
US 20080046874A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0046874 A1

Kostoulas et al. (43) Pub. Date: Feb. 21, 2008

(54) DATA REPORTING APPLICATION (22) Filed: Aug. 21, 2006
PROGRAMMING INTERFACES IN AN XML
PARSER GENERATOR FOR XML

Publication Classification

VALIDATION AND DESERALIZATION (51) Int. Cl.
G06F 9/45 (2006.01)

(75) Inventors: Margaret Gaitatzes Kostoulas, G06F 7700 (2006.01)
Belmont, MA (US); Moshe E. (52) U.S. Cl. 717/143; 715/237; 715/234; 717/141
Matsa, Cambridge, MA (US); (57) ABSTRACT
Martha A. Mercaldi, Concord,
MA (US); Eric Perkins, Boston, A method for interfacing with an XML (Extensible Markup
MA (US) Language) parser generator to generate deserialization infor

mation interleaved with XML parsing and validation,
Correspondence Address: including: providing an XML parser generator with infor
CANTOR COLBURN LLP-IBM YORKTOWN mation about the schema which the instance data conforms
SS GRIFFINROAD SOUTH to; providing a data reporting application programming
BLOOMFIELD, CT 06002 interface (API) and a generator module; providing one or

more implementations of the data reporting API; providing
(73) Assignee: INTERNATIONAL BUSINESS the XML parser generator with a selected data reporting API

MACHINES CORPORATION, implementation module; generating an XML parser to parse
Armonk, NY (US) and validate instance documents conforming to the specified

input Schema and deserializing the instance documents into
(21) Appl. No.: 11/465,818 the desired deserialization format during the parse.

AP,afterChoicepeiag (...)

300
Paser gee at: Generated KiA. passer
fficia Faitiati Cie Aftet ice is a vica

A? atching eities 'KX' 'xy.'

while more wildcard Particles: mo- if (cretakes at to XX} {
- geesate Vaitiatioi chie is next particle check attributes frt;
- ay Piet aii Pie tiewEvet("state.eit"3";

else if (cirrentTaken c : XYZ}{

Event stream API module
afterChoicepeiag (ike) {

stillegeaerate Eyes:"startieaet("--take--";"
}

US 2008/0046874 A1 Feb. 21, 2008 Sheet 1 of 2 Patent Application Publication

I ’01),

{º}}&{{#################

US 2008/0046874 A1 Feb. 21, 2008 Sheet 2 of 2 Patent Application Publication

US 2008/0046874 A1

DATA REPORTING APPLICATION
PROGRAMMING INTERFACES IN AN XML

PARSER GENERATOR FOR XML
VALIDATION AND DESERALIZATION

TRADEMARKS

0001 IBM(R) is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks,
trademarks or product names of International Business
Machines Corporation or other companies.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to the field of data
reporting when parsing XML documents, and more particu
larly to how to directly deserialize the data in an application
specific format, without costly intermediate processing and
representations.
0004 2. Description of Background
0005 Extensible Markup Language, or XML, parsers are
deployed in varying applications, each requiring different
application interfaces to report the data with. Sometimes this
is achieved by writing an entire application specific parser or
by writing the parser against a Sufficiently general and low
level Application Programming Interface, or API, and Sup
plying transducers for application-specific data structures.
Other times, parsers are written to support several APIs, or
are written as a collection of multiple generalized compo
nents only some of which are used each time. For example,
Xerces, an open source XML parser, Supports several ver
sions of the Simple API for XML, or SAX, and the Docu
ment Object Model API, or DOM, as well as Xerces Native
Interface, or XNI, making it slower. Other XML parsers
have been written as a collection of generalized components,
which the end user has to assemble by hand. In all these
cases, adding a new API requires a lot of new code that is
low-level, high-complexity, hard-to-debug, and hard-to
maintain. The user ends up modifying the validation code to
add Support for a new data reporting API.
0006. Therefore, a method for generating the appropriate
API code relevant to the particular usage of an XML parser
would be highly desirable.

SUMMARY OF THE INVENTION

0007 Exemplary embodiments include a method for
interfacing with an XML (Extensible Markup Language)
parser generator to generate deserialization information
interleaved with XML parsing and validation, including:
configuring a parser generator with information about the
schema which the instance data conforms to, in order to
generate an XML parser that parses and validates the
instance data efficiently; providing a data reporting applica
tion programming interface (API) and a generator module:
providing one or more implementations of the data reporting
API; providing the XML parser generator with a data
reporting API implementation module; generating an XML
parser to parse and validate instance documents conforming
to the specified input schema and deserializing the instance
documents into the desired deserialization format during the
parse.

