
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0124342 A1

Matsa et al.

US 20120124342A1

(43) Pub. Date: May 17, 2012

(54)

(75)

(73)

(21)

(22)

CONCURRENT CORE AFFINITY FOR WEAK
COOPERATIVE MULTITHREADING

Publication Classification

(51) Int. Cl.
SYSTEMS G06F 9/38 (2006.01)

Inventors: Moshe M.E. Matsa, Cambridge, (52) U.S. Cl. 712/226; 712/E09.035
MA (US); Eric D. Perkins, Boston,
MA (US) (57) ABSTRACT

Assignee: INTERNATIONAL BUSINESS A data structure is stored. Further, a plurality of operations
MACHINES CORPORATION performed on the data structure is modified to be per core
Armonk, NY (US) s instead of per thread so that a subset of the plurality of threads

s safely share the data structure. In addition, interruption of
Appl. No.: 12/945,689 each of the plurality of threads in the subset is prevented

unless one or more of each of the plurality of threads in the
Filed: Nov. 12, 2010 subset allows the interruption.

2OO

102 Core 1
Yn N Y y 7

Data: Next:-Ho Data: Next:-Ho-Data: Next. He
lsRemoved: False lsRemoved: False lsRemoved: False

11 o 11 2 1 14'
2O2 l? 104

Core 2
e Y y y y
b y t Data: Next:-Ho-Data: Next:-Ho-Data: Next-Ho

SSS sRemoved: False lsRemoved: False lsRemoved. False
threads f f

116 118 1 20'

r106
Core 3
Y y y y

Data: Next:-Heata: Next:-Hb Data: Next-Ho
sRemoved: False lsRemoved: False lsRemoved: False

Set f f ?
122 124 126

206- Other Thread 1
Y Data. Next:-Ho-Data: -Y Next:-Hb Data: -Y Next:He

lsRemoved: False lsRemoved: False lsRemoved: False

21 2 21 4. 21 6

Other Thread 2 Y y

SE Y Data: Next:-Ho-Data: Next: - He-Data: Next-Ho Subset-p
lsRemoved: False lsRemoved: False lsRemoved: False

2 reads y ? f 218 220 222

r1210
Other Thread 3
Y y y

Data: Next:-Ho-Data: Next:- Data: Next:-Ho
lsRemoved: False lsRemoved: False lsRemoved: False

224 226, 228

Patent Application Publication May 17, 2012 Sheet 1 of 7

100

102-NThread 1
Y Data: -7 Next:-Ho-Data: 1. Next:-Ho-Data: 1. Next:-Ho

lsRemoved: False lsRemoved: False lsRemoved: False

110 112 114
104 108 -/

Thread 2

) Y Data: 1. Next: - - Data: -Y Next: - e Data: -Y Next: - -
et sRemoved: False sRemoved: False lsRemoved: False

116 118 120
r106

Thread 3 y Y

Y Data: Next:-Ho-Data: Next:-Ho-Data: -7 Next -->
sRemoved: False lsRemoved: False lsRemoved: False

122 124 126

128 Core 1
N-1-N

Y Data: -7 Next:-Ho Data: Y Next:-Ho-Data: y Next:-Ho
lsRemoved: False lsRemoved: False lsRemoved: False

110 116 122
130

134 Core 2 l?
Oe

Y Data: 1. Next:-Ho-Data: 1. Next:-Ho-Data: Next-Ho
et sRemoved: False lsRemoved: False lsRemoved: False

114 118 124'
l?132

Core 3
Y y Y 1.

Data: Next:-Ho-Data: Next:-Ho-Data: Next:-Ho
sRemoved: False sRemoved: False Isremoved: False

112 120 126
Figure 1

US 2012/O124342 A1

Patent Application Publication May 17, 2012 Sheet 2 of 7 US 2012/O124342 A1

2OO

102 Core 1
N-1N

Y Data: -Y Next: - eData: -Y Next: - eData: -Y Next He
sRemoved: False sRemoved: False lsRemoved: False

110 112 114
Y-104

Core 2

ey Y Data: -Y Next: - b. Data: -Y Next: - b. Data: -Y Next: He
Subset—b- lsRemoved: False sRemoved: False lsRemoved: False
threads f f

116 118 120
1106

Core 3

Ya Data: 1. Next:-Ho Data: -Y Next:-Ho-Data: 1. Next-Ho
lsRemoved: False sRemoved: False lsRemoved: False

