
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0159502 A1

US 20120159502A1

Levin et al. (43) Pub. Date: Jun. 21, 2012

(54) VARIABLE INCREMENT REAL-TIME Publication Classification
STATUS COUNTERS (51) Int. Cl.

(75) Inventors: Oleg Levin, Acton, MA (US); G06F 9/50 (2006.01)
Sonjeev Jahagirdar, Cambridge, (52) U.S. Cl. .. 71.8/104
MA (US); Moshe E. Matsa, (57) ABSTRACT
Cambridge, MA (US)

Processes, devices, and articles of manufacture having pro
(73) Assignee: INTERNATIONAL BUSINESS visions to monitor and track multi-core Central Processor

MACHINES CORPORATION, Unit resource allocation and deallocation in real-time are
Armonk, NY (US) provided. The allocation and deallocation may be tracked by

two counters with the first counter incrementing up or down
(21) Appl. No.: 12/969,692 depending upon the allocation or deallocation at hand, and

with the second counter being updated when the first counter
(22) Filed: Dec. 16, 2010 value meets or exceeds a threshold value.

WHEN MEMORY IS ALLOCATED,
INCREMENT LOCAL RESOURCE COUNTER

UPDATE GLOBAL COUNTER WITH THE POSITIVE OR
NEGATIVE WALUE OF LOCAL COUNTER USING

RESET LOCAL COUNTER TOZERO

CALCULATE REVISED THRESHOLD USING
CURRENT MEMORY ALLOCATIONS

UPDATE EXISTING THRESHOLDIF REVISED
THRESHOLD SOUTSIDE OF ACCEPTABLE

2OO

SABSOLUTE
WALUE OF LOCAL

RESOURCE COUNTEREQUAL TO
OR GREATER THAN

THRESHOLD2

22O

ATOMIC INCREMENT OPERATION

23O

24-O

25O

DIFFERENCE

Patent Application Publication Jun. 21, 2012 Sheet 1 of 4 US 2012/O159502 A1

1OO PROCESS EXECUTING

AREADEQUATE
RESOURCES AVAILABLE

TO MEET QOSFOR CONTINUED PROCESS
EXECUTION IN MULT-CORE

ENVIRONMENT DELAY ORREJECT EXECUTING
ADDITIONAL THREADS OR PROGRAMS

UNTIL THE GLOBAL RESOURCE COUNTER
ISBELOW ACCEPTABLEQOSLIMITS, 12O EXECUTE PROGRAM OR THREAD

MANTAIN GLOBAL RESOURCE COUNTER
WHEN THE PROGRAMIS EXECUTING

MAINTAIN LOCAL RESOURCE COUNTERFOR
EACH THREAD OF THE EXECUTING PROGRAM

UPDATE THE LOCAL RESOURCE COUNTER WHEN
THE SUPPORTING RESOURCE IS CALLED OR DROPPED

FOR A THREAD OF THE EXECUTING PROGRAM

13O

DOES GLOBAL
RESOURCE COUNTEREXCEED

(OSTARGET?

EXECUTE ADDITIONAL
THREADS OR PROGRAMS

195

IS THE
LOCAL RESOURCE

COUNTER THRESHOLD CROSSED BECAUSE
OF MOST RECENT

UPDATE

INCREASE ORDECREASE THE GLOBAL RESOURCE
COUNTER WITH THE WALUE OF THE LOCAL COUNTER
AND RESET THE LOCAL RESOURCE COUNTERTOZERO

