
(19) United States
US 20080028376A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0028376 A1
Kostoulas et al. (43) Pub. Date: Jan. 31, 2008

(54) SIMPLE ONE-PASS W3C XML SCHEMA
SIMPLE TYPE PARSING, VALIDATION, AND
DESERALIZATION SYSTEM

(75) Inventors: Margaret Gaitatzes Kostoulas,
Belmont, MA (US); Moshe E.
Matsa, Cambridge, MA (US); Eric
Perkins, Boston, MA (US)

Correspondence Address:
CANTOR COLBURN LLP-IBM YORKTOWN
SS GRIFFINROAD SOUTH
BLOOMFIELD, CT 06002

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 11/460,047

(22) Filed: Jul. 26, 2006

Complex Type
Walidation
Modulc

Tag type is
a simple-type?

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)
G06F 7700 (2006.01)

(52) U.S. Cl. 717/143; 715/237; 717/141; 717/142
(57) ABSTRACT

A method for validating simple type data in XML docu
ments, the method comprising: identifying data via an
Extensible Markup Language (XML); developing schema
for specifying formal data typing and validation of element
content in terms of data types; generating a parser for
parsing the collection of elements in a first stage where the
schema is read and modeled in terms of abstract schema
components, a second stage where the schema is augmented
with a set of calculated Schema components and properties
used to drive code generation, and a third stage where the
schema is traversed to generate a validation code for each of
the collection of elements, and generate simple type valida
tor modules which perform well-formedness checking the
data; Validating the simple type data against specific type
information; and converting the data to datatype-specific
form, all in a single pass.

Check tag typc -

a 4.

Call the specialized STV for the specific type, store result in returnValue -

If the return Valuc is
8. STV FAILED the

specialized STV
failcd

Call generic STV and
store result in
return Valuc

2 e.

FAIL VALIDATION

If thc return Value is
FAIL VALIDATION

Signal that
erroneous characters
werc found in input,

and quit

if return Value is
STV OK

Continue
processing

Patent Application Publication

<shipTo country="US">
<name>Alice Smiths/name>
<streetd 123 Maple Streets/streetd
<city>Mill Valley</city)
<State-CAS/state
<zip>90952</zip>

</shipTod

which conforms to the following schema

Jan. 31, 2008 Sheet 1 of 5 US 2008/0028376 A1

<xsd:element name="shipTo" type="USAddress"/>

<xsd:complexType name="USAddress">
<XSd: Sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name
<XSd:element name

</XSd: Sequence>
<xsd:attribute name

</XSd:complexType->

---.

l country" type

FIG. I.

State" type
zip" type="xsd:decimal"/>

l

Xsd:string"/>

XSd:NMTOKEN" fixed="US" />

Patent Application Publication Jan. 31, 2008 Sheet 2 of 5 US 2008/0028376 A1

<shipTo country="US">
<name>Alice Smith.</name>
<streetD 123 Maple--- this comment is not expected by the specialized

STV module,
since it was written to handle strings without comments in them -->
Street-/streeto

<city>Mill Valley</city)
<Stated CAS/stated
<zip>90952</zip>

</shipTo>

FIG. 2

Patent Application Publication Jan. 31, 2008 Sheet 3 of 5 US 2008/0028376 A1

Complex Type or
Validation
Module Check tag type --

NO Tag type is
a simple-type?

YES

Call the specialized STV for the specific type, store result in return Value -

If the return Value is If the return Value is If return Value is
STV FAILED the FAIL VALIDATION STV OK
specialized STV -

failed

Call generic STV and Signal that Continue
" store result in crroncous characters processing

return Value were ?ound in input,
and quit

FAIL VALIDATION

FIG. 3

Patent Application Publication Jan. 31, 2008 Sheet 4 of 5 US 2008/0028376 A1

30- Read input character

32 ea
YES s

Is a “s” followed by

Is character valid

for this data type'?

