
(19) United States
US 20080033968A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0033968 A1
Quan et al. (43) Pub. Date: Feb. 7, 2008

(54) METHODS AND APPARATUS FOR INPUT
SPECIALIZATION

(76) Inventors: Dennis A. Quan, Quincy, MA
(US); Eric David Perkins, Boston,
MA (US); Chetan R. Murthy,
Cambridge, MA (US); Moshe
Morris Emanuel Matsa,
Cambridge, MA (US)

Correspondence Address:
BARRY W. CHAPIN, ESQ.
CHAPIN INTELLECTUAL PROPERTY LAW,
LLC
WESTBOROUGH OFFICE PARK, 1700 WEST
PARK DRIVE
WESTBOROUGH, MA 01581

(21) Appl. No.: 11/501,216

(22) Filed: Aug. 7, 2006

XMLTYPE
DEFINITIONS
(SCHEMA)

110

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. .. 707/100; 707/3
(57) ABSTRACT

A program specializer employs input specialized data struc
tures by generating an input specialized definition of a set of
data elements, and parsing an application program to iden
tify data element references to data elements in the gener
ated input specialized definitions of data elements. A data
structure generator responsive to the program specializer
computes an input specialized definition corresponding to
each of the identified references data element references, and
a parser in the program specializer replaces or rewrites the
identified data element references with the corresponding
input specialized definition. Computing the input specialized
definition includes determining an index for offset indirec
tion, therefore having offset references to members of the
data element, Such that the data element members are
operable for indexed references by the resulting input spe
cialized application program.

130

DATA
STRUCTURE
DEFINITION
GENERATOR

INPUT SPECIALIZED
DATASTRUCTURES

A'B'C'

XML
APPLICATION
PROGRAM

Feb. 7, 2008 Sheet 1 of 8 US 2008/0033968A1 Patent Application Publication

? '61-I

(WOG) TEGOW LOETEO _LNEVNT OOO
8 |

US 2008/0033968A1

(WWEHOS) SNO||LINI-HEG

[O] [8] [\/]

Patent Application Publication

Patent Application Publication Feb. 7, 2008 Sheet 3 of 8 US 2008/0033968A1

2OO
GENERATE AN INPUT SPECIALIZED DEFINITION OF A SET OF DATA

ELEMENTS

201
PARSEAN APPLICATION PROGRAM, THE APPLICATION PROGRAM HAVING
DATA ELEMENT REFERENCES, TOIDENTIFY DATA ELEMENT REFERENCES
TO DATA ELEMENTS IN THE GENERATED INPUT SPECIALZED DEFINITIONS

OF DATA ELEMENTS

2O2
COMPUTE AN INPUT SPECIALIZED DEFINITION CORRESPONDING TO EACH

OF THE DENTIFIED DATA ELEMENT REFERENCES

2O3
REPLACE THE DENTIFIED DATA ELEMENT REFERENCES WITH THE

CORRESPONDING INPUT SPECIALIZED DEFINITION

Fig. 3

Feb. 7, 2008 Sheet 4 of 8 US 2008/0033968A1 Patent Application Publication

jy '61-I

Patent Application Publication Feb. 7, 2008 Sheet 5 of 8 US 2008/0033968A1

300
GENERAT AN INPUT SPECIALIZED DEFINITION OF A SET OF DATA ELEMENTS;

301
GENERATE A UNIDIRECTIONAL NAMED CHILD RELATIONSHIP

302
PARSEAN APPLICATION PROGRAM, THE APPLICATION PROGRAM HAVING DATA
ELEMENT REFERENCES, TO DENTIFY DATAELEMENT REFERENCESTODATA
ELEMENTS IN THE GENERATED INPUT SPECIALIZED DEFINITIONS OF DATA

ELEMENTS

303
GENERATE ANABSTRACT SYNTAX TREE INDICATIVE OF THE REFERENCES

TODATA ELEMENTS

To
GENERATEA MEMORY RESIDENT VERSION OF THE APPLICATION PROGRAM

REPRESENTED ASA HERARCHICAL TREE STRUCTURE

Fig. 5

Patent Application Publication Feb. 7, 2008 Sheet 6 of 8 US 2008/0033968A1

305
TRAVERSE ASYNTAX TREE REPRESENTATION OF THE APPLICATION PROGRAM

306
DENTIFYINGOOMDEFINITIONS INCLUDING XSLT BASED XPATH

EXPRESSIONS,
COMPUTE AN EXPRESSION INDICATIVE OF ANMPLIED PARAMETER

REPRESENTING A CURRENT NODE AND
MATCH A FUNCTION INVOCATION BY SPECIFYING A BOOLEAN

EXPRESSION INDICATIVE OF THE CURRENT NODE

307
TRAVERSE THE HERARCHICAL TREE STRUCTURE TO DENTFY DATA
ELEMENT REFERENCES DEFINING FUNCTION PARAMETERS HAVINGA

GENERIC NODE TYPE

308
IDENTIFY FUNCTION INVOCATIONS INCLUDING THE DATA ELEMENT

REFERENCES

REFERENCE IN INPU
SPECIALIZED SET

YES

310
COMPUTE AN INPUT SPECIALIZED DEFINITION CORRESPONDING TO EACH OF THE

IDENTIFIED REFERENCES DATA ELEMENT REFERENCES

311
COMPUTE AN INPUT SPECIALIZED DEFINITION FURTHER COMPRISES

DETERMINING AN INDEX FOR OFFSET INDIRECTION

312
GENERAE AN INPUT SPECIALIZED DEFINITION HAVING OFFSET

REFERENCES TO MEMBERS OF THE DATA ELEMENT, THE DATA ELEMENT
MEMBERS OPERABLE FOR NOEXED REFERENCES BY THE APPLICATION

PROGRAM

Patent Application Publication Feb. 7, 2008 Sheet 7 of 8 US 2008/0033968A1

313
UNUSED

ATRIBUTES/MEMBERS
FOUND?

