
(19) United States
US 2008O1896.90A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0189690 A1
Heifets et al. (43) Pub. Date: Aug. 7, 2008

(54) METHOD FOR PERSISTING OR
TRANSFERRING AN XCODES EXECUTION
PLAN IN A SELF-CONTAINED, PLATFORM
INDEPENDENT FORMAT

Abraham Heifets, Cambridge, MA
(US); Margaret Gaitatzes
Kostoulas, Veria (GR); Michelle A.
Leger, Edgewood, NM (US);
Moshe E. Matsa, Cambridge, MA
(US); Eric Perkins, Boston, MA
(US); Daniel Pinto de Mello e
Silva, Bradenton, FL (US)

(75) Inventors:

Correspondence Address:
CANTOR COLBURN LLP-IBMYORKTOWN
20 Church Street, 22nd Floor
Hartford, CT 06103

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 11/670,099

(22) Filed: Feb. 1, 2007

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. .. T17/147

(57) ABSTRACT

A method for constructing and executing an XCodes execu
tion plan stored in a self-contained, platform-independent
format, the method comprising: providing a plurality of
Extensible Markup Language (XML) documents each having
content, structure, and a plurality of instruction; identifying a
language in which the content of the plurality of XML docu
ments is written; converting the language to a set of abstract,
platform-independent instructions (XCodes) representing the
structure of the plurality of the XML documents, via a com
pilation step; converting the set of abstract, platform-inde
pendent instructions (XCodes) to a highly optimized, plat
form-specific form via a loading process; mandating an
instruction-space allocation; allowing one or more extension
instruction into the XCodes execution plan; setting symbolic
references to the one or more extension instructions; ignoring
the one or more extension instructions having the symbolic
references; and constructing implementation-specific tables.

US 2008/O189690 A1 Aug. 7, 2008 Sheet 1 of 6 Patent Application Publication

S-38 -

US 2008/O189690 A1 Aug. 7, 2008 Sheet 2 of 6 Patent Application Publication

SY -
R &

w

SS is -
R S

w
KS & M is

3: 2.8.x:is risis

US 2008/O189690 A1 Aug. 7, 2008 Sheet 3 of 6 Patent Application Publication

is NSS

Y &. NORM

NONS. ii. R ASSORY: i:iii). ... " RS: SS S. 8 SS

assissivi?

US 2008/O189690 A1 Aug. 7, 2008 Sheet 4 of 6 Patent Application Publication

----------------MXYYYYYYYY

--~~~~~~^

assassasawwaaaasa-Mw------'n'-YYYYYY www.-------- - - - - - - - - - - - - r rr isssssss - - - - - - - - - - - - a

Patent Application Publication Aug. 7, 2008 Sheet 5 of 6 US 2008/O189690 A1

NONE ARN M"
XSI) S

..