17O
F.G. 1

Patent Application Publication Jun. 21, 2012 Sheet 2 of 4 US 2012/O159502 A1

WHEN MEMORY IS ALLOCATED, 2OO
INCREMENT LOCAL RESOURCE COUNTER

21O
SABSOLUTE

WALUE OF LOCAL
RESOURCE COUNTEREQUAL TO

OR GREATER THAN
THRESHOLD2

YES

UPDATE GLOBAL COUNTER WITH THE POSITIVE OR 22O
NEGATIVEWALUE OF LOCAL COUNTER USING

ATOMIC INCREMENT OPERATION

RESET LOCAL COUNTER TOZERO 23O

CALCULATE REWISED THRESHOLD USING 24-O
CURRENT MEMORY ALLOCATIONS

UPDATE EXISTING THRESHOLDIF REVISED
THRESHOLD SOUTSIDE OF ACCEPTABLE

DIFFERENCE

25O

FG. 2

Patent Application Publication Jun. 21, 2012 Sheet 3 of 4 US 2012/O159502 A1

PROVIDE MEMORY ALLOCATION FOR A SPECIFIC 31O
THREAD-INT ALLOCATION SIZE

UPDATE LOCAL COUNTERTO ACCOUNT FORTHREAD
ALLOCATION LOCAL COUNTER = LOCAL COUNTER

+ ALLOCATION SIZE

32O

33O

ABS
(LOCAL COUNTER) >=
GLOBAL THRESHOLD

yes | CALCULATE ANDUPDATE NEWGLOBALCOUNTER VALUE (GLOBAL COUNTER, GLOBAL COUNTER+ P90
LOCAL COUNTER

NO

REVISE LOCAL COUNTER LOCAL COUNTER-O, 35O

UPDATE LOCALTHRESHOLD WALUE
(LOCAL THRESHOLD = (TOTAL MEMORY- 36O
GLOBAL COUNTER) / (23 NTHREADS)

37O
CALCULATE AND

COMPARE THRESHOLD
PERCENT WITH LOCAL THRESHOLD

ABS (LOCAL THRESHOLD-GLOBAL THRESHOLD)
/ (GLOBAL THRESHOLD) >=
THRESHOLD PERCENT

YES

COMPARE AND SWAP (GLOBAL THRESHOLD, 33O
LOCAL THRESHOLD)

WAIT FOR NEXT ALLOCATIONORDE ALLOCATION OPERATION/-390

FG, 3

Patent Application Publication Jun. 21, 2012 Sheet 4 of 4 US 2012/O159502 A1

O
N
r

O
(S)
r s

l)
C)
r

O
ts.
r

Q
tC)
r

-

O) 5 s
e

S. 5
s Q)

s
S. () /? ()

r

Q

s S.
N

-------, -es e re

88 SEE

US 2012/O 159502 A1

VARABLE INCREMENT REAL-TIME
STATUS COUNTERS

BACKGROUND

0001. The present invention relates to shared resources,
and more specifically to selectively updating, in real-time,
resource status counters in a multi-core environment.

DESCRIPTION OF RELATED ART

0002 Central Processing Units (CPUs) can include one or
more processing cores and may be coupled to or Supported by
various resources. These Support resources may communi
cate with the core or cores to provide instructions, data, net
working, I/O, storage, and buffering services. As core clock
speeds have increased, the need to increase the speed and
robustness of these Support resources has increased as well.
0003. The oft-repeated analogy, that a chain is as strong as

it its weakest link, can apply with regard to overall system
processing speed. When computations are not conducted dur
ing each clock cycle for one or more cores of the CPU, overall
performance can Suffer. These lost computation clock cycles
can be reduced by increasing the availability of instructions
and data to the processing cores of the CPU. For example,
buffers, which can stockpile instructions and data ahead of
processing, can be used and can serve to reduce lost CPU
clock cycles. Also, local cache, which can be faster and closer
than main memory, may be used to store regularly repeated
instructions and data, and anticipated instructions and data.
Other features, such as improved bus speeds and more robust
I/O methodologies, can also serve to increase overall system
computation speed.
0004 Cache memory, one of the Supporting resources, can
include multiple blocks of high-speed memory for use by the
CPU. Rather than always reading from and writing to slower
main memory, cache memory may be employed to minimize
latency periods attributable to main memory read/write
operations. Thus, cache memory serves as closer and quicker
temporary storage for instructions and data.
0005 Cache memory can vary in size, speed, and position
relative to the CPU. The cache closest to the CPU is often
designated as L1 cache and can be bifurcated with separate
cache for data and instructions. This L1 cache may reside on
the core complex of a CPU. The next cache further from the
core is often designated as L2 cache. L2 cache may be twice
the size or more of L1 cache and may be shared by more than
one CPU core. The third and final cache—L3 cache—may be
larger than the L2 cache and may serve multiple cores and
multiple CPUs.
0006. The size of each level of cache may serve to deter
mine the extent to which main memory is accessed during
processing and how much data is written to main storage
afterwards. Cache misses, instances when data or instructions
needed for a process are not found in cache, can serve to slow
down the overall performance of a CPU and a system.