NO

314
IDENTIFYING UNUSEDATTRIBUTES IN THE

PARSED APPLICATION PROGRAM
REMOVING OPERATIONS INCLUDING THE

UNUSED OPERATIONS

315
ELIMINATE CODE FOR

RETREVING AND COMPARING
NAMES OF NODE ELEMENTS

PREVIOUSANCESTOR
ELEMENT REFERENCED

317
IDENTIFY ANCESTOR REFERENCES TO DATA
ELEMENTS, ANCESTOR REFERENCES HAVING
UNIDIRECTIONAL RELATIONS OPPOSED TO THE

RELATIONS IN THE INPUT SPECIALIZED
DEFINITION AND COMPUTE A PREVIOUS

INVOCATION TO THE ANCESTOR REFERENCE
EMPLOYING THE COMPUTED PREVIOUS

INVOCATION FOR REPLACING THEANCESTOR
REFERENCE.

Fig. 7

Patent Application Publication Feb. 7, 2008 Sheet 8 of 8 US 2008/0033968A1

318
ANNOTATE THE DENTIFIED INVOCATIONS WITH A SIGNATURE INDICATIVE OF A SET

OF INPUT SPECIALIZED DEFINITIONS, EACH OF THE INPUT SPECIALIZED
DEFINITIONS CORRESPONDING TO AMARKUP BASED ARGUMENT TO A FUNCTION

INVOCATION

319
REPLACE THE DENTIFIED DATA ELEMENT REFERENCES WITH THE

CORRESPONDING INPUT SPECIALIZED DEFINITION

320
DATA ELEMENT REFERENCE ISA CHILD REFERENCE TO ANATTRIBUTE,
AND REPLACING FURTHER COMPRISING REPLACING WITH ANAMED
CHILD EXPRESSION INDICATIVE OF THE TYPE AND NAME OF THE

ATTRIBUTE

321
DATA ELEMENT REFERENCES FURTHER COMPRISES MARKUP

LANGUAGE ELEMENTS IN PARAMETERS TO FUNCTION INVOCATIONS,
AND REPLACING FURTHER COMPRISES SUBSTITUTING AN OFFSET

BASED EXPRESSION FOR A POINTER TRAVERSAL OPERATION

322
REPLACING ELEMENT REFERENCES WITH A SINGLE DETERMINISTIC

REFERENCE INDICATIVE OF THE DATA ELEMENT, THE SINGLE
DETERMINISTIC REFERENCEAVODING MULTIPLE POINTER TRAVERSALS

323
CONTINUE TRAVERSING TO GENERATE A SIGNATURE FOREACH FUNCTION

INVOCATION, EACHSIGNATURE INDICATIVE OF INPUT SPECIALIZED PARAMETERS
APPROPRIATE FOR THE FUNCTION INVOCATION

324
GENERATE AN INPUT SPECIALIZED PROGRAM HAVING INPUT SPECIALIZED

REFERENCESTO INPUT SPECIALIZED DATASTRUCTURES

Fig. 8

US 2008/0033968 A1

METHODS AND APPARATUS FOR INPUT
SPECIALIZATION

BACKGROUND

0001. In conventional Extensible Markup Language
(XML) based applications, a typical first step in an XML
processing application is to read in an XML document from
disk (or the network) into memory. Most of the standards for
XML processing operate on an abstract model of the docu
ment in which the document is modeled as a set of nodes
linked together with two fundamental, bidirectional relation
ships, parent/child, and previous-sibling/next-sibling. Tra
versal of these conventional linkages to locate specific nodes
is accomplished by So-called QName traversals (i.e. get the
next sibling named 'foo', or the first child named “bar'), as
the model is meant to be generalized for any XML vocabu
lary. Note that in most conventional models, attributes are
handled specially, and are not considered children—or sib
lings—because of their special, unordered semantics. The
basic conventional access pattern, however, remains the
same. The W3C (World Wide Web Consortium, as is known
in the art) standard Document Object Model (DOM) pro
vides a standard example of this model both in abstract, and
in concrete implementation.
0002 While this conventional DOM model provides a
useful, general purpose, abstraction for programmatic access
to XML data, as a concrete implementation of the in
memory model for XML data, it may present obstacles to
performance. In particular, the flexibility of the model, with
four-way linkages, and dynamic, QName lookup, makes any
direct implementation of the conventional model heavy
weight. Furthermore, the QName-based access pattern pre
sents a performance problem as the sequence of nodes in a
given relation (child, parent, previous, next) are traversed,
and dynamically compared with the requested QName.