US 2008/O189690 A1 Aug. 7, 2008 Sheet 6 of 6 Patent Application Publication

~~~~, 

- 
w w 

is is 8xi Sii'8:a:: 

  

  

  

  

  

  

  



US 2008/O 189690 A1 

METHOD FOR PERSISTING OR 
TRANSFERRING AN XCODES EXECUTION 
PLAN IN A SELF-CONTAINED, PLATFORM 

INDEPENDENT FORMAT 

TRADEMARKS 

0001 IBM(R) is a registered trademark of International 
Business Machines Corporation, Armonk, N.Y., U.S.A. 
Other names used herein may be registered trademarks, trade 
marks or product names of International Business Machines 
Corporation or other companies. 

BACKGROUND OF THE INVENTION 

0002 1. Field of the Invention 
0003. This invention relates to parsing and validation of 
XML documents, and particularly to a method for represent 
ing the XCodes parsing and validation execution plan by 
using an abstract, platform-independent language. 
0004 2. Description of Background 
0005 Bytecode-compiled systems use a highly specific 
stream of instructions to represent an execution plan for pars 
ing and validation. The instructions themselves, in abstract, 
are not platform or target-language specific, but they are an 
in-memory representation that is highly tuned for the target 
platform. This instruction stream, which is produced by a 
compiler, is passed to the machine in Some form. 
0006. In typical interpreters (tel, lisp..java, etc.) instruction 
streams are created in a binary, byte-code form, which is 
passed to the interpreter, as well as stored on disk for reuse. 
This method, while straightforward, has the disadvantage of 
binding the representation of the instructions to the execution 
environment on which they are used. This close binding 
between the compiled form and the execution environment 
imposes rigid constraints on the possible variability of the 
execution environments. The byte-code interpreters are thus 
truly virtual machines, with a rigid, virtual environment. 
0007 High-level, domain-specific virtual machines, as for 
example the high-level virtual machine for parsing and Vali 
dation of Xml documents, can be hosted on a wide variety of 
native environments. Indeed, in the referenced system, sepa 
rate implementations have been designed for both a directly 
compiled native environment (written in the C language), and 
a general purpose, low-level virtual machine (Java language). 
These two platforms pose divergent strengths and weak 
nesses, and thus the binary, in-memory instruction stream 
representations for the two platforms are quite dissimilar. 
0008. In addition to the practical difficulties of sharing a 
binary instruction representation between several target plat 
forms, binary instruction streams are difficult to extend. Since 
all instructions in a given stream must be at least partially 
understood by every interpreter (at least enough to disregard 
them, and to distinguish the difference between unsupported 
extensions, and corruptions in a completely standard instruc 
tion stream), the extension instructions must also be partially 
understood by every interpreter. For real extensibility to 
work, then, the instructions must be self-describing. This 
creates an overhead (in both time and size) for extension 
instructions, thus limiting their usefulness. 
0009 Considering the above limitations, it is desired to 
have a high-level platform-independent representation of the 
instruction stream that can be shared among disparate virtual 

Aug. 7, 2008 

machine implementations, allowing for greater reusability of 
the byte-code compilation engine. 

SUMMARY OF THE INVENTION 

0010. The shortcomings of the prior art are overcome and 
additional advantages are provided through the provision of a 
method for constructing and executing an XCodes execution 
plan stored in a self-contained, platform-independent format, 
the method comprising: providing a plurality of Extensible 
Markup Language (XML) documents each having content, 
structure, and a plurality of instruction; identifying a lan 
guage in which the content of the plurality of XML docu 
ments is written: converting the language to a set of abstract, 
platform-independent instructions (XCodes) representing the 
structure of the plurality of the XML documents, via a com 
pilation step; converting the set of abstract, platform-inde 
pendent instructions (XCodes) to a highly optimized, plat 
form-specific form via a loading process; mandating an 
instruction-space allocation; allowing one or more extension 
instruction into the XCodes execution plan; setting symbolic 
references to the one or more extension instructions; ignoring 
the one or more extension instructions having the symbolic 
references; and constructing implementation-specific tables. 
0011. The shortcomings of the prior art are overcome and 
additional advantages are provided through the provision of a 
computer program product for constructing and executing an 
XCodes execution plan stored in a self-contained, platform 
independent format, the computer program product compris 
ing: a storage medium readable by a processing circuit and 
storing instruction for execution by the processing circuit for 
performing a method comprising: providing a plurality of 
Extensible Markup Language (XML) documents each having 
content, structure, and a plurality of instructions; identifying 
a language in which the content of the plurality of XML 
documents is written; converting the language to a set of 
abstract, platform-independent instructions (XCodes) repre 
senting the structure of the plurality of the XML documents, 
via a compilation step; converting the set of abstract, plat 
form-independent instructions (XCodes) to a highly opti 
mized, platform-specific form via a loading process; mandat 
ing an instruction-space allocation; allowing one or more 
extension instructions into the XCodes execution plan; set 
ting symbolic references to the one or more extension instruc 
tions; ignoring the one or more extension instructions having 