BRIEF SUMMARY

0007 Embodiments include processes, devices, and
articles of manufacture having provisions to monitor and
track resource allocation and deallocation. The allocation and
deallocation may be tracked by two counters, where the first
counter increments up or down depending upon the allocation
or deallocation at hand, and where the second counter may be
updated when the first counter value meets or exceeds a

Jun. 21, 2012

threshold value. The incrementing of the second counter in
this fashion may serve to reduce frequency by which the
second counter is updated and the frequency by which a
resource associated with that second counter is used as well.
The value or status of the second counter, which can be
reflective of an available quality of service, may be used when
determining if a new allocation request attributable to a
resource is granted or provisioned for.
0008. In embodiments, a computing device comprising a
bus; processor, and resources may be provided. The processor
may be configured to track requests to allocate or deallocate
the first processor resource: increment a first resource counter
up or down with an increment reflecting the size of the allo
cation or deallocation of the first resource; determine, after
incrementing the first resource counter up or down, whether
the absolute value of the first resource counter meets or
exceeds a first resource counterthreshold; and when the abso
lute value of the first resource counter is determined to meet
or exceed the first resource counterthreshold, update a second
counter with an increment reflecting the value of the first
resource counter size. The processor may be further config
ured to reset the first resource counter and; before finalizing a
request to allocate a processor resource, consider the value of
the second counter, and determine if a quality of service
criteria can be satisfied if the requested allocation of the
processor resource is finalized.
0009. In embodiments, when the difference between the

first resource counter threshold and the global threshold
exceeds a predetermined percentage, the processor may
update the first resource counter threshold with a revised first
resource counter threshold for use in Subsequent monitoring.
0010. In embodiments, the processor may be a multi-core
processor and the first resource may be cache or other
memory. In embodiments, the requests to allocate or deallo
cate resources may be linked to the initiation or conclusion of
process threads running on the multi-core processor and the
requests to allocate or deallocate the processor resources may
be made for each thread allocation or deallocation.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0011 FIG. 1 shows a process with features and elements
consistent with embodiments of the invention.
0012 FIG. 2 shows a process with features and elements
consistent with embodiments of the invention.
0013 FIG. 3 shows a process with features and elements
consistent with embodiments of the invention.
0014 FIG. 4 shows a device with features and elements
consistent with embodiments of the invention.

DETAILED DESCRIPTION

0015 Embodiments of the invention relate to shared
resources and the selective update of status counters of these
resources in a multi-core environment. In embodiments, local
and global resource counters may be used to evaluate the
availability, workload, or status of a resource. As the resource
is allocated or deallocated, a local counter aligned with that
resource may be incremented or decremented in value con
sistent with the actual allocation or deallocation. The change
in value of the local counter may be used to update a global
counterifa threshold has been met or crossed. If the threshold
has not been met or crossed, additional allocations and deal
locations may be tracked by the counter with concomitant

US 2012/O 159502 A1

increases or decreases in the value of the counter. Once again,
the current counter status may be compared to a threshold
value. If the threshold value is met or crossed, the local
counter may be reset to Zero, and the applicable global
counter may be increased or decreased by the counter value.
0016. The global counter value may be used to inform or
track resource availability, status, or quality of service. In
other words, ifa resource is under pressure, as reflected by the
global counter, threads, processes, data transfer, or other
operations may be held or rerouted to available resources.
Likewise, when a resource is available or underutilized, the
global counter may inform that status as well. For example,
when main memory is tracked as a resource, counters may be
used to reduce the number of read/write operations from/to
main memory, thereby increasing the use of local cache
memory and advantageously providing for improved speed
and operations associated with cache memory use.
0017 Embodiments may be carried out in environments
with tracking and counter configurations designated in the
operating system, at the application level, in specific plug-ins
or modules, and in other ways as well. These embodiments
may be configured such that a desired number of transactions
can be executed in parallel. They may also be configured Such
that a target number of parallel transactions may be executed
together in the multi-core embodiment.
0.018 FIG.1 shows a flowchart of features and elements as
may be employed in embodiments of the invention. As with
each of the embodiments described herein, the features and
elements may be used in processes, configured into articles of
manufacture, and used to adapt or configure computing
devices. As shown in FIG. 1, embodiments can serve to man
age main memory, reduce the number or frequency of cache
misses, improve overall system processing speed, improve
system efficiency or improve quality of service.
0019. As can be seen in FIG. 1 at 100, features and ele
ments of embodiments may include various queries and steps
carried out during process execution. As shown at 110, a
query, test, action, or other provision may be carried out to
determine if adequate resources are available to meet quality
of standards for new processing or execution or continued
processing or execution of a program. This query, test, action,
or other provision may include checking the status of a
resource, querying a resource directly or indirectly, and deter
mining whether the status of the resource indicates that a
thread, data, or other portion of an executing program, may be
accepted or processed with the assistance of the resource.
0020. As shown at 190, if adequate resources are not avail
able, the thread, program code, or data, may be delayed or
rejected from execution or handling until adequate resources
to maintain quality of service are available. This may include
whether a global resource counter indicates that adequate
main memory is available to execute or continue running
threads, portions of processes, or other code. This may also
include determining whether data strings represent informa
tion too large for manipulation, storage, or buffering by exist
ing resources. These resources may include cache memory,
buffers, I/O adapters, and serial interfaces, among others.
Once the delay or rejection has occurred or has lapsed for
appropriate reasons, the process execution may continue, as
shown at 100.
0021. At 110, if adequate resources are determined to be
available to satisfy QOS parameters or guidelines for contin
ued processing, the particular program or thread may be
executed or the particular data may be transferred or stored, as