SUMMARY

0003. In conventional XML based systems, a document
object model (DOM) provides a powerful and flexible
mechanism to specify XML data elements and allow the data
elements to be employed by application programs. However,
conventional XML configurations suffer from the shortcom
ing that data structures generated from DOM based elements
tend to generate complex pointer arrangements with mul
tiple levels of indirection. Such complex pointer structures,
while powerful at performing dynamic runtime adaptation to
different data types, often incur substantial overhead for
traversing tree nodes and matching node names to identify
particular data objects. It would be beneficial to employ
XML definitions, such as DOM based definitions, without
incurring large memory requirements and extended traversal
and matching operations during runtime. As employed
herein, the term DOM is meant to imply a set of data
structures for representing XML in memory. The resulting
DOM based definitions are therefore operable for processing
Such as Qname traversal and/or processing via the above
indicated pointer structures.
0004. In the context of a compiled XML processing
program, a lighter-weight data structure, with more efficient
access capabilities is desired. A data structure, specialized to
the known shape of the data, such as a c struct, or c----/Java
class is ideal from a performance and memory-use perspec
tive. Members of the data structure can be accessed by offset

Feb. 7, 2008

indirection, instead of list traversal. In other words, the
structure is organized Such that specific children are located
at specific offset in the data record. This offset is known
statically at compile time, so navigation from one node to
one of its specific children involves only incrementing a
pointer by this known value, and in Some cases performing
a pointer indirection. These operations are typically highly
efficient on most native machine architectures. Further, the
relationships and names of the nodes are implied by the
structure, rather than interpreted dynamically. That is to say,
the name of a given node is encoded statically in its type, and
therefore known statically at compile time. This eliminates
any code required to dynamically retrieve its name, as well
as any code used to operate on the name, such as a
comparison against other known values. Similarly, informa
tion about a node's closer relatives may be surmised from
the overall type hierarchy.
0005 Procedures for derivation of such strongly-typed
concrete data structures from abstract typing systems for
XML, such as W3C XML Schema, are well known; gSOAP
and JAX RPC are two common examples. These structures
are not, however, strictly suitable for the various high-level,
dynamically-typed languages for processing of XML, as
they lack the multi-way linkages of the abstract document
nodes, and are currently therefore limited to use as foreign
representations of XML for low-level, procedural program
ming languages in which XML is not a part of the usual
type-system.
0006. Accordingly, configurations herein substantially
overcome the above described shortcomings by providing
input specialized data structures derived from DOM based
definitions, and computing offset indirection references for
data elements in an application program. The offset indirec
tion references provide a deterministic index to a data
element derived from the DOM based definitions, without
performing extensive runtime string matching or other com
putationally intensive operations. A program specializer
receives a set of offset indirection references corresponding
to a DOM based definition of data elements. In the exem
plary configuration, the application program may be an
XML program having data elements defined in XSLT and
employing Xpath references. A data structure generator
generates the input specialized definitions for the data ele
ments referenced by the application program. The program
specializer invokes the generated input specialized defini
tions, and replaces, or rewrites, the DOM based data element
references in the application program. The resulting input
specialized program invokes data elements operable to
access data structure members by offset indirection, rather
than list traversal. In this manner, the runtime burdens of
conventional list traversal and node name matching are
shifted to compile time generation of input specialized
definitions, thus allowing data element references via an
offset indirection index, rather than resource intensive tra
versals of complex data structures.
0007 Configurations here depict an approach to special
ize XML processing programs, written in languages (such as
XSLT) that operate on an abstract node model similar to the
general description above, Such that they are rewritten to
operate on strongly typed, input-specialized data structures
which are derived from an XML type definition language
(such as XML Schema). This approach allows programs
written with these high-level languages to perform compa

US 2008/0033968 A1

rably to programs written in low-level languages against
efficient, task-specific data structures.
0008. The process depends on two tools for XML data
specialization. First, a set of data structure definitions (e.g.
Java classes) is derived from the type definitions (e.g. XML
Schema) which define the input XML. This can be done
using any suitable mapping, or a custom mapping that is
similar in implementation. The key properties of the input
specialized data structures are that they represent the names
and interrelationships of the data in their structure, and
maintain only the unidirectional, named child relationship.
The second component employs a schema-aware, deserial
izing parser which can efficiently populate these data struc
tures. Again several alternatives exist, including the widely
available gSOAP framework, which generates efficient,
compiled deserializers for this task.
0009. Using the input-specialized type system, and work
ing progressively through the generic, node-oriented pro
gram, configurations herein translate the operations, initially
defined over nodes, and their multi-way access patterns to
operations over the input-specialized data structures, using
only the unidirectional, named accessors. Along the way
information derived from the data structure (and via it, from
the originating schema types) is incorporated into the pro
gram to increase efficiency. For example, by imposing the
strongly-typed input to the program it may be possible to
determine that certain expressions must, when applied to the
relevant input-specialized type, always produce the same
result. In that case, their runtime evaluation can be statically
eliminated. In the case where the expression is used in a code
branch (Such as in a Switch, or if-then-else), whole sections
of code may thus be eliminated.
0010. The result of this automated translation is a pro
gram written to operate on a task-specific, input-specialized
data structure. When compiled into an executable, this
program will achieve performance comparable to a well
tuned program written by hand to operate on those data
Structures.