Set f ? ?
122 124 126

206 U. Other Thread 1
Ya Data: -Y Next - eata: -Y Next - beata: -Y Next be

sRemoved: False sRemoved: False lsRemoved: False

212 214 216
Other Thread 2

S. Y Data: Next: - b. Data: -Y Next - eData: -Y Next:- D Subset—es
threads lsRemoved: False lsRemoved: False lsRemoved: False

204 218 220 222'
?210

Other Thread 3
Y y y

Data: Next:-Ho-Data: Next:-Ho-Data: Next:-Ho
sRemoved: False sRemoved: False lsRemoved: False

224 226 228
Figure 2

Patent Application Publication May 17, 2012 Sheet 3 of 7

300

102 Core 1
N-1-

Y Data: -Y Next:-HD Data: -Y Next:-Ho-Data: -Y Next:-Ho
lsRemoved: False lsRemoved: False ls Removed: False

110 112 114
104 108 l?

Core 2
Y

2. o Y Data: Next:-Ho-Data: -Y Next-Ho-Data: 1. Next:-Ho
e lsRemoved: False lsRemoved: False lsRemoved: False

116 118' 120
r106

Core 3 -Y 1. -Y
Y Data: Next:-Ho-Data: Next-Ho-Data: Next:-Ho

lsRemoved: False lsRemoved: False lsRemoved: False

122 124 126

Lock

1304
all non-key threads

Data: Next: - DData: Next: - DData: Next: Ho
lsRemoved: False lsRemoved: False lsRemoved: False

306 308 310

Figure 3

US 2012/O124342 A1

Patent Application Publication May 17, 2012 Sheet 4 of 7 US 2012/O124342 A1

400

store a data structure

modify a plurality of operations 404
performed on the data structure to be
per core instead of per thread so that a
subset of the plurality of threads safely

share the data structure

402

406
prevent interruption of each of the

plurality of threads in the subset unless
one or more of each of the plurality of

threads in the Subset allows the
interruption

Figure 4

Patent Application Publication May 17, 2012 Sheet 5 of 7 US 2012/O124342 A1

500

Store a data structure

modify a plurality of operations
performed on the data structure to be
per core instead of per thread so that a
subset of a plurality of threads safely

share the data structure

502

504

506

reschedule, on each of a plurality of
cores, only one thread from the subset

of the plurality of threads during a
lifetime of the only one thread

Figure 5

Patent Application Publication May 17, 2012 Sheet 6 of 7 US 2012/O124342 A1

600

Store a data structure

modify a plurality of operations
performed on the data structure to be
per core instead of per thread and
record a state associating a running
thread with a corresponding core on
which the running thread is executing

for the duration of any part of an
operation which involves

602

604

synchronization so that a subset of a
plurality of threads safely share the data

Structure

reschedule, With a Scheduler, on each of 606
a plurality of Cores, a Corresponding
thread prior to scheduling any other

thread from the subset of the plurality of
threads if the corresponding thread

exists

Figure 6

Patent Application Publication May 17, 2012 Sheet 7 of 7 US 2012/O124342 A1

700

708

702 z
N Processor e-e

704

N I/O Devices Memory

7O6 N
Per COre MOdification Module -e-

Figure 7

US 2012/0124342 A1

CONCURRENT CORE AFFINITY FOR WEAK
COOPERATIVE MULTITHREADING

SYSTEMS

BACKGROUND

0001 1. Field
0002 This disclosure generally relates to a computing
environment. More particularly, the disclosure relates to mul
tithreading systems.
0003 2. General Background
0004. In general, many concurrent data structures in a
multithreaded system can perform work and store data for
each thread. Such performance and storage is called per
thread. For example, sets, stacks, etc. may be stored per
thread. Performance is typically improved when the interac
tion between threads is reduced. If each thread stays on the
same core, then all of the data for each thread also stays in the
same level-1 cache. When threads get scheduled on different
cores, then all of the corresponding data for the threads has to
be migrated between level-1 and/or level-2 caches. As a
result, the performance is affected with a slowdown.

SUMMARY

0005 Method, system and computer program product
embodiments of the invention are provided for multi-thread
ing by storing a data structure, modifying a plurality of opera
tions performed on the data structure to be per core instead of
per thread so that a subset of the plurality of threads safely
share the data structure, and preventing interruption of each of
the plurality of threads in the subset unless one or more of
each of the plurality of threads in the subset allows the inter
ruption.