Jun. 21, 2012

shown at 120. Furthermore, a global resource counter, which
may be tracking multiple local resource counters for a single
resource type of a multi-core processor or across several
multi-core processors, may be increased by a predetermined
amount in order to reflect that the particular resource being
tracked by the global resource counter is being occupied.
Likewise, if a resource is being released or is not being used
as much, the global resource counter may be decreased in
value to reflect the concomitant change in the local counter
value or the resource allocation.
0022. As shown at 140, a local resource counter, particu
larly associated with or assigned to a local resource and a
particular thread or program code being executed, may also
be increased to reflect that the particular resource is currently
being used by the thread or program element. At Subsequent
points in time, when the resource is no longer being used, the
local resource counter may be decreased.
0023. At 150, the local resource counter may be updated
when the Supporting resource associated with the local
resource counter is allocated or deallocated. In other words, if
the memory allocation is made to account for a process
thread, the local resource counter may be increased by the
amount of the memory allocation. Likewise, the local
resource counter may be decreased by an amount consistent
with the amount of deallocated memory. Furthermore, when
a thread execution is completed, and the thread no longer
needs to maintain the memory allocation, the local resource
counter may be decreased by an amount consistent with the
amount of memory previously allocated with the thread or
presently deallocated with the thread.
0024. In embodiments, at certain instances in time, if the
local resource counter reaches a threshold, the local resource
counter may be reset to Zero and the global resource counter
may be increased or decreased incrementally. The meeting of
a threshold or crossing a threshold is shown at step 160, and
the increase or decrease of the global resource counter is
shown at step 170. Crossing the threshold may be completed
during both allocations and deallocations of the memory or
other resource. Consequently, in embodiments the absolute
value of the local resource counter may be considered to
determine whether a threshold is crossed and the value may
be added to or subtracted from the global counter to account
for an increase or decrease in resource availability or use. In
other words, in embodiments, such that the global resource
counter may be maintained, even though an absolute value of
the local resource counter is considered when determining
whether a threshold is crossed, the global resource counter
may be adjusted both upwardly and downwardly by an
amount consistent with the size of the resource allocation or
deallocation.

0025. For example, when an amount of used memory is
being managed, ifa threshold is 100 MB, and this threshold is
crossed because 10 MB is allocated for a thread (and the
existing counter reflects 90 MB or so of allocation), an addi
tional 100 MB may be added to the global resource counteras
the local resource counter is reset to zero. Likewise the deal
location of 10MB of memory may be considered to cross the
threshold and trigger an adjustment in the global resource
counter. However, in this instance, the global resource
counter may be reduced since the threshold crossing was
triggered by a deallocation of memory.
0026. At 180, if the global resource counter does not
exceed the quality of service target additional threads or pro
grams or processes may be executed as shown at 195. Con

US 2012/O 159502 A1

versely, if the quality of service target is exceeded, then, as
shown at 190, additional threads or programs may be delayed
or rejected until the global resource counter is below an
acceptable QOS limit. This QOS limit may be set by an
administrator, may be predetermined, may float according to
required client needs, or may be set by other methodologies as
well.