0011. In further detail, the method of processing an input
specialized data structure as defined herein includes gener
ating an input specialized definition of a set of data elements,
and parsing an application program to identify data element
references to data elements in the generated input special
ized definitions of data elements. A data structure generator
computes an input specialized definition corresponding to
each of the identified data element references, and a program
specializer replaces or rewrites the identified data element
references with the corresponding input specialized defini
tion. Computing the input specialized definition includes
determining an index for offset indirection, therefore having
offset references to members of the data element, such that
the data element members are operable for indexed refer
ence by the resulting input specialized application program.
0012. Alternate configurations of the invention include a
multiprogramming or multiprocessing computerized device
Such as a workstation, handheld or laptop computer or
dedicated computing device or the like configured with
Software and/or circuitry (e.g., a processor as Summarized
above) to process any or all of the method operations
disclosed herein as embodiments of the invention. Still other
embodiments of the invention include Software programs
Such as a Java Virtual Machine and/or an operating system
that can operate alone or in conjunction with each other with
a multiprocessing computerized device to perform the

Feb. 7, 2008

method embodiment steps and operations Summarized
above and disclosed in detail below. One such embodiment
comprises a computer program product that has a computer
readable medium including computer program logic
encoded thereon that, when performed in a multiprocessing
computerized device having a coupling of a memory and a
processor, programs the processor to perform the operations
disclosed herein as embodiments of the invention to carry
out data access requests. Such arrangements of the invention
are typically provided as Software, code and/or other data
(e.g., data structures) arranged or encoded on a computer
readable medium Such as an optical medium (e.g., CD
ROM), floppy or hard disk or other medium such as firm
ware or microcode in one or more ROM or RAM or PROM
chips, field programmable gate arrays (FPGAs) or as an
Application Specific Integrated Circuit (ASIC). The soft
ware or firmware or other Such configurations can be
installed onto the computerized device (e.g., during operat
ing system or execution environment installation) to cause
the computerized device to perform the techniques
explained herein as embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The foregoing and other objects, features and
advantages of the invention will be apparent from the
following description of particular embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec
essarily to Scale, emphasis instead being placed upon illus
trating the principles of the invention.
0014 FIG. 1 is a diagram of prior art XML data element
definition and processing by a conventional XML applica
tion program;
0015 FIG. 2 is a context diagram of an XML environ
ment Suitable for use with configurations disclosed herein
0016 FIG. 3 is a flowchart of input specialized data
structure processing performable by configurations herein
0017 FIG. 4 is a block diagram of input specialized data
structure processing as defined herein; and
0018 FIGS. 5-8 are a flowchart of generating an input
specialized application program using the system of FIG. 4.

DETAILED DESCRIPTION

0019. The disclosed configurations depict a process of
input specialization that begins with a program written
against the abstract XML data model described above or
any suitable data model with the above-described charac
teristics, such as the XPath data model—and a set of
input-specialized data structures, which may be derived
from an XML type definition language, such as XML
Schema or other Suitable language. The process is not
limited to any particular Such abstract model, or any par
ticular set of concrete data structures, provided that the
abstract model conforms to the general description of the
node relationships above (notably four-way inter-relation
ships, and QName lookup), and that the concrete input
specialized data structures conform to the corresponding
general description above (notably unidirectional relation
ships, and implied structure and naming). In an exemplary
configuration of the method, we will refer to the canonical
example of an XSLT program (which uses the XPath data

US 2008/0033968 A1

model), being specialized to a set of Java classes, derived
from an XML Schema (such as those produced by the
mappings of JAX-RPC).
0020 FIG. 1 is a diagram of prior art XML data element
definition and processing by a conventional XML applica
tion program. Referring to FIG. 1, conventional XML pro
cessing mechanisms generate a hierarchical data structure
(tree structure) 10 including a plurality of nodes 12a-12n,
each representing a data element 18. A document object
model (DOM) 16 is a repository for conventional data
elements 18 defined in the tree 10, and is employed to
generate a set of XML type definitions 15, also known as a
schema. The data element 18 includes attributes 14-1 . . .
14-5 (14 generally) indicative of the links to other data
elements 18 in the tree 10, thus defining the conventional
tree structure 10. The conventional fields 14 include at least
a node name 14-1, a parent pointer 14-2, a child pointer
14-5, a next sibling pointer 14-3 and a previous sibling 14-4.
Other fields 14 may be included and define other fields of the
data element 18. Therefore, conventional processing of
DOM based tree structures 10 includes traversal of the tree
structure 10 via the attributes 14-1 . . . 14-5. Further,
conventional manipulation of the tree structure incurs pro
cessing with respect to each of at least five (14-1 ... 14-5)
attributes of the tree structure 10, and typically involves
multiple “hops, or traversal of individual nodes, for access
ing the conventional data elements in the tree.
0021. In contrast, in configurations herein, given a set of
input-specialized data structures, and a mechanism by which
to build them from an input XML document, the first step in
the specialization process is to produce an in-memory rep
resentation of the program (in XSLT also called a
stylesheet), where the input is assumed to be a generic data
structure such as the DOM, or any other which closely
models the generic abstract model of the program. The
program is represented with an abstract syntax tree (AST),
where the functions (in XSLT these correspond to templates)
all take one or more parameters of the generic node type, and
contain a body which is the expression for the functions
result in terms of its parameters. In XSLT, templates all take
an implied parameter, which is the current node. In the AST.
these implied parameters are made explicit. Furthermore,
XSLT Supports a calling convention, apply-templates, in
which the template to be called is determined by comparing
the current node to a match pattern associated with a whole
set of templates. In the AST, this is can be represented
explicitly as a function in which the match patterns of the
relevant templates are rewritten as Boolean-valued XPath
expressions indicating whether the current node is matched.
These expressions are evaluated in a conditional loop,
whose branches contain explicit calls to their matched
template. In languages other than XSLT, processing of
similarly implied constructs will be performed to make the
AST a simple, explicit program.
0022 FIG. 2 is a context diagram of an XML environ
ment Suitable for use with configurations disclosed herein.
Referring to FIG. 2, in a particular configuration, a style
sheet including DOM derived definitions is developed as an
XSLT document 110. The XSLT document 110 includes
XPATH definitions 102 operable for processing as an XML
based document, as is known to those of skill in the art.
Configurations herein employ a data structure definition
generator 130 to generate an input specialized definition of
a set of data elements 120-1, 120-2 (120 generally) from

