plurality of modes.
In an embodiment, at least one optimal mode is specified for
each of a set of program language constructs and each of a set
of language primitives in a first language. A set of optimal
mode code is generated in the at least one mode in a second
language. A set of bridge code is generated, and a set of
additional mode code is generated in a plurality of other
modes in the second language, wherein the generating utilizes
the bridge code. The generated optimal mode code and addi
tional mode code is compiled.
0018 Turning to the drawings, FIG. 1 shows an illustrative
environment 100 for compiling data in a plurality of modes.
To this extent, environment 100 includes a computer system
102 that can perform a process described herein in order to
compile data in a plurality of modes. In particular, computer
system 102 is shown including a computing device 104 that
includes a compiler program 140, which makes computing
device 104 operable to compile data in a plurality of modes by
performing processes described herein.
0019 Computing device 104 is shown including a pro
cessing component 106 (e.g., one or more processors), a
memory 110, a storage system 118 (e.g., a storage hierarchy),
an input/output (I/O) component 114 (e.g., one or more I/O
interfaces and/or devices), and a communications pathway
112. In general, processing component 106 executes program
code. Such as compiler program 140, which is at least partially
fixed in memory 110. To this extent, processing component
106 may comprise a single processing unit, or be distributed
across one or more processing units in one or more locations.
0020 Memory 110 also can include local memory,
employed during actual execution of the program code, bulk
storage (storage 118), and/or cache memories (not shown)
which provide temporary storage of at least some program
code in order to reduce the number of times code must be
retrieved from bulk storage 118 during execution. As such,
memory 110 may comprise any known type of temporary or
permanent data storage media, including magnetic media,
optical media, random access memory (RAM), read-only
memory (ROM), a data cache, a data object, etc. Moreover,
similar to processing component 106, memory 110 may
reside at a single physical location, comprising one or more
types of data storage, or be distributed across a plurality of
physical systems in various forms.
0021 While executing program code, processing compo
nent 106 can process data, which can result in reading and/or
writing transformed data from/to memory 110 and/or I/O
component 114 for further processing. Pathway 112 provides
a director indirect communications link between each of the
components in computer system 102. I/O component 114 can
comprise one or more human I/O devices, which enable a
human user 120 to interact with computer system 102 and/or
one or more communications devices to enable a system user
120 to communicate with computer system 102 using any
type of communications link.
0022. To this extent, compiler program 140 can manage a
set of interfaces (e.g., graphical user interface(s), application
program interface, and/or the like) that enable human and/or
system users 120 to interact with compiler program 140.
Users 120 could include system administrators who want to

Dec. 31, 2015

compile data in a plurality of modes, among others. Further,
compiler program 140 can manage (e.g., store, retrieve, cre
ate, manipulate, organize, present, etc.) the data in Storage
system 118 using any solution.
0023. In any event, computer system 102 can comprise
one or more computing devices 104 (e.g., general purpose
computing articles of manufacture) capable of executing pro
gram code, Such as compiler program 140, installed thereon.
As used herein, it is understood that “program code” means
any collection of instructions, in any language, code or nota
tion, that cause a computing device having an information
processing capability to perform a particular action either
directly or after any combination of the following: (a) con
version to another language, code or notation; (b) reproduc
tion in a different material form; and/or (c) decompression. To
this extent, compiler program 140 can be embodied as any
combination of system software and/or application software.
In any event, the technical effect of computer system 102 is to
provide processing instructions to computing device 104 in
order to compile data in a plurality of modes.
0024. Further, compiler program 140 can be implemented
using a set of modules 142-150. In this case, a module 142
150 can enable computer system 102 to perform a set of tasks
used by compiler program 140, and can be separately devel
oped and/or implemented apart from other portions of com
piler program 140. As used herein, the term “component
means any configuration of hardware, with or without soft
ware, which implements the functionality described in con
junction therewith using any solution, while the term 'mod
ule” means program code that enables a computer system 102
to implement the actions described in conjunction therewith
using any solution. When fixed in a memory 110 of a com
puter system 102 that includes a processing component 106.
a module is a Substantial portion of a component that imple
ments the actions. Regardless, it is understood that two or
more components, modules, and/or systems may share some/
all of their respective hardware and/or software. Further, it is
understood that some of the functionality discussed herein
may not be implemented or additional functionality may be
included as part of computer system 102.
0025. When computer system 102 comprises multiple
computing devices 104, each computing device 104 can have
only a portion of compiler program 140 fixed thereon (e.g.,
one or more modules 142-150). However, it is understood that
computer system 102 and compiler program 140 are only
representative of various possible equivalent computer sys
tems that may perform a process described herein. To this
extent, in other embodiments, the functionality provided by
computer system 102 and compiler program 140 can be at
least partially implemented by one or more computing
devices that include any combination of general and/or spe
cific purpose hardware with or without program code. In each
embodiment, the hardware and program code, if included,
can be created using standard engineering and programming
techniques, respectively.
0026 Regardless, when computer system 102 includes
multiple computing devices 104, the computing devices can
communicate over any type of communications link. Further,
while performing a process described herein, computer sys
tem 102 can communicate with one or more other computer
systems using any type of communications link. In either
case, the communications link can comprise any combination
of various types of wired and/or wireless links; comprise any