DRAWINGS

0006. The above-mentioned features of the present inven
tion will become more apparent with reference to the follow
ing description taken in conjunction with the accompanying
drawings wherein like reference numerals denote like ele
ments and in which:
0007 FIG. 1 illustrates a cooperative multithreaded sys
tem according an embodiment of the present invention.
0008 FIG. 2 illustrates a non-cooperative preemptive sys
tem according to an embodiment of the present invention.
0009 FIG.3 illustrates a non-cooperative preemptive sys
tem according to an embodiment of the present invention that
is an alternative to the non-cooperative preemptive system
illustrated in FIG. 2.
0010 FIG. 4 illustrates a process that performs per core
modification according to an embodiment of the present
invention.
0011 FIG. 5 illustrates a process that performs per core
modification according to another embodiment of the present
invention.
0012 FIG. 6 illustrates a process that performs per core
modification according to yet another embodiment of the
present invention.
0013 FIG. 7 illustrates a block diagram of a system that
performs per core modification according to an embodiment
of the present invention.

DETAILED DESCRIPTION

0014. In a cooperative multithreaded environment, each
thread will not be interrupted except when the thread allows

May 17, 2012

itself to yield. According to an embodiment of the present
invention, the code for the data structure may be written so
that the data structure will not yield in the middle of perform
ing one of the operations when the data structure needs a
measure of atomicity between the operations. As a result, all
threads on a given core may safely share a single Sub-data
structure. According to another embodiment of the present
invention, the code may be written for weak cooperative
preemptive multithreaded systems within the key subset of
threads. In one embodiment, at least one of the objects may
have an add operation that is performed on a different thread
than the remove operation.
0015. Further, the data structure may be initialized with
one Sub-data-structure per core on the machine, which may at
least be utilized for the key subset of threads. The term core is
intended to mean a component of a processor that performs
reading and/or executing of instructions. Multiple cores may
be stored each on separate processors, all on one processor, or
a combination thereof. The one memory page with the map
ping from core number to Sub-data-structure is not modified
and will thus reside in all level-1 caches. Accordingly, the one
memory page with the mapping will never need to be written
or re-retrieved. The memory with each sub-data-structure
will only reside in the level-1 cache for that core.
0016. If there are any other threads, the resulting perfor
mance is enhanced because of the elimination of cache coher
ency traffic for this data structure. Further, for all threads in
the key Subset of threads, the common case should never need
to go beyond the level-1 cache. The resulting performance is
better than per thread storage or any wait-free or lock-free
synchronization system utilizing main memory primitives
Such as CAS instructions, or locking solutions.
0017 FIG. 1 illustrates a cooperative multithreaded sys
tem 100 according to an embodiment of the present invention.
The relevant concurrent data structure is implemented to
ensure that it will never yield in the middle of operations that
need to be atomic relative the data for the operations. The
operations are further modified to act per core instead of per
thread. The term per thread includes both a single data struc
ture with memory per thread and a small data structure per
thread in each thread's local storage.
0018. The cooperative multithreaded system 100 involves
a common case of the core accessing its own level-1 cache.
Regardless of where threads are scheduled, the relevant data
for the data structures is always on the same core. Further,
when a thread, for example, retrieves an element from a data
structure on the core that added the element, that data is also
likely to be in the same level-1 cache and thus even more
cache-coherency traffic is saved.
0019. The cooperative multithreaded system 100 modifies
the data structure by utilizing the subsets from a set 108. The
storage is modified from a per thread storage system to a per
core storage system. As an example, the set 108 has one or
more elements that are stored by a first thread 102, a second
thread 104, and a third thread 106. The first thread 102 stores
a first element 110, a second element 112, and a third element
114. Further, the second thread 104 stores a first element 116,
a second element 118, and a third element 120. In addition,
the third thread 106 stores a first element 122, a second
element 124, and a third element 126. The cooperative mul
tithreaded system 100 performs a modification so that a set
134 has one or more elements that are stored by a first core
128, a second core 130, and a third core 132. The first element
110, the first element 116, and the first element 122 are stored