Feb. 7, 2008

DOM based definitions 104-1. ... 104-2 (104 generally) in
the style sheet 110. Alternatively, other DOM based or XML
definitions may be employed. According to configurations
herein, discussed further below, the data structure generator,
or input specialized definition generator 130, generates a set
of input specialized data elements 180 for use by the
application program 150.
0023 FIG. 3 is a flowchart of input specialized data
structure processing performable by configurations herein.
Referring to FIGS. 1-3, the method of processing markup
data using an input specialized data structure 120 as dis
closed herein includes, at Step 200, generating an input
specialized definition of a set of data elements, and parsing
the application program 150 to identify data element refer
ences to data elements in the generated input specialized
definitions of data elements, as depicted at step 201, typi
cally employed in procedure/function call parameters in the
application program 150 (FIG. 4). The data structure defi
nition generator 130 computes a set of input specialized
definitions 180 corresponding to each of the identified data
element references 104, as shown at step 202, and a parser
170 (FIG. 4) replaces the identified data element references
with the corresponding input specialized definition 120, as
disclosed at step 203.
0024. The process of program specialization begins at the
entry point (or points) to the program 150. In XSLT, this is
the initial invocation of the apply-templates function with
the root of the document as the current node. Specialization
begins at this call, by specifying that the root node is of the
type corresponding to the document-roots representation in
the input-specialized data structures 180.
0025. Each call to an input-specializable function in the
AST 162 is annotated with a new, input-specialized type
signature, containing the input-specialized types 120 of each
of the arguments 104. A complete copy of the called function
F1, F2 is made for every unique calling signature, and the
body expression of that function is recursively rewritten in
terms of operations over the input-specialized data struc
tures, at each step annotating the program with the calcu
lated input-specialized type of each expression. When a call
to another function is encountered, the input-specialized call
signature is calculated, and the corresponding specialized
copy of that function is queued for rewriting.
0026. For each specialized copy of a function, the value
expression is recursively rewritten in terms of expressions
that operate on the specialized types 120. For example, an
expression which, in the original version A-C, access an
input node's child relation 14-5 with a given QName will be
rewritten in terms of operations which access the appropri
ately named child field of the input-specialized type 120.
Similarly, the input-specialized type 120 of every expression
is calculated with reference to the original expression, and
the input-specialized types of its arguments. Thus, for
example, the type of the above child expression is deter
mined to be the type of the named member in the arguments
input-specialized structure. This process is carried out recur
sively through the AST tree 162, such that the resulting copy
of the function is composed only of operations over the
input-specialized types 120.
0027 FIG. 4 is a block diagram of input specialized data
structure processing as defined herein. Referring to FIG. 4.
an application program 150 employing DOM 104 based
references is receivable by a program specializer 160. The
application program 150 includes function invocations F1

US 2008/0033968 A1

and F2 152-1 . . . 152-2 respectively (152 generally), that
include the data element references 104-1 ... 104-3 for A,
B and C, respectively. The program specializer 160 receives
the application program 150 in an abstract syntax tree (AST)
162. Also employing the DOM 16 definitions is the data
structure generator 130, that generates input specialized data
structures 180 derived from the schema definitions A, B and
C (104). A parser 170 includes a signature generator 172 and
a mapper 174.
0028. The parser 172 processes the syntax tree 162 to
identify function invocations F1 and F2 including data
element references included in the input specialized data
structures 180. The mapper 174 identifies the input special
ized data structures A, B' and C (120) corresponding to the
data element references A, B and C (104) from the appli
cation program 150. The signature generator 172 employs
the mapped data elements A B' and C to replace the
function invocations F1 and F2 with the input specialized
function references (signatures) F1' and F2' 192 in the output
application program 190 including the input specialized
calls 192. Accordingly, the input specialized data elements
1941.194-3 are operable to access the corresponding data
item 196-1.196-3 via a single offset indirection 198, thus
avoiding an iteration of pointer references and name match
ing typically associated with DOM based references in an
application program.
0029. In the simplest content models, where the content