0027 FIG. 2 shows features and steps of embodiments of
the invention. FIG.2 addresses the incrementing and resetting
of the local counter and the incrementing and decrementing
of a global counter. FIG.2 also addresses adjusting the thresh
old by which the local resource counter may be measured.
0028. As shown in FIG. 2 a process is loaded and execut
ing in a multi-core environment. At 200, when memories
allocated for a specific thread or program elements of local
resource counter are to be incremented, a local resource
counter may be assigned or attributed to the specific thread as
well as to resource type. This newly incremented local
resource counter value may be measured against a threshold
to determine if the recent change exceeds the threshold. This
comparison is shown at 210. There, a query is conducted as to
whether an absolute value of the local resource counter is
greater than or equal to the threshold. As shown in FIG. 2, if
the threshold for the local resource counter has not been met
or crossed the status counter may remain unchanged, the
memory will be allocated for the thread, and process execu
tion may continue. Conversely, if the absolute value of local
resource counteris equal to or greater than the threshold, then,
as shown at 220, the global counter may be updated using an
atomic increment operation. This atomic increment operation
may be done with a value that serves to increase the global
counter as well as decrease the global counter. As shown at
230, upon meeting or crossing the threshold, the local counter
may be reset to Zero. As noted above, because the threshold
may be compared to absolute values of the allocation or
deallocation, the adjustment of the global resource counter
may be in either a positive or negative direction even though
the local resource may be reset to Zero.
0029. As shown at 240, in embodiments, once a threshold
has been met a revised threshold may be recalculated using
current memory allocations or other current resource condi
tions. Recalculating the threshold after reset or after a per
centage change or other predetermined criteria, may serve to
increase the accuracy or exactness of memory allocations or
other managed resource allocations. Changing the threshold
may also serve to reduce the number of changes to the global
resource counter. Accordingly, as shown at 250, if a new
threshold calculated or determined is beyond an acceptable
difference, the threshold may be updated to reflect the newly
calculated or determined number. Comparably, if the newly
calculated threshold for 240 is within acceptable tolerance,
the previously existing threshold for the local resource
counter may remain. This type of threshold calculation and
adjustment can serve to move the threshold to a value that is
more Suitable to the processor environment.
0030 FIG. 3 shows features and steps of an embodiment
as may be employed for memory allocation in a multi
threaded multi-core environment. The embodiment shown in
FIG. 3 may be employed in various ways, methods, and
architectures. As shown at 310, memory allocation for spe
cific threads in a multi-core environment may be provided by
an integer variable allocation size. As shown at 320, the
multi-core environment may be configured to update local
counters to accommodate thread allocations through a con

Jun. 21, 2012

figuration that includes a variable local counter being set
equal to the local counter plus the integer variable alloca
tion size. As shown at 330, the multi-core environment may
be configured such that if the absolute value of the local
counter variable is greater than or equal to the value of the
local threshold variable, then atomic increment of the glo
bal counter value can apply and processing continues at 340.
If the absolute value of the local counter variable is not
greater than or equal to the local threshold variable, then the
multi-core environment may be configured such that it may
wait for the next allocation or deallocation operation as
shown at 390.

0031. As shown at 340, the multi-core environment may
be configured such that the atomic increment of the existing
global counter value may be carried out using a variable
global counter and a variable local counter. These atomic
increment operations will update global counter with the
local counter variable being added to or subtracted from
global counter variable. In other words, the atomic increment
operation may serve to increase or decrease the existing glo
bal counter by a value attributable to the existing local
counter value of a thread memory counter.
0032. As shown at 350, when a threshold for a local thread
counteris met or crossed the local thread counter may be reset
to zero. This is reflected at 350 with the variable local counter
being set equal to Zero. As shown at 360, the multi-core
environment may be further configured to adjust or update the
threshold value for the local counters after the threshold value
has been satisfied. Adjusting or updating the threshold value
may not occur each time a threshold is crossed and may
depend on a percentage difference or other difference
between the size of the threshold, the value of the global
counter, and the number of threads being executed in the
multi-core environment. Tag 360 shows that an update of the
local threshold value may occur when the free memory (to
tal memory less the value of the global counter) is greater
than the inverse of the number of threads currently running in
a multi-core environment. The number of threads running
may be tabulated or accumulated based upon the number of
threads running on a single core in the multi-core environ
ment, as well as groups of cores in the multi-core environ
ment. In embodiments, the cores that are not yet evaluated
with regard to step 360 may be those cores that are served by
the same L1 cache or L2 cache. Other criteria may be used as
well.