the symbolic references; and constructing implementation 
specific tables. 
0012. Additional features and advantages are realized 
through the techniques of the present invention. Other 
embodiments and aspects of the invention are described in 
detail herein and are considered a part of the claimed inven 
tion. For a better understanding of the invention with advan 
tages and features, refer to the description and the drawings. 

TECHNICAL EFFECTS 

0013 As a result of the summarized invention, technically 
we have achieved a solution for representing an XML parsing 
and validation execution plan by using XCodes, an abstract, 
platform-independent language. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0014. The subject matter, which is regarded as the inven 
tion, is particularly pointed out and distinctly claimed in the 
claims at the conclusion of the specification. The foregoing 



US 2008/O 189690 A1 

and other objects, features, and advantages of the invention 
are apparent from the following detailed description taken in 
conjunction with the accompanying drawings in which: 
0015 FIG. 1 illustrates an example of an abbreviated table 
section of an XCode file; 
0016 FIG. 2 illustrates a hand-written example of the 
steps executed by a Java version of an XCode file Loader; 
when loading the section presented in FIG. 1; 
0017 FIG. 3 illustrates an example of an abbreviated ele 
ment-handler section of an XCode file; 
0018 FIG. 4 illustrates a hand-written example of some of 
the steps executed by the XCode Loader, when loading the 
section of the XCodes file presented in FIG. 3; 
0019 FIG. 5 illustrates one example of an abbreviated 
content-handler section of an XCode file; and 
0020 FIG. 6 illustrates one example of information added 
to a native stream by a corresponding loader response. 

DETAILED DESCRIPTION OF THE INVENTION 

0021 One aspect of the exemplary embodiments is a 
method for using an XML-based language that represents the 
XCode instruction set in an abstract form, without inference 
to its platform specific in-memory representation. Another 
aspect of the exemplary embodiments is a method wherein 
this representation is designed, explicitly, to make no Such 
references (instruction numbers, stream offsets, etc.) while 
still retaining the low-level flow-control model of an instruc 
tion set. In yet another exemplary embodiment, a simple 
loading process converts this form to a platform-optimal rep 
resentation when execution begins. The XML format pro 
vides a built-in extensibility mechanism, as well as simple 
means of Verifying the integrity of the instruction stream. 
0022. As an example of the implementation indepen 
dence, the XCode execution plan uses only symbolic (i.e., 
named) references to instruction, rather than integer codes, 
which would mandate a particular instruction-space alloca 
tion. Furthermore, all cross-references in the set are symbolic 
(i.e., indirected by name, rather than by offset). The language 
is also designed to allow the introduction of optional exten 
sion instructions into the execution plan. Through established 
conventions, these instructions are easily identified, and 
ignored by interpreter implementations that do not support 
them, but equally easily integrated into the native instruction 
stream by interpreters that do. 
0023 The embodiment of this language is an XML dia 

lect, which is described below. The XML syntax provides a 
convenient platform-neutral exchange format, and through 
the use of namespaces, provides a natural system of conven 
tions to support extensibility. While not required to be mate 
rialized on disk (the XML language can easily be realized in 
memory with any of the usual, standard APIs), the XCodes 
language also provides a useful physical artifact to cache the 
results of a compilation that may involve many configuration 
options, and input Schema documents. 
0024. On the interpreter side, the XCodes language is 
converted to a highly optimized, platform-specific 
in-memory form through a simple loading process, where the 
symbolic references are resolved, extension instructions are 
resolved or ignored, and various implementation-specific 
tables constructed. In this way, the final program representa 
tion is carefully optimized for the specific virtual machine, 
but the compilation technology is not required to be tuned to 
any specific interpreter. 

Aug. 7, 2008 

0025 Referring to FIGS. 1 and 2, an example of X-code 
loading 10, contrasting the on-disk storage format with the 
platform-optimized native execution format is illustrated. 
The example is taken from the XCode file produced by a 
compiler when given the Purchaseorder schema (described 
in the XML Schema Primer) as its input. For the pseudo-code, 
the mechanics of accessing the document, and looking up 
numeric identifiers for the text keys has been removed for 
brevity. 
(0026 Referring to FIG. 2, the Java version of the XCode 
Loader reads in the code in FIG. 1 representing tables of 
information in the XCodes file, and executes code, duplicat 
ing the steps given in the code listing 20 (the numbers are 
calculated according to implementation specific rules). The 
Java version chooses a Java-specific data structure to repre 
sent the content of the <tables> in X-code 10 (see FIG. 1). 
(0027. Referring to FIG.3, an abbreviated element-handler 
section 30 of an XCode file is described (note the exclusive 
use of the text keys, defined above in <tables> in X-code 10). 
The element-handler for a <states element (as indicated by 
EQID NONE STATE) specifies that the type of the element 
is, by default, XSd:String, and its possible Subtypes can be 
TQID XSD NCNAME, TOID XSD TOKEN, TQID XS 
DNMTOKEN, etc. 
0028 Referring to FIG. 4, the Loader code, on reading the 
<element-handlers section 30 for EQID NONE STATE 
executes code duplicating the steps given in listing 40 (insert 
ing information into the native data stream, iStream): it cre 