is just a sequence of elements, named child expressions will
reference one member of the input-specialized data struc
ture. In more complicated cases, it may be necessary to
reference several members. In this case, a more complex
expression will be used to retrieve all of the relevant
children, and gather them into a result set. These results
might be encoded in a variety of ways, including lists or
arrays, but also possibly tuples or even lambda expressions
which, when evaluated, return the desired result—or, of
course a combination of any of these representations. In
particular, more complicated Schemes, perhaps involving
unions, or union-like structures, may be desirable when all
of the result nodes are not of the same type. For configu
rations including XML Schema, all identically named chil
dren are restricted to be of the same type, and so in many
cases, a simple list or array will Suffice.
0030 Rewriting of simple expressions involving child
relations is straight-forward; an expression which accesses a
named child of an input node is rewritten to access the
named member or members of that node's input-specialized
type. However, in the case of the other relations (parent, next
and previous)—or extended relations derived from them
(e.g. XPaths ancestor axis)—the conversion may employ
additional processing. Since the input-specialized types do
not include accessors for these other relationships, support
for Such expressions must be achieved by saving references
to parent nodes further up the expression tree, while refer
ences to those nodes are still in Scope. In particular, this
means that the actual type used for any node in the expres
sion is not just the type stipulated by or derived from the
calling context, but is, in fact a collection of that node, and
any of its ancestor nodes which may be required by depen
dent expressions. This collection could be implemented in a
variety of ways, for example, as a tuple, or a list. Within a
function, these dependencies are resolved while evaluating
the expressions to determine their input-specialized types.
For example, if the result of a particular expression is used

Feb. 7, 2008

in a Subsequent expression that would require its parent (or
more distant ancestor), then the type of that expression is
augmented with the relevant parent/ancestor node to reflect
the additional dependency. These dependencies are propa
gated up the input-specialized type annotations on the
expression tree for the function during regular function
specialization. For ancestor dependencies which cross func
tion boundaries, the propagation is performed across the
whole (potentially recursive) function call stack repeatedly
until the full set of dependencies is resolved. As a result, all
of the functions in the call-stack will be modified to prepare
for Such back-references. For example, if a function takes as
an argument a given node, and in its value expression,
accesses its grandparent node, then an annotation is made on
that function argument, stating that the node must be passed
in with its two ancestors; furthermore, any variable in
another function that supplies that variable is similarly
annotated as needing its two ancestors to be remembered. If
such a variable X is the result of a child step from yet another
variable Y, then Y is annotated as needing only one of its
ancestors, and so on. The process of “remembering” means
that, whereas in the original code, a variable X might require
a single value to be passed, the new code might require 2 or
more values to be passed along in the X variable, depending
on the number of ancestors that needs to be remembered.
Expressions for siblings are handled similarly, as that access
is made via the parent node.
0031. The choice of representation of ancestor nodes may
vary according to the needs of the program. For example, if
the input-specialized type system is recursive, it may not be
possible to bound the number of ancestors required for a
given function (especially if that function is also recursive).
In Such a case, the tuple representation may not be appro
priate, and a list or other representation will be preferred.
This does not present an insurmountable problem, however,
since the recursion is easily detected during specialization
analysis, and dealt with accordingly.
0032. During expression rewriting, application of the
input-specialized type system to the original, generically
typed program may render some branches of the program
unreachable. This can be a source of significant performance
improvement, as the runtime check for those branches may
be eliminated Statically. A good example of how this oper
ates can be seen in the implied apply-templates function of
an XSLT program. Typical usage of apply templates will
select a particular named descendant of the current node, and
apply templates on it. With the input-specialized type of that
node (and thus its name) known, the number of template
match expressions that can possibly evaluate to true is
greatly reduced (since most of the templates will match on
a distinct name). Indeed in the most common usage, where
there is only one match pattern that accepts the given named
node, the specialized apply-templates function for that call
will be optimized down to a direct call into a specific
template, a so-called partial evaluation operation.
0033. Once all of the reachable functions in the program
are specialized, the unused, original copies of the functions
are removed from the AST. The result is complete version of
the program, rewritten to operate on the efficient, light
weight, input-specialized data structures. When execution
code is generated for this AST, it is coupled with the
deserializing parser described above, to produce a fully
functional version of the program that leverages the Superior
memory and access characteristics of the specialized data

US 2008/0033968 A1

structures to achieve significant performance improvement
over the generic version. Thus an executable is automati
cally generated from the high-level dynamically typed
Source, which has comparable performance and memory
characteristics of a low-level program written against task
specific data structures.
0034 FIGS. 5-8 are a flowchart of generating an input
specialized application program using the system of FIG. 4.
The disclosed flowchart shows an exemplary manner of a
particular arrangement implementing the method discussed
above, and is not intended to limit the above functionality in
any way. Referring to FIGS. 4-8, at step 300, the method of
processing an input specialized data structure according to
configurations herein includes generating an input special
ized definition 120 of a set of data elements 180. In the
exemplary configuration, generating an input specialized
definition further includes generating a unidirectional named
child relationship, as depicted at step 301. This unidirec
tional structure need not be linked in both directions to each
parent and sibling, as in conventional DOM based struc
tures.