0033 Tag 370 reflects that the multi-core environment
may be further configured to calculate and compare a thresh
old percent with regard to a local threshold. This calculate
and compare configuration may include finding the differ
ence between the local threshold and the global threshold,
dividing the difference by the global threshold and in deter
mining if that percent difference is greater than or equal to a
previously established threshold percent. This calculate and
compare may be conducted Such that Small changes in thresh
old values may be discounted for Subsequent determinations
but larger changes in threshold values may provide for adjust
ment in the local threshold value for Subsequent determina
tions.

0034. As shown at 380 the multi-core environment may be
configured such that when the calculated compare shown at
370 does exceed or equal a threshold percent, a substitution
operation may be conducted. The multi-core environment
may be configured Such that the Substitution operation may
occur if the global threshold subtracted from the total

US 2012/O 159502 A1

memory is greater than or equal to the inverse of the number
of threads running on the specific core allocated to that
SOUC.

0035. The multi-core environment may also be configured
such that if the calculated compare operation of 370 is not
satisfied, then the system environment may continue to wait
for the next allocation or deallocation operation. This waiting
or standby is shown at 390.
0036 FIG. 4 shows a device as may be employed in accord
with embodiments. As can be seen the device may include a
bus 420 that may be connected to an input/output adapter 490,
a serial port interface 480, removable memory 470, a network
adapter serial interface 460, and processors 440 and 430. The
processors 430 and 440 may each include cache and indi
vidual cores; 441 and 431 show L3 cache in this device.
0037. As can be seen the L3 cache is hanging off the bus
420. As can also be seen the L2 cache is connected between
the L1 cache and the L3 cache. The L2 cache, 442 and 432,
each service multiple cores 445 and 435. The L1 cache is
shown at 443 and 433. This L1 cache may include data cache
and instruction cache and may serve to provide memory for
processing conducted by processors 444 and 434.
0.038 Programs, instructions and operating systems, as
shown at 450, may be loaded into main memory 470 as well
as the processors, cores, and cache. The multi-core environ
ment shown in FIG. 4 may, thus, be configured by specific
operating systems, applications, modules, plug-ins, and vari
ous data consistent with the embodiments and teachings pro
vided herein.

0039. In embodiments, the local resource counters may be
configured to track thread allocations resident in the cache
shown in FIG. 4. Thus, as allocations for threads resident in
the cache increase or decrease, additional threads being run
by the processors 440 and 430 may or may not be started.
Whether or not the threads may begin to be executed or may
call data or otherwise use memory, may depend on the value
of a local counter as well as the global counter that may be
used to track main memory or another resource.
0040. In embodiments, the blocks of memory within the
cache may be addressed and indexed to facilitate searching
and accurate storage and retrieval. The blocks of memory
within the cache may also be synchronized with main
memory during or after processing operations. Cache
memory may be positioned between the CPU and main
memory Such that all communications to main memory from
the CPU must pass through the cache. The cache may also be
positioned apart from the main memory but still coupled to
the CPU.
0041. In embodiments, two levels of memory status
counters may be employed and each thread may have its own
local counter which may be updated when memory alloca
tion/deallocation is undertaken on the applicable thread. The
global counters may be externally accessible and, as
explained elsewhere, may be incremented/decremented with
the value of local counter when the value of the local counter
reaches or exceeds a threshold.

0042. In embodiments, the threshold can be set to a spe
cific value or calculated based on the global counter and the
total amount of memory. For example, as explained in FIG.3,
the following formula can be used ((Total memory-Used
memory)/2)/the number of threads. When devices are config
ured in this fashion, the reduction or increase in the threshold
may move exponentially based on the amount of free
memory. For example, the precision associated with the value

Jun. 21, 2012

of the global counter may be determined by the value of the
threshold. Should the threshold be imprudently set to 0, the
global counter will be updated on each memory allocation/
deallocation.
0043. In embodiments, the local counters may intercept all
calls that make memory allocation/deallocation operation.
For Linux/Unix systems wrapper functions for standard C-li
brary malloc, free and realloc routines may employed to make
these intercepts. Still further, in embodiments, the local
counters may be implemented as either thread-local variables
or as an element of a data structure, for example:

#define MAX THREADS NUM 32 maximum number of threads
/* !!!. Up to MAX THREADS NUM worker threads, each 64 byte

to fill a cache line *
int local counters MAX THREADS NUM);

0044. In embodiments, the global counter may be defined
as Volatile, and its value may not be stored in the register, so
that changes to it being visible across all the threads.