US 2015/0378.698 A1

combination of one or more types of networks; and/or utilize
any combination of various types of transmission techniques
and protocols.
0027. As discussed herein, compiler program 140 enables
computer system 102 to compile data in a plurality of modes.
To this extent, compiler program 140 is shown including an
optimal mode specification module 142, an optimal code
generation module module 144, a bridge code generation
module 146, an additional code generation module 148, and a
compiler module 150.
0028 Turning now to FIG. 2, an example flow diagram
according to embodiments of the invention is shown. In one
embodiment, a method 200 is disclosed. As illustrated, in S1,
at least one optimal mode is specified, for instance using
optimal mode module 142 (FIG. 1), as executed by computer
system 102 (FIG. 1). In some embodiments, at least one
optimal mode is specified, and in Some cases multiple optimal
modes may be specified in a single workload for compiling
data. The optimal mode may be defined for some or all of the
language constructs and Some or all of the language primi
tives included in the data, which is in a first language, to be
compiled. In some embodiments, a compiler developer,
which may include user 120 (FIG. 1), who creates compiler
program 140 may only need to specify optimal modes for the
language constructs and the language primitives, and other
mode codes are generated automatically as further described
below.
0029. The modes specified can include any now known or
later developed modes used in compilation of data. For
example, the modes used may include, but are not limited to,
a stream mode, an update mode, a local mode, a test mode, an
iterate mode, and a tuple-add mode. These modes may use a
uniform notation, Such as that used in higher-order rewriting.
0030. Further regarding S1, in some embodiments, certain
language constructs and language primitives may frequently
be specified to be generated in certain optimal modes. For
example, for each language construct similar to a for
construct, which includes iteration constructs, a streaming
mode may be specified. This can result in a repeated loop
body that can be sent to the output. In another example,
iteration type language constructs may also be specified to be
generated in a test mode. This is because for a loop, a test
mode may simply test if the result is empty. For plus lan
guage constructs, a store mode may be specified. Advanta
geously, Some language constructs, for example if... and
let . . . constructs may be able to generate optimal code for

all possible modes, rather than one or a few modes as with
Some other constructs.
0031. In S2, optimal code generation module 144 (FIG.1),
as executed by computer system 102 (FIG. 1), generates a set
of optimal mode code in the at least one specified optimal
mode in a second language, for each of the set of language
constructs and each of the set of language primitives that are
in the data. First and second languages may include any
known or later developed languages, including but not limited
to XQuery, JSONid, XSLT, and SQL. The generation of the
optimal mode code can include any means now known or later
developed of generating a compiler code for a particular
mode. However, in some embodiments of the current inven
tion, it is possible to switch, automatically, between different
optimal modes even during the execution of generating the
optimal mode code.
0032. In S3, bridge code generation module 146 (FIG. 1),
as executed by computer system 102 (FIG. 1), generates a set