0035. The parser 170 in the program specializer 160
parses the application program 150 to identify data element
references 104 to data elements in the generated input
specialized definitions of data elements 120, as shown at
step 302. In the arrangement shown, parsing includes gen
erating an abstract syntax tree 162 indicative of the refer
ences 104 to data elements, as depicted at step 303. Building
the abstract syntax tree (AST) 162 includes generating a
memory resident version of the application program 150
represented as a hierarchical tree structure (such as the AST
162), as shown at step 304. The AST or other memory
resident structure identifies the data element references to be
replaced with input specialized data element references 120.
0036. The parser 170 traverses the syntax tree 162 rep
resentation of the application program, as depicted at Step
305. During the traversal, the parser identifies DOM refer
ences including XSLT based XPath expressions, responsive
to input specialization as defined herein. Such expressions
are those replaceable by one or more of the input specialized
data structures 120. The signature generator 172 computes
an expression indicative of an implied parameter represent
ing a current node, and the mapper 174 matches a function
invocation by specifying a Boolean expression indicative of
the current node, as depicted at step 306. Thus, the program
specializer 160 traverses the hierarchical tree structure 162
to identify data element references 104 defining function F1,
F2 parameters having a generic node type, as disclosed at
step 307. The traversal therefore identifies function invoca
tions 152 including the data element references 104, as
depicted at step 308.
0037 For each data element reference 104 traversed, a
check is performed to identify if it is encompassed with a
complementary input specialized data structure 120 in the
input specialized data structures 180 generated previously,
as shown at step 309. If so, then the signature generator 172
computes an input specialized definition F1". F2 correspond
ing to each of the identified data element references, as
depicted at step 310. In the exemplary configuration, this
includes, at step 311, determining an index for offset indi
rection, as shown at step 311, and thus further involves
generating an input specialized definition 120 having offset
references to members of the data element A-C, as disclosed

Feb. 7, 2008

at step 312, such that the data element A-C members are
operable for indexed references 194 by the application
program 190.
0038 A check is performed, at step 313, to identify
unused data members and/or attributes of the input special
ized definition 120. As indicated above, the DOM based
definitions tend to be over inclusive, and therefore may
include elements unused in a particular arrangement. If
unused members are found, then parsing invokes partial
evaluation, partial evaluation including identifying unused
attributes in the parsed application program, and removing
operations including the unused operations, as depicted at
step 314. Such removal eliminates code for retrieving and
comparing names of node elements, as shown at step 315.
0039. Another check is performed for references to
ancestor nodes corresponding to parent node traversals, as
shown at step 316. As indicated above, the program spe
cializer operates on a unidirectionally linked structure that
may be linked only in the child node direction. Accordingly,
Such parsing further includes identifying ancestor references
to data elements 104, in which the ancestor reference has
unidirectional relations opposed to the relations in the input
specialized definition (i.e. attempting to get a parent in a
child-only linking), and computing a previous invocation to
the ancestor reference. The parser 170 employs a computed
previous invocation for replacing the ancestor reference, as
depicted at step 317. In other words, at some point in the
traversal, the now sought parent node has been referenced,
at which point the location is stored for future ancestor
references.

0040 Having identified appropriate references for input
specialization, the parser 170 annotates the identified invo
cations with a signature indicative of a set of input special
ized definitions 120, each of the input specialized definitions
120 corresponding to a markup based argument A-C of a
function invocation F1, F2, as shown at step 318. This
annotation includes replacing the identified data element
references 104 with the corresponding input specialized
definition 120, as depicted at step 319. In particular
instances, the data element reference 104 may be a child
reference to an attribute, and replacing further includes
replacing with a named child expression indicative of the
type and name of the attribute, as depicted at step 320. Such
a named child attribute is indicative of type and name by
virtue of the location, or offset, in the reference, rather than
requiring a traversal and name matching. The data element
references may define markup language elements in param
eters to function invocations, in which replacing further
includes Substituting an offset based expression for a pointer
traversal operation, as shown at step 321. Therefore, such
replacing or rewriting involves replacing element references
with a single deterministic reference 194 indicative of the
data element 196, as depicted at step 322, such that the
single deterministic reference 194 avoids multiple pointer
traversals, i.e. is an offset reference, rather than a pointer to
a more complex pointer structure with multiple levels of
indirection and node matching.
0041. The parser 170 continues traversing to generate a
signature for each function invocation 104. Such that each
signature is indicative of input specialized parameters 120
appropriate for the function invocation, as shown at step
323. Upon completion, the program specializer 160 gener

US 2008/0033968 A1

ates an input specialized program 190 having input special
ized references 194 to input specialized data structures 196,
as depicted at step 324.
0042. The disclosed configurations may result in large
amounts of new code, Some parts of which are repetitive,
Some parts of which have dangling references, and many
parts of which can be optimized. Configurations herein
optimize this code using partial evaluation in order to bring
the code size back down to the approximate size it was prior
to input specialization.
0043. Those skilled in the art should readily appreciate
that the programs and methods for processing markup data
using an input specialized data structure as defined herein
are deliverable to a processing device in many forms,
including but not limited to a) information permanently
stored on non-writeable storage media such as ROM
devices, b) information alterably stored on writeable storage
media Such as floppy disks, magnetic tapes, CDs, RAM
devices, and other magnetic and optical media, or c) infor
mation conveyed to a computer through communication
media, for example using baseband signaling or broadband
signaling techniques, as in an electronic network Such as the
Internet or telephone modem lines. The disclosed method
may be in the form of an encoded set of processor based
instructions for performing the operations and methods
discussed above. Such delivery may be in the form of a
computer program product having a computer readable
medium operable to store computer program logic embodied
in computer program code encoded thereon, for example.
The operations and methods may be implemented in a
software executable object or as a set of instructions embed
ded in a carrier wave. Alternatively, the operations and
methods disclosed herein may be embodied in whole or in
part using hardware components, such as Application Spe
cific Integrated Circuits (ASICs), Field Programmable Gate
Arrays (FPGAs), state machines, controllers or other hard
ware components or devices, or a combination of hardware,
Software, and firmware components.
0044) While the system and method for processing
markup data using an input specialized data structure has
been particularly shown and described with references to
embodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may be
made therein without departing from the scope of the
invention encompassed by the appended claims.
What is claimed is:
1. An encoded set of processor based instructions for