Feb. 21, 2008

0008 System and computer program products corre
sponding to the above-Summarized methods are also
described and claimed herein.
0009. Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
advantages and features, refer to the description and to the
drawings.

TECHNICAL EFFECTS

0010. As a result of the summarized invention, techni
cally we have achieved a solution, which provides a means
of interfacing with a standalone data reporting API generator
module that is interfaced with by the parser generator, to
designate the desired deserialization code into the generated
parsing and validation code.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The subject matter which is regarded as the inven
tion is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:
0012 FIG. 1 illustrates the interaction between the parser
generator and an event stream data reporting API generator
module that uses SAX events to notify the application of the
instance document data, and shows the code generated in the
resulting parser, in accordance with exemplary embodi
ments; and
0013 FIG. 2 illustrates the interaction between the parser
generator and a business object data reporting API generator
module for the case when deserialization into application
specific objects is needed by the application, in accordance
with exemplary embodiments.
0014. The detailed description explains the preferred
embodiments of the invention, together with advantages and
features, by way of example with reference to the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

0015 The present invention and the various features and
advantageous details thereof are explained more fully with
reference to the non-limiting embodiments that are illus
trated in the accompanying drawings and detailed in the
following description. It should be noted that the features
illustrated in the drawings are not necessarily drawn in all
detail possible. Descriptions of well-known components and
processing techniques are omitted so as to not unnecessarily
obscure the present invention in detail. The examples used
herein are intended merely to facilitate an understanding of
ways in which the invention may be practiced and to further
enable those of skill in the art to practice the invention.
Accordingly, the examples should not be construed as lim
iting the scope of the invention.
0016. In exemplary embodiments, a data reporting API
module may be implemented as an independent piece of the
parser generator. The data reporting API module is invoked
during code generation, and given context information of
where the parser is at the time of invocation. At that point,
the data reporting API module determines what code needs

US 2008/0046874 A1

to be generated into the runtime instruction stream. The
XML Parser generated in this way contains the exact code
needed to generate the targeted event stream, business
object, or other structure, resulting in very efficient notifi
cations or deserialization into objects, during the parsing
phase.
0017. Different implementations of the data reporting
API object are loaded during the code generation phase,
based on information provided by the user regarding the
desired deserialization format of the XML instance data.
FIG. 1 shows an example of an event stream API generator
object that uses SAX events to notify the application of the
instance document data. FIG. 2 shows sample API Generator
code as well as the corresponding generated code for the
case where deserialization into application specific objects is
needed by the application. The specific deserialization API
shown in the figure is Java API for XML-Based Remote
Procedure Call, or JAX-RPC.
0018. In one embodiment, application specific operations
are inserted directly into the generated executable code, in a
context sensitive way. This is achieved by associating
actions with their context, in a way that disengages them
from the operational details of parsing and validation. Arbi
trary code can be inserted for specific contextual aspects,
through the use of a generalized data reporting API genera
tor module, which removes indirection layers at runtime and
allows for optimal performance. The compile-time separa
tion of application-specific code into separate modules
results in parser generator code that is simpler and easier to
maintain. For example, adding or removing Support for a
different data reporting interface would no longer require
any modification of the parsing or validation code.
0019. In one embodiment, custom parsers and validators
of XML instance documents are utilized. The customization
comes from the a priori knowledge of the schema the data
must conform to, as well as information about how the target
application will use the instance document data. The latter
customization is used by the data reporting generator mod
ule, which is configured at startup with information about
the target application’s runtime environment.
0020 New data reporting generator modules may be
developed as needed by the application author, with no
knowledge of the parsing and validator code, while still
retaining efficient reporting of the data. The user simply
needs to provide an implementation of the DataReport
ingGenerator interface. The parser generator will invoke
methods in this implementation during code generation to
add user-defined code into the generated parser, which will
report the instance data in the form desirable by the appli
cation. The application can choose to ignore parts of the
input data, and this is easily implemented in this model by
providing no actions for certain contexts. This enables
applications to easily avoid the cost of deserializing pieces
of data of no interest to them, making the whole processing
of the input data even more efficient.
0021. The data reporting module can be used to generate
code that creates appropriate data structures to store the
instance data, assign values to such structures, and allocate
space when needed. It can also provide an expression for
accessing the instance document data, and this information
can be used by the parser generator when generating code
that needs to access this data, without a-priori knowledge of
how the data is being stored. The interface between the data