Dec. 31, 2015

of bridge code. In some embodiments, higher-order rewriting
can be used to generate the bridge code. The bridge code
generated allows for the optimal mode code generated to be
used to bridge the generation of the other modes. This bridg
ing allows for the generation of code for a plurality of modes,
despite only specifying one or a few optimal modes, during
the single workload of a single compiling method. Further,
this allows for a static choice of the optimal mode or a
dynamic choice of the optimal mode used for compiling.
0033. In S4, additional code generation module 148 (FIG.
1), as executed by computer system 102 (FIG. 1), generates a
set of additional mode code, in a plurality of other modes
which are not the specified optimal mode or modes, in the
second language. The generating of the additional modes
utilizes the bridge code generated in S3 and higher-order
rewriting.
0034. In S5, compiler module 150 (FIG. 1), as executed by
computer system 102 (FIG. 1), compiles the generated opti
mal mode code and the generated additional mode code into
the end set of code in the second language. This set of code
may include any compiled data format and language. Such as
executable code, for instance.
0035. While shown and described herein as a method and
system for compiling data in a plurality of modes, it is under
stood that aspects of the invention further provide various
alternative embodiments. For example, in one embodiment,
the invention provides a computer program fixed in at least
one computer-readable medium, which when executed,
enables a computer system to compile data in a plurality of
modes. To this extent, the computer-readable medium
includes program code. Such as compiler program 140 (FIG.
1), which implements some or all of a process described
herein. It is understood that the term “computer-readable
medium' comprises one or more of any type of tangible
medium of expression, now known or later developed, from
which a copy of the program code can be perceived, repro
duced, or otherwise communicated by a computing device.
For example, the computer-readable medium can comprise:
one or more portable storage articles of manufacture; one or
more memory/storage components of a computing device;
and/or the like.

0036. In another embodiment, the invention provides a
method of providing a copy of program code, such as com
piler program 140 (FIG. 1), which implements some or all of
a process described herein. In this case, a computer system
can process a copy of program code that implements some or
all of a process described herein to generate and transmit, for
reception at a second, distinct location, a set of data signals
that has one or more of its characteristics set and/or changed
in Such a manner as to encode a copy of the program code in
the set of data signals. Similarly, an embodiment of the inven
tion provides a method of acquiring a copy of program code
that implements some or all of a process described herein,
which includes a computer system receiving the set of data
signals described herein, and translating the set of data signals
into a copy of the computer program fixed in at least one
computer-readable medium. In either case, the set of data
signals can be transmitted/received using any type of com
munications link.

0037. In still another embodiment, the invention provides
a method of generating a system for remediating a migration
related failure. In this case, a computer system, such as com
puter system 102 (FIG. 1), can be obtained (e.g., created,
maintained, made available, etc.) and one or more compo

US 2015/0378.698 A1

nents for performing a process described herein can be
obtained (e.g., created, purchased, used, modified, etc.) and
deployed to the computer system. To this extent, the deploy
ment can comprise one or more of: (1) installing program
code on a computing device; (2) adding one or more comput
ing and/or I/O devices to the computer system; (3) incorpo
rating and/or modifying the computer system to enable it to
perform a process described herein; and/or the like.
0038. The terms “first,” “second, and the like, if and
where used herein do not denote any order, quantity, or impor
tance, but rather are used to distinguish one element from
another, and the terms 'a' and “an herein do not denote a
limitation of quantity, but rather denote the presence of at
least one of the referenced item. The modifier “approxi
mately, where used in connection with a quantity is inclusive
of the stated value and has the meaning dictated by the con
text, (e.g., includes the degree of error associated with mea
surement of the particular quantity). The suffix "(s)' as used
herein is intended to include both the singular and the plural
of the term that it modifies, thereby including one or more of
that term (e.g., the metal(s) includes one or more metals).
0039. The foregoing description of various aspects of the
invention has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to an individual in the art
are included within the scope of the invention as defined by
the accompanying claims.
What is claimed is:
1. A method for compiling data in a plurality of modes, the

method comprising:
specifying at least one optimal mode for each of a set of
program language constructs and each of a set of lan
guage primitives in a first language;

generating a set of optimal mode code in the at least one
mode in a second language;

generating a set of bridge code:
generating a set of additional mode code in a plurality of

other modes in the second language, wherein the gener
ating utilizes the bridge code; and

compiling the generated optimal mode code and additional
mode code.