implementing a method of processing an input specialized
data structure comprising:

obtaining an input specialized definition of a set of data
elements;

parsing an application program, the application program
having data element references, to identify data ele
ment references to data elements in the generated input
specialized definitions of data elements;

computing an input specialized definition corresponding
to each of the identified data element references; and

replacing the identified data element references with the
corresponding input specialized definition.

2. The method of claim 1 wherein computing an input
specialized definition further comprises determining an
index for offset indirection.

3. The method of claim 2 further comprising generating
an input specialized definition having offset references to

Feb. 7, 2008

members of the data element, the data element members
operable for indexed references by the application program.

4. The method of claim 3 wherein the data element
reference is a child reference to an attribute, and replacing
further comprising replacing with a named child expression
indicative of the type and name of the attribute.

5. The method of claim 4 wherein replacing the identified
references further comprises generating an input specialized
program having input specialized references to input spe
cialized data structures.

6. The method of claim 1 further comprising
traversing a syntax tree representation of the application

program;
identifying function invocations including the data ele

ment references;
annotating the identified invocations with a signature

indicative of a set of input specialized definitions, each
of the input specialized definitions corresponding to a
markup based argument to a function invocation; and

continuing traversing to generate a signature for each
function invocation, each signature indicative of input
specialized parameters appropriate for the function
invocation.

7. The method of claim 6 wherein the data element
references further comprises markup language elements in
parameters to function invocations, and replacing further
comprises Substituting an offset based expression for a
pointer traversal operation.

8. The method of claim 7 wherein generating an input
specialized definition further comprise generating a unidi
rectional positionally specific child relationship.

9. The method of claim 1 wherein parsing includes
generating an abstract syntax tree indicative of the refer
ences to data elements, further comprising

generating a memory resident version of the application
program represented as a hierarchical tree structure;

traversing the hierarchical tree structure to identify data
element references defining function parameters having
a generic node type.

10. The method of claim 9 wherein generating an abstract
Syntax tree further comprises:

identifying DOM definitions including XSLT based
XPath expressions;

computing an expression indicative of an implied param
eter representing a current node; and

matching a function invocation by specifying a Boolean
expression indicative of the current node.

11. The method of claim 5 wherein parsing further com
prises

identifying ancestor references to data elements, ancestor
references having unidirectional relations opposed to
the relations in the input specialized definition;

computing a previous invocation to the ancestor refer
ence; and

employing the computed previous invocation for replac
ing the ancestor reference.

12. The method of claim 11 wherein parsing further
comprises partial evaluation, partial evaluation including

identifying unused attributes in the parsed application
program; and

removing operations including the unused operations.
13. The method of claim 12 wherein the replacing elimi

nates code for retrieving and comparing names of node
elements.

US 2008/0033968 A1

14. The method of claim 13 further comprising replacing
element references with a single deterministic reference
indicative of the data element, the single deterministic
reference avoiding multiple pointer traversals.

15. A program specializer for processing an input spe
cialized data structure comprising:

data structure generator for generating an input special
ized definition of a set of data elements;

a parser for parsing an application program to identify
data element references to data elements in the gener
ated input specialized definitions of data elements;

a signature generator computing an input specialized
definition corresponding to each of the identified ref
erences data element references; and

a mapper operable to replace the identified data element
references with the corresponding input specialized
definition, the mapper operable to generate an input
specialized definition having offset references to mem
bers of the data element, the data element members
operable for indexed references by the application
program.

16. A computer program product having a computer
readable medium operable to store computer program logic
embodied in computer program code encoded thereon for
processing an input specialized data structure comprising:

computer program code for generating an input special
ized definition of a set of data elements;

Feb. 7, 2008

computer program code for parsing an application pro
gram to identify data element references to data ele
ments in the generated input specialized definitions of
data elements;

computer program code for computing an input special
ized definition corresponding to each of the identified
references data element references; and

computer program code for identifying function invoca
tions including the data element references;

computer program code for annotating the identified
invocations with a signature indicative of a set of input
specialized definitions, each of the input specialized
definitions corresponding to a markup based argument
to a function invocation; and

computer program code for continuing traversing to gen
erate a signature for each function invocation, each
signature indicative of input specialized parameters
appropriate for the function invocation; and

computer program code for replacing the identified data
element references with the corresponding input spe
cialized definition.

17. The method of claim 5 wherein the input specialized
program is operable to be populated via XML at runtime.

18. The method of claim 1 wherein the input specialized
program is then optimized via partial evaluation in order to
reduce the code size down a Substantially similar size as the
application program.