US 2012/0124342 A1

on the first core 128. The third element 114, the second
element 118, and the second element 124 are stored on the
second core 130. In addition, the second element 112, the
third element 120, and the third element 126 are stored on the
third core 132.
0020. A modification from a per thread storage system to
a per core storage system may also be utilized with a non
cooperative preemptive system. FIG. 2 illustrates a non-co
operative preemptive system 200 according to an embodi
ment of the present invention. Within the non-cooperative
preemptive system 200, some programs control Some Subset
of their threads enough so that they can guarantee that each of
these threads, if preempted, will be rescheduled again on the
same core prior to any other threads of the Subset being
scheduled on the core. The programs can keep one sub-data
structure per core which is shared by all threads in this special
Subset. In one embodiment, one additional Sub-data-structure
per thread for the other threads is provided. For programs
where the key work is performed by worker threads which are
more tightly controlled, these guarantees may be met and
performance may be enhanced.
0021. The per thread structure is converted such that the
resulting configuration illustrated in FIG. 2 has one or more
key subset threads 202 and one or more non-key subset
threads 204. The one or more key subset threads 202 are
modified to be stored per core whereas the one or more
non-key subset threads 204 are stored with a per thread struc
ture. For the example a first other thread 206 may store a first
non-key element 212, a second non-key element 214, and a
third non-key element 216. Further, a second other thread 208
may store a second other thread 208 may store a first non-key
element 218, a second non-key element 220, and a third
non-key element 222. In addition, a third other thread may
store a first non-key element 224, a second non-key element
226, and a third non-key element 228.
0022 FIG.3 illustrates a non-cooperative preemptive sys
tem300 according to an embodiment of the present invention
that is an alternative to the non-cooperative preemptive sys
tem illustrated in FIG. 2. A lock 302 guards a set 304 of all
non-key threads whereas the key threads are modified to be
stored per core. The non-key threads may be stored in a first
non-key element 306, a second non-key element 308, and a
third non-key element 310.
0023 The quantities illustrated in FIGS. 1-3 are provided
merely for illustrative purposes. Various quantities of sets,
subsets, etc. may be utilized with the configurations described
herein.
0024 FIG. 4 illustrates a process 400 that performs per
core modification according to an embodiment of the present
invention. At a process block 402, the process 400 stores a
data structure. Further, at a process block 404, the process
modifies a plurality of operations performed on the data struc
ture to be per core instead of per thread so that a subset of the
plurality of threads safely share the data structure. In addition,
at a process block 406, the process 400 prevents interruption
of each of the plurality of threads in the subset unless one or
more of each of the plurality of threads in the subset allows the
interruption. A processor in a computing device may be uti
lized to perform the storage, modification, and/or prevention.
0025. In one embodiment, a registration application pro
gramming interface (API) that the data structure calls to
return a token upon registering sensitive data is provided.
Further, an entry API that each of the plurality of operations
calls with the token upon entering a sensitive data region after

May 17, 2012

which a thread prevents interruption may be provided. In
addition, a thread identifier and/or a core identifier of a thread
in the sensitive data region may be recorded. The thread trying
to enter into the sensitive data region on the core may be
swapped out while any older thread already in the sensitive
data region on the core may be swapped in.
(0026 FIG. 5 illustrates a process 500 that performs per
core modification according to another embodiment of the
present invention. At a process block 502, the process 500
stores a data structure. Further, at a process block 504, the
process 500 modifies a plurality of operations performed on
the data structure to be per core instead of per thread so that a
subset of the plurality of threads safely share the data struc
ture. In addition, at a process block 506, the process 500
reschedules, on each of a plurality of cores, only one thread
from the subset of the plurality of threads during a lifetime of
the only one thread. A processor in a computing device may
be utilized to perform the storage, modification, and/or
rescheduling. In one embodiment, all threads in the Subset
may be terminated if a thread in the subset has claimed the
core for a time period that exceeds a threshold
(0027 FIG. 6 illustrates a process 600 that performs per
core modification according toyetanother embodiment of the
present invention. At a process block 602, the process 600
stores a data structure. Further, at a process block 604, the
process 600 modifies a plurality of operations performed on
the data structure to be per core instead of per thread and
record a state associating a running thread with a correspond
ing core on which the running thread is executing for the
duration of any part of an operation which involves synchro
nization so that a subset of a plurality of threads safely share
the data structure. In addition, at a process block 606, the
process 600 reschedules, with a scheduler, on each of a plu
rality of cores, a corresponding thread prior to scheduling any
other thread from the subset of the plurality of threads if the
corresponding thread exists. A processor in a computing
device may be utilized to perform the storage, modification,
and/or rescheduling.
0028. In one embodiment, the state associating the run
ning thread with the corresponding core is a flag that provides
an indication to the scheduler that a data sensitive operation is
occurring. In an alternative embodiment, the state associating
the running thread with the corresponding core is a thread
identifier stored in per-core storage in the data structure. In yet
another embodiment, the state associating the running thread
with the corresponding core is a core identifier Stored in a
scheduler known location in a per-thread data structure. In
one embodiment, all threads in the subset may be terminated
ifa thread in the subset has claimed the core for a time period
that exceeds a threshold
0029. The processes described herein may be imple
mented in a general, multi-purpose or single purpose proces
sor. Such a processor will execute instructions, either at the
assembly, compiled or machine-level, to perform the pro
cesses. Those instructions can be written by one of ordinary
skill in the art following the description of the figures corre
sponding to the processes and stored or transmitted on a
computer readable medium. The instructions may also be
created using source code or any other known computer
aided design tool.
0030 FIG. 7 illustrates a block diagram of a system 700
that performs per core modification according to an embodi
ment of the present invention. In one embodiment, the system
700 is Suitable for storing and/or executing program code and