2. The method of claim 1, wherein the plurality of modes
includes a group consisting of stream, update, local, test,
iterate, and tuple-add modes.

3. The method of claim 1, wherein the specifying at least
one mode comprises specifying a plurality of modes.

4. The method of claim 3, further comprising:
Switching of the specified optimal mode during generation
of the set of optimal mode code.

5. The method of claim 1, wherein the set of bridge code is
generated using higher order rewriting.

6. The method of claim 5, wherein the generation of the set
of bridge code is one of static or dynamic.

7. The method of claim 1, wherein for an iteration language
construct, the optimal mode is chosen from a group consisting
of at least one of stream and test modes.

8. The method of claim 1, wherein for a plus language
construct, the optimal mode consists of a store mode.

9. A system for compiling data in a plurality of modes,
comprising at least one computer device that performs a
method, comprising:

Dec. 31, 2015

specifying at least one optimal mode for each of a set of
program language constructs and each of a set of lan
guage primitives in a first language;

generating a set of optimal mode code in the at least one
mode in a second language;

generating a set of bridge code:
generating a set of additional mode code in a plurality of

other modes in the second language, wherein the gener
ating utilizes the bridge code; and

compiling the generated optimal mode code and additional
mode code.

10. The system of claim 9, the method further comprising:
wherein the plurality of modes includes a group consisting

of stream, update, local, test, iterate, and tuple-add
modes.

11. The system of claim 9, the method further comprising:
wherein the specifying at least one mode comprises speci

fying a plurality of modes.
12. The system of claim 11, the method further comprising:
Switching of the specified optimal mode during generation

of the set of optimal mode code.
13. The system of claim 9, the method further comprising:
wherein the set of bridge code is generated using higher

order rewriting.
14. The system of claim 13, the method further comprising:
wherein the generation of the set of bridge code is one of:

static or dynamic.
15. The system of claim 9, the method further comprising:
wherein for an iteration language construct, the optimal
mode is chosen from a group consisting of at least one
of stream and test modes.

16. The system of claim 9, the method further comprising:
wherein for a plus language construct, the optimal mode

consists of a store mode.
17. A computer program product embodied in a computer

readable medium for compiling data in a plurality of modes,
which, when executed, performs a method comprising:

specifying at least one optimal mode for each of a set of
program language constructs and each of a set of lan
guage primitives in a first language;

generating a set of optimal mode code in the at least one
mode in a second language;

generating a set of bridge code:
generating a set of additional mode code in a plurality of

other modes in the second language, wherein the gener
ating utilizes the bridge code; and

compiling the generated optimal mode code and additional
mode code.

18. The computer program product of claim 17, the method
further comprising:

wherein the plurality of modes includes a group consisting
of stream, update, local, test, iterate, and tuple-add
modes.

19. The computer program product of claim 17, the method
further comprising:

wherein the specifying at least one mode comprises speci
fying a plurality of modes.

20. The computer program product of claim 19, the method
further comprising:

Switching of the specified optimal mode during generation
of the set of optimal mode code.

21. The computer program product of claim 17, the method
further comprising:

US 2015/0378.698 A1

wherein the set of bridge code is generated using higher
order rewriting.

22. The computer program product of claim 21, the method
further comprising:

wherein the generation of the set of bridge code is one of:
static or dynamic.

23. The computer program product of claim 17, the method
further comprising:

wherein for an iteration language construct, the optimal
mode is chosen from a group consisting of at least one
of stream and test modes.

24. The computer program product of claim 17, the method
further comprising:

wherein for a plus language construct, the optimal mode
consists of a store mode.

25. A method for deploying an application for compiling
data in a plurality of modes, comprising:

provide a computer infrastructure being operable to:
specify at least one optimal mode for each of a set of
program language constructs and each of a set of lan
guage primitives in a first language;

generate a set of optimal mode code in the at least one mode
in a second language;

generate a set of bridge code:
generate a set of additional mode code in a plurality of

other modes in the second language, wherein the gener
ating utilizes the bridge code; and

compile the generated optimal mode code and additional
mode code.

Dec. 31, 2015