ates a new BitVector to store the possible subtypes of EQID 
NONE STATE, sets the integer corresponding to each of the 
logical TQID XSD NCNAME, etc., specified in the ele 
ment-handler, and adds instructions into the native data 
stream about other information like the element's nillable and 
is Abstract values, as well as information about the default 
type, and a pointer to the allowed subtype BitVector. 
(0029 Referring to FIG. 5, an abbreviated content-handler 
section 50 of an XCode file is described. Note the use of 
extension instruction here for JAX-RPC (Java API for XML 
based Remote Procedure Calls) deserialization, signified by 
the use of the d namespace in those extension instruction 
elements. The content handler for the type representing 
<itemd elements in XML documents conforming to the Pur 
chase(Order schema (as signified by TOID NONE ITEM 
ATYPE) contains information pertaining to the proper pars 
ing and deserialization of the <item> type. 
0030 Referring to FIG. 6, the corresponding loader 
response adds the information 60 to the native data stream 
(note that the extension codes are loaded by a separate, exten 
Sion-specific loader). 
0031. The native form of the instructions in the java-based 
interpreter is an array of integer data (instructions and their 
arguments), which reference a variety of more complicated 
tabular data (BitVector objects, HashMaps, etc.). This struc 
ture is an efficient in-memory representation for the given 
platform, but not necessarily for all platforms. Furthermore, 
depending on the characteristics of the particular Java virtual 
machine being used, a different representation might be more 
efficient, Such as a more object oriented in-memory represen 
tation in which each instruction is its own object, and the 
stream is represented as a series of links between the instruc 
tion objects. Neither of these representations is prohibited or 
favored by the X-code file layout, which means that they can 
both share the same producer of XCode files (the compiler). 



US 2008/O 189690 A1 

0032. The capabilities of the present invention can be 
implemented in Software, firmware, hardware or some com 
bination thereof. 
0033. As one example, one or more aspects of the present 
invention can be included in an article of manufacture (e.g., 
one or more computer program products) having, for 
instance, computer usable media. The media has embodied 
therein, for instance, computer readable program code means 
for providing and facilitating the capabilities of the present 
invention. The article of manufacture can be included as apart 
of a computer system or sold separately. 
0034 Additionally, at least one program storage device 
readable by a machine, tangibly embodying at least one pro 
gram of instructions executable by the machine to perform the 
capabilities of the present invention can be provided. 
0035. The flow diagrams depicted herein are just 
examples. There may be many variations to these diagrams or 
the steps (or operations) described therein without departing 
from the spirit of the invention. For instance, the steps may be 
performed in a differing order, or steps may be added, deleted 
or modified. All of these variations are considered a part of the 
claimed invention. 
0036 While the preferred embodiment to the invention 
has been described, it will be understood that those skilled in 
the art, both now and in the future, may make various 
improvements and enhancements which fall within the scope 
of the claims which follow. These claims should be construed 
to maintain the proper protection for the invention first 
described. 
What is claimed is: 
1. A method for constructing and executing an XCodes 

execution plan stored in a self-contained, platform-indepen 
dent format, the method comprising: 

providing a plurality of Extensible Markup Language 
(XML) documents each having content, structure, and a 
plurality of instructions; 

identifying a language in which the content of the plurality 
of XML documents is written; 

converting the language to a set of abstract, platform-inde 
pendent instructions (XCodes) representing the struc 
ture of the plurality of the XML documents, via a com 
pilation step; 

Aug. 7, 2008 

converting the set of abstract, platform-independent 
instructions (XCodes) to a highly optimized, platform 
specific form via a loading process; 

mandating an instruction-space allocation; 
allowing one or more extension instructions into the 
XCodes execution plan; 

setting symbolic reference to the one or more extension 
instructions; 

ignoring the one or more extension instructions having the 
symbolic references; and 

constructing implementation-specific tables. 
2. A computer program product for constructing and 

executing an XCodes execution plan stored in a self-con 
tained, platform-independent format, the computer program 
product comprising: 

a storage medium readable by a processing circuit and 
storing instructions for execution by the processing cir 
cuit for performing a method comprising: 
providing a plurality of Extensible Markup Language 
(XML) documents each having content, structure, 
and a plurality of instructions; 

identifying a language in which the content of the plu 
rality of XML documents is written; 

converting the language to a set of abstract, platform 
independent instructions (XCodes) representing the 
structure of the plurality of the XML documents, via 
a compilation step; 

converting the set of abstract, platform-independent 
instructions (XCodes) to a highly optimized, plat 
form-specific form a via a loading process; 

mandating an instruction-space allocation; 
allowing one or more extension instructions into the 
XCodes execution plan; 

setting symbolic references to the one or more extension 
instructions; 

ignoring the one or more extension instructions having 
the symbolic references; and 

constructing implementation-specific tables. 
c c c c c 