Feb. 21, 2008

reporting API Generator module and the parser generator
includes passing around two types of information:
0022. Information is passed from the parser generator to
the data reporting generator module describing the current
context that the parser generator is currently generating code
for: for example, the type of the data that the parser
generator is currently handling, such as the particular
schema component. Additional information, such as the
particle wrapping the current schema component as well as
references to components that may appear in place of the one
currently handled may also be provided to the data reporting
generator module.
0023. In the other direction, the data reporting generator
module provides information to the parser generator regard
ing how instance data may be referenced during runtime and
thus how the parser generator can refer to this same data for
its parsing and validation requirements.
0024. In exemplary embodiments, a standalone data
reporting generator module is interfaced with the parser
generator, to designate the desired deserialization code to be
executed while parsing the instance document. Different
implementations of the data reporting generator module can
be plugged in at parser generation time (compile time), to
generate the desired deserialization code. It should be noted
that there is a compilation phase, during which an XML
parser is generated. The parser is used at runtime to parse an
instance document, or XML data stream, and deserialize the
data found in the instance document. As used herein, dese
rializing the data means converting the data into a form that
can be used by the user application (i.e., data structures,
events, etc). Typically, the XML parser would generate
generic data structures, possibly conforming to Some indus
try standard form; the user application needs to convert this
intermediate form to the application specific data descrip
tion. With the Suggested approach, this two-step runtime
conversion is eliminated completely: the custom XML
parser generated during the compilation phase generates at
runtime the data structures needed by the end application.
0025. For example, given the input document

<address.>
<streets-Belmont Rd.</streets
<number 20</numbers
<city>Bethesda</city>
<zip-04792</zips

</address.>

the data may be converted to a Java object, similar to

new Address (“Belmont Rd., 20, “Bethesda, “O4792)

or a SAX event stream, similar to:

startElement ("address');
startElement(“street');
characterData (“Belmont Rd);
endElement();
startElement(number):
characterData(20');
endElement();

US 2008/0046874 A1

-continued

startElement("city);
characterData (“Bethesda');
endElement();
startElement("zip"):
characterData(“O4792);
endElement();
endElement(); // <faddress.>

0026 Notice how in one case, when the SAX event
stream deserialization is used, the “number field is reported
as the String value “20. When the business object deseri
alization is used, the “number field is reported as the integer
value 20. During the parser generation phase, code is
inserted from the data reporting generator module into the
generated parser to perform the conversion appropriate for
the desired deserialization, if any is needed. The parser
generator is not aware of Such conversions itself, it is up to
the specific implementation of the data reporting generator
module to determine what conversions might need to occur
to convert the instance data into the specific deserialization
format.

0027 FIGS. 1 and 2 illustrate the interaction of the parser
generator 100 with the data reporting generator module 200
and 210, during compile time, and sample output code that
is generated during this interaction 300 and 310. In the
specific example, the parser generator is generating valida
tion code for a wildcard. From the input schema that the
XML instance data conforms to, we know that the specific
wildcard matches either “XX” or "xyz' elements.
0028. For illustrative purposes, the parser generator gen
erates a comment into the output stream. Next, the parser
generator proceeds to generate validation code for each of
the wildcard particles. The first wildcard particle matches
“XX', so the following code is generated:

if (currentToken ==XX) {
check attributes for XX:

0029. At this point the parser generator invokes the data
reporting generator module that has been instantiated for this
compilation scenario, with a call to

0030 <data-reporting-module>.afterChoiceOpenTag
(...)