US 2012/0124342 A1

is implemented using a general purpose computer or any
other hardware equivalents. Thus, the system 700 comprises
a processor 702, a memory 708, e.g., random access memory
(“RAM) and/or read only memory (“ROM), a per core
modification module 706, and various input/output devices
704.
0031. The processor 702 is coupled, either directly or indi
rectly, to the memory 708 through a system bus. The memory
708 may include local memory employed during actual
execution of the program code, bulk storage, and/or cache
memories which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution.
0032. The input/output devices 704 may be coupled
directly to the system 700 or through intervening input/output
controllers. Further, the input/output devices 704 may include
a keyboard, a keypad, a mouse, a microphone for capturing
speech commands, a pointing device, and other user input
devices that will be recognized by one of ordinary skill in the
art. Further, the input/output devices 704 may include a
receiver, transmitter, speaker, display, image capture sensor,
biometric sensor, etc. In addition, the input/output devices
704 may include storage devices such as a tape drive, floppy
drive, hard disk drive, compact disk (“CD) drive, digital
video disk (“DVD) drive, etc.
0033 Network adapters may also be coupled to the system
700 to enable the system 700 to become coupled to other
systems, remote printers, or storage devices through interven
ing private or public networks. Modems, cable modems, and
Ethernet cards are just a few of the currently available types of
network adapters.
0034) For any of the configurations described herein, vari
ous actions may take place when the call stack is retrieved. In
one embodiment, the retrieved call stack is walked into a tree
and the leaf node of the tree has its base count incremented,
which allows for utilization of technology to produce reports
or to view the collected information.
0035. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0036) Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible

May 17, 2012

medium that may contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0037. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that may communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0038 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0039 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(“LAN”) or a wide area network (“WAN”), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).
004.0 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, may be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0041. The “processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus may be referred to herein as a “micropro
cessor.” However, the term “microprocessor should not be
interpreted as being limited to a single-chip central process
ing unit or any other particular type of programmable data
processing apparatus, unless explicitly so stated.
0042. These computer program instructions may also be
stored in a computer readable medium that may direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks. The computer program instructions
may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of

US 2012/0124342 A1

operational steps to be performed on the computer, other
programmable apparatus or other devices to produce a com
puter implemented process Such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci
fied in the flowchart and/or block diagram block or blocks.
0043. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, may be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0044) Reference throughout this Specification to “one
embodiment,” “an embodiment, or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrase “in one embodiment,” “in an embodiment, and
similar language throughout this Specification may, but do
not necessarily, all refer to the same embodiment. Further
more, the described features, structures, or characteristics of
the invention may be combined in any suitable manner in one
or more embodiments. Correspondingly, even if features are
initially claimed as acting in certain combinations, one or
more features from a claimed combination may in some cases
be excised from the combination, and the claimed combina
tion may be directed to a Subcombination or variation of a
Subcombination.
0045 While the computer program product, method and
system have been described in terms of what are presently
considered to be the most practical and preferred embodi
ments, it is to be understood that the disclosure need not be
limited to the disclosed embodiments. The disclosure is
intended to cover various modifications and similar arrange
ments included within the spirit and scope of the claims, the
scope of which should be accorded the broadest interpretation
So as to encompass all Such modifications and similar struc
tures. The present disclosure includes any and all embodi
ments of the following claims.