0.045 volatile int global counter;
0046. In embodiments, the total amount of memory avail
able for applications may be set once, but the available
memory may change if other processes running on the same
system influence it to make it smaller. In circumstances where
available memory may not be frequently changed and may be
safely used with a slightly old value, the total memory vari
able may be declared as non-volatile.

0047 int total memory;
0048. In embodiments, a variety of algorithms may be
used to calculate the value based on the amount of total
memory, the value of global counter, and the number of
threads. As shown in FIG. 3, the formula may recite ((total
memory-global counter)/2)/(the number of threads). In this
embodiment, it is presumed that the number of running
threads is not changing, if the latter isn't the case threshold
may need to be recalculated when a new thread starts or an
existing thread finishes.

0049 int threshold:
0050. In embodiments, the threshold percent may be set
once and Subsequently determined towards a precision
threshold value. In embodiments, if two threads simulta
neously calculate a new threshold value, only one of them
need update the variable. The threshold may be set locally to
reduce the likelihood of concurrent updates.
0051. In embodiments, as explained above, when memory
allocations or deallocations occur, the following actions may
be performed:
0.052 1. increment or decrement local counter depending
on whether memory is allocated or released;
0053 2. if absolute value of local counter greater or equal
to threshold;

0.054 2a. update global counter with the value of local
counter using atomic increment operations;

0055 2b. reset local counter to 0:
0056 2.c. calculate threshold using formula above; and
0057 2d. set threshold if calculated value in Step 2c
differs from current threshold value more than thresh
old percent. This is done to avoid unnecessary update
and to reduce the number of L2 cache misses; and

0.058. 3. Exit.
0059. The terminology used herein is for the purpose of
describing embodiments or portions of embodiments only

US 2012/O 159502 A1

and is not intended to be limiting of the invention. As used
herein, the singular forms “a” “an and “the are intended to
include plural forms as well, unless the context clearly indi
cates otherwise. It will be further understood that the terms
“comprises and/or "comprising, when used in this specifi
cation, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte
gers, steps, operation, elements, components, and/or groups
thereof.
0060. In embodiments, “COMPARE AND SWAP
atomic increment, or other concurrency primitives, can be
implemented by numerous methods of concurrency, includ
ing use of the common main memory Compare and Swap
(CAS), Load-Linked/Store-Conditional (LL/SC), or any
other Read-Modify-Write instruction, set of instructions, or
constructs based on Such instructions, or their alternatives.
0061 Embodiments may be implemented as a computer
process, a computing system, a device, or as an article of
manufacture Such as a computer program product of com
puter readable media. The computer program product may be
a non-transitory computer storage medium readable by a
computer system and encoding computer program instruc
tions for executing a computer process.
0062 Aspects of the present invention may also be
embodied as a system, method or computer program product.
Accordingly, aspects of the present invention may take the
form of an entirely hardware embodiment, an entirely soft
ware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining Software and
hardware aspects that may all generally be referred to herein
as a “circuit.” “module' or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro
gram product embodied in one or more computer readable
medium(s) having computer readable program code embod
ied thereon.
0063. The computer readable medium may be a computer
readable storage medium. A computer readable storage
medium may be, for example, an electronic, magnetic, opti
cal, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any Suitable combination of the fore
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the follow
ing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
0064 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0065 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language

Jun. 21, 2012

or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0.066 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

0067. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0068. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0069. The flowcharts and block diagrams in the Figures
may illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in Some implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks in the block dia
grams and/or flowchart illustrations, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.

US 2012/O 159502 A1

0070 While it is understood that the process software may
be deployed by manually loading directly in the client, server
and proxy computers via loading a storage medium such as a
CD, DVD, etc., the process software may also be automati
cally or semi-automatically deployed into a computer system
by sending the process Software to a central server or a group
of central servers. The process software is then downloaded
into the client computers that will execute the process soft
ware. Alternatively, the process software is sent directly to the
client system via e-mail. The process software is then either
detached to a directory or loaded into a directory by a button
on the e-mail that executes a program that detaches the pro
cess Software into a directory. Another alternative is to send
the process software directly to a directory on the client
computer hard drive. When there are proxy servers, the pro
cess will select the proxy server code, determine on which
computers to place the proxy servers code, transmit the proxy
server code, then install the proxy server code on the proxy
computer. The process software will be transmitted to the
proxy server, then stored on the proxy server.