0031. The data-reporting module can generate the appro
priate code for the matched particle. In the case of the event
stream data-reporting module (FIG. 1), this results in:

i? build up attribute list
Attributes attr list = new Attributes.Impl();
for each attribute that can appear in XX

attr list.add(“attrName”, attrValue)
throw Event(“startElement(“, “xx”, “xx', attr list)');

0032. In FIG. 2, where the desired deserialization is a
JaxRPC-style business object, the code generated must
create a business object of the appropriate type (in this case
an XX object) and initialize it with the data in the instance
document. The generated code looks like:

Feb. 21, 2008

Object o = new XX();
for each attribute in XX

o.setField (“attrName”, attrValue)
O.setValue(value);

0033. This process is repeated for all other particles of the
wildcard, in this case the particle for XYZ.
0034. Note that the attribute handling code will not
appear in the generated parser if there were no attributes in
the schema type for this element, as this information is
known at compile time. Furthermore, the attrName will be
hardcoded into the generated parser at compile time, since it
is known at that time, while the attrValue will be generated
as a variable which points to the value in the parser valida
tion code.
0035. The capabilities of the present invention can be
implemented in Software, firmware, hardware or some com
bination thereof.
0036. As one example, one or more aspects of the present
invention can be included in an article of manufacture (e.g.,
one or more computer program products) having, for
instance, computer usable media. The media has embodied
therein, for instance, computer readable program code
means for providing and facilitating the capabilities of the
present invention. The article of manufacture can be
included as a part of a computer system or sold separately.
0037 Additionally, at least one program storage device
readable by a machine, tangibly embodying at least one
program of instructions executable by the machine to per
form the capabilities of the present invention can be pro
vided.
0038. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams
or the steps (or operations) described therein without depart
ing from the spirit of the invention. For instance, the steps
may be performed in a differing order, or steps may be
added, deleted or modified. All of these variations are
considered a part of the claimed invention.
0039 While the preferred embodiment to the invention
has been described, it will be understood that those skilled
in the art, both now and in the future, may make various
improvements and enhancements which fall within the
scope of the claims which follow. These claims should be
construed to maintain the proper protection for the invention
first described.
What is claimed is:
1. A method for interfacing with an XML (Extensible

Markup Language) parser generator to generate deserializa
tion information interleaved with XML parsing and valida
tion, the method comprising:

providing an XML parser generator with information
about the schema which the instance data conforms to:

providing a data reporting application programming inter
face (API) and a generator module:

providing one or more implementations of the data report
ing API:

providing the XML parser generator with a selected data
reporting API implementation module:

generating an XML parser to parse and validate instance
documents conforming to the specified input Schema
and deserializing the instance documents into the
desired deserialization form during the parse.

US 2008/0046874 A1

2. The method of claim 1, wherein the data reporting API
is used to generate code that creates appropriate data struc
tures to store the instance data, assign values to the data
structures, and allocate space.

3. The method of claim 1, wherein the data reporting API
is used to generate code that creates an event stream repre
sentation of the instance data.

4. The method of claim 1, wherein two types of informa
tion is exchanged between the data reporting API and the
XML parser generator.

5. The method of claim 4, wherein a first type of infor
mation describes a current context that the XML parser
generator is currently generating code for.

6. The method of claim 4, wherein a second type of
information involves how the instance data is referenced
during runtime and how the XML parser generator refers to
the referenced instance data for parsing and validation
requirements.

7. A computer program product for interfacing with an
XML (Extensible Markup Language) parser generator to
generate deserialization information interleaved with XML
parsing and validation, the computer program product com
prising:

a storage medium readable by a processing circuit and
storing instructions for execution by the processing
circuit for performing a method comprising:
providing an XML parser generator with information

about the schema which the instance data conforms
to:

providing a data reporting application programming
interface (API) and a generator module:

Feb. 21, 2008

providing one or more implementations of the data
reporting API:

providing the XML parser generator with a selected
data reporting API implementation module:

generating an XML parser to parse and validate
instance documents conforming to the specified
input schema and deserializing the instance docu
ments into the desired deserialization form during
the parse.

8. The computer program product of claim 7, wherein the
data reporting API is used to generate code that creates
appropriate data structures to store the instance data, assign
values to the data structures, and allocate space.

9. The computer program product of claim 7, wherein the
data reporting API is used to generate code that creates an
event stream representation of the instance data.

10. The computer program product of claim 7, wherein
two types of information is exchanged between the data
reporting API and the XML parser generator.

11. The computer program product of claim 10, wherein
a first type of information describes a current context that the
XML parser generator is currently generating code for.

12. The computer program product of claim 10, wherein
a second type of information involves how the instance data
is referenced during runtime and how the XML parser
generator refers to the referenced instance data for parsing
and validation requirements.