We claim:
1. A computer program product for multi-threading, the

computer program product comprising:
a computer readable storage medium having computer

readable program code embodied therewith, the com
puter readable program code comprising:

computer readable program code configured to store a data
Structure:

computer readable program code configured to modify a
plurality of operations performed on the data structure to
be per core instead of per thread so that a subset of the
plurality of threads safely share the data structure; and

May 17, 2012

computer program code configured to prevent interruption
of each of the plurality of threads in the subset unless one
or more of each of the plurality of threads in the subset
allows the interruption.

2. The computer program product of claim 1, further com
prising computer program code configured to provide a reg
istration application programming interface that the data
structure calls to return a token upon registering sensitive
data.

3. The computer program product of claim 2, further com
prising computer program code configured to provide an
entry application programming interface that each of the plu
rality of operations calls with the token upon entering a sen
sitive data region after which a thread prevents interruption.

4. The computer program product of claim3, further com
prising computer program code configured to record a thread
identifier and a core identifier of a thread in the sensitive data
region.

5. The computer program product of claim 4, further com
prising computer program code configured to Swap out the
thread trying to enter into the sensitive data region on the core
and Swap in any older thread already in the sensitive data
region on the core.

6. The computer program product of claim 1, further com
prising computer program code configured to reschedule, on
each of a plurality of cores, only one thread from the subset of
the plurality of threads during a lifetime of the only one
thread.

7. The computer program product of claim 1, further com
prising computer program code configured to record a state
associating a running thread with a corresponding core on
which the running thread is executing for the duration of any
part of an operation which involves synchronization so that a
subset of a plurality of threads safely share the data structure
and reschedule, with a scheduler, on each of a plurality of
cores, a corresponding thread prior to scheduling any other
thread from the subset of the plurality of threads if the corre
sponding thread exists.

8. A method comprising:
storing a data structure;
modifying a plurality of operations performed on the data

structure to be per core instead of per thread so that a
subset of the plurality of threads safely share the data
structure; and

preventing interruption of each of the plurality of threads in
the subset unless one or more of each of the plurality of
threads in the subset allows the interruption.

9. The method of claim 8, further comprising providing a
registration application programming interface that the data
structure calls to return a token upon registering sensitive
data.

10. The method of claim 9, further comprising providing an
entry application programming interface that each of the plu
rality of operations calls with the token upon entering a sen
sitive data region after which a thread prevents interruption.

11. The method of claim 10, further comprising recording
a thread identifier and a core identifier of a thread in the
sensitive data region.

12. The method of claim 11, further comprising Swapping
out the thread trying to enter into the sensitive data region on
the core and Swap in any older thread already in the sensitive
data region on the core.

US 2012/0124342 A1

13. The method of claim 9, further comprising reschedul
ing, on each of a plurality of cores, only one thread from the
subset of the plurality of threads during a lifetime of the only
one thread.

14. The method of claim 9, further comprising recording a
state associating a running thread with a corresponding core
on which the running thread is executing for the duration of
any part of an operation which involves synchronization so
that a subset of a plurality of threads safely share the data
structure and reschedule, with a scheduler, on each of a plu
rality of cores, a corresponding thread prior to scheduling any
other thread from the subset of the plurality of threads if the
corresponding thread exists.

15. A system comprising:
a storage module that stores a data structure;
a modification module that modifies a plurality of opera

tions performed on the data structure to be per core
instead of per thread so that a subset of the plurality of
threads safely share the data structure; and

a prevention module that prevents interruption of each of
the plurality of threads in the subset unless one or more
of each of the plurality of threads in the subset allows the
interruption.

May 17, 2012

16. The system of claim 15, further comprising a registra
tion application programming interface that the data structure
calls to return a token upon registering sensitive data.

17. The system of claim 16, further comprising an entry
application programming interface that each of the plurality
of operations calls with the token upon entering a sensitive
data region after which a thread prevents interruption.

18. The system of claim 17, further comprising a recorda
tion module that records a thread identifier and a core identi
fier of a thread in the sensitive data region.

19. The system of claim 18, further comprising a swap
module that Swaps out the thread trying to enter into the
sensitive data region on the core and Swap in any older thread
already in the sensitive data region on the core.

20. The system of claim 15, further comprising a resched
uler module that reschedules, on each of a plurality of cores,
only one thread from the subset of the plurality of threads
during a lifetime of the only one thread.

c c c c c