1. A computing device comprising:
a bus;
a processor in communication with the bus;
a first processor resource in communication with the bus;
a second processor resource in communication with the

bus; and,
a computer readable storage medium in communication

with the bus, the computer readable storage medium
storing instructions, which when executed, configuring
the processor to monitor the allocation and deallocation
of the first processor resource and the second processor
resource,
wherein monitoring the allocation and the deallocation

of the first processor resource and the second proces
Sor resource comprises:
tracking requests to allocate or deallocate the first

processor resource;
incrementing a first resource counter up or down with

an increment reflecting the size of the allocation or
deallocation of the first resource;

determining, after incrementing the first resource
counter up or down, whether the absolute value of
the first resource counter meets or exceeds a first
resource counter threshold;

when the absolute value of the first resource counteris
determined to meet or exceed the first resource
counter threshold,
updating a second counter up or down with an

increment reflecting the value of the first
resource counter size and resetting the first
resource counter, and;

determining, based at least in part on the value of
the second counter, if a quality of service criteria
can be satisfied if the requested allocation of the
processor resource is finalized; and

upon a determination that the quality of service
criteria can be satisfied, finalizing a request to
allocate a processor resource.

2. The computing device of claim 1 wherein monitoring the
allocation and the deallocation of processor resources further
comprises:

after resetting the first resource counter, updating the first
resource counter threshold.

Jun. 21, 2012

3. The computing device of claim 1, wherein monitoring
the allocation and deallocation of processor resources further
comprises:
when the difference between the first resource counter

threshold and the global threshold exceeds a predeter
mined percentage, updating the first resource counter
threshold with a revised first resource counter threshold
for use in Subsequent monitoring.

4. The computing device of claim 1 wherein the processor
being configured is a multi-core processor and wherein the
first resource is cache and the second resource is main
memory.

5. The computing device of claim 1 wherein the first
resource counter is reset to Zero.

6. The computing device of claim 1 wherein the processor
being configured is a multi-core processor and wherein
requests to allocate or deallocate resources are linked to the
initiation or conclusion of process threads running on the
multi-core processor.

7. The computing device of claim 1 wherein
the first resource is memory,
the second resource is memory,
requests to allocate or deallocate the processor resources

are attributable to each thread allocation ordeallocation,
and

the second counter is a global counter tracking every allo
cation ordeallocation of the first resource and the second
SOUC.

8.-14. (canceled)
15. An article of manufacture comprising:
a computer readable storage medium storing instructions,

which when executed, configures a processor to monitor
the allocation and deallocation of a first processor
resource and a second processor resource,
wherein monitoring the allocation and the deallocation

of the first processor resource and the second proces
Sor resource comprises:
tracking requests to allocate or deallocate the first

processor resource:
incrementing a first resource counter up or down with

an increment reflecting the size of the allocation or
deallocation of the first resource;

determining, after incrementing the first resource
counter up or down, whether the absolute value of
the first resource counter meets or exceeds a first
resource counter threshold;

when the absolute value of the first resource counteris
determined to meet or exceed the first resource
counter threshold,
updating a second counter up or down with an

increment reflecting the value of the first
resource counter size and resetting the first
resource counter, and;

before finalizing a request to allocate a processor
resource,
considering the value of the second counter, and
determining if a quality of service criteria can be

satisfied if the requested allocation of the proces
Sor resource is finalized.

16. The article of manufacture of claim 15 wherein moni
toring the allocation and the deallocation of processor
resources further comprises:

updating the first resource counter threshold.

US 2012/O 159502 A1

17. The article of manufacture of claim 15, wherein moni
toring the allocation and deallocation of processor resources
further comprises:
when the difference between the first resource counter

threshold and the global threshold exceeds a predeter
mined percentage, updating the first resource counter
threshold with a revised first resource counter threshold
for use in Subsequent monitoring.

18. The article of manufacture of claim 15 wherein the
processor being configured is a multi-core processor and
wherein the first resource is L2 cache and the second resource
is main memory.

19. The article of manufacture of claim 15 wherein the
processor being configured is a multi-core processor and

Jun. 21, 2012

wherein requests to allocate ordeallocate resources are linked
to the initiation or conclusion of process threads running on
the multi-core processor.

20. The article of manufacture of claim 15 wherein
the first resource is thread allocated memory,
the second resource is memory,
requests to allocate or deallocate the processor resources

are attributable to each thread allocation ordeallocation,
and

the second counter is a global counter tracking every allo
cation ordeallocation of the first resource and the second
SOUC.