NO

YES

NO 38

4 sea return FAIL VALIDATION
return

STV FAILED

Is the process in a
legal completion State
of the simple type? NO

Return
YES FAIL VALIDATION

44 Return STV OK

FIG. 4

46

Patent Application Publication Jan. 31, 2008 Sheet 5 of 5 US 2008/0028376 A1

& areas tra Read input character

Input character s Copy input
valid XML character to

Output
character data buffer

NO
Spccial XML character

isio

Process all characters up to
cndOfComment/endCofFrocessinglnstruction/cndOfEntity/endCfCDATA

Copy relevant characters to output buffer - 58

on 6

When the “s” and "/" data is reached validate that the data in the output buffer is
indeed a legal instance of the type

YES

6 was Return Rcturn or 6:
STV OK FAIL VALIDATION

FIG. 5

US 2008/002837.6 A1

SIMPLE ONE-PASS W3C XML SCHEMA
SIMPLE TYPE PARSING, VALIDATION, AND

DESERALIZATION SYSTEM

TRADEMARKS

0001 IBM(R) is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks,
trademarks or product names of International Business
Machines Corporation or other companies.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. This invention relates to XML parsers, and par

ticularly to a method for performing simple-type well
formedness checking, validation, and datatype conversion in
one single pass.
0004 2. Description of Background
0005 XML (Extensible Markup Language) has begun to
work its way into the business computing infrastructure and
underlying protocols such as the Simple Object Access
Protocol (SOAP) and Web services. In the performance
critical setting of business computing, however, the flexibil
ity of XML becomes a liability due to the potentially
significant performance penalty. XML processing is concep
tually a multitiered task, an attribute it inherits from the
multiple layers of specifications that govern its use includ
ing: XML, XML namespaces, XML Information Set (In
foset), and XML Schema. Traditional XML processor imple
mentations reflect these specification layers directly. Bytes,
read off the "wire' or from disk, are converted to some
known form. Attribute values and end-of-line sequences are
normalized. Namespace declarations and prefixes are
resolved, and the tokens are then transformed into some
representation of the document Infoset. The Infoset is
optionally checked against an XML Schema grammar (XML
schema, Schema) for validity and rendered to the user
through some interface, such as Simple API for XML (SAX)
or Document Object Model (DOM) (API stands for appli
cation programming interface).
0006. With the widespread adoption of SOAP and Web
services, XML-based processing, and parsing of XML docu
ments in particular, is becoming a performance-critical
aspect of business computing. In Such scenarios, XML is
invariably constrained by an XML Schema grammar, which
can be used during parsing to improve performance.
Although traditional grammar-based parser generation tech
niques could be applied to the XML Schema grammar, the
expressiveness of XML Schema does not lend itself well to
the generic intermediate representations associated with
these approaches.
0007 Indeed, for parsing in domains other than XML
(e.g., programming languages), grammars have long been
used to generate optimized special purpose parsers that
operate much more efficiently than their generic counter
parts, while performing validation checking. The XML
specifications were designed to enable the compilation of an
XML Schema grammar to a special-purpose parser. How
ever, generic XML parsers, by performing tasks in separate
passes, degrade performance of the overall application.
0008. In particular, in validating XML data against XML
Schema simple types, it is common practice to Scan the
document for syntactic constructs such as angle brackets,

Jan. 31, 2008

quotes, entity references etc., before validating the scanned
data against the simple type production. When deserializa
tion of the data into datatype-specific objects is also needed,
typical applications reparse the input data to perform the
conversion, thus resulting in poor performance. Traditional
XML parsers that validate against W3C XML Schema
simple types do so by first well-formedness checking the
data, then validating it against the specific type, and then
converting it to a datatype-specific form. In other words,
there are multiple passes. In many cases, the upconverted
but otherwise raw data is then passed to an application,
which reconverts it to application-specific form. These extra
passes take much time and thus considerably slow down the
parse processing.
0009 Traditional XML parsers are not capable of per
forming all necessary tasks in a single pass. Thus, it is
desired to design and implement an XML parser that can
perform well-formedness checking, validation, and datatype
conversion for simple types in one single pass.

SUMMARY OF THE INVENTION

0010. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a method for validating simple type data in XML docu
ments, the method comprising: identifying data via an
Extensible Markup Language (XML); defining a tag set;
developing schema for specifying formal data typing and
validation of element content in terms of data types; gener
ating a validating parser for parsing the collection of ele
ments given the schema information; the parser is generated
in three stages, the first stage being where the schema is read
in and modeled in terms of abstract schema components, a
second stage where the schema is augmented with a set of
calculated schema components and properties used to drive
code generation, and a third stage where the schema is
traversed to generate a validation code for each of the
collection of elements; and generating simple type validator
modules which do well-formedness checking of the data;
validating the data against specific type data; and converting
the data to datatype-specific form; wherein the well-formed
ness checking step, the validating step, and the datatype
conversion step (deserialization) occur in a single pass.
0011 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
advantages and features, refer to the description and the
drawings.

TECHNICAL EFFECTS

0012. As a result of the summarized invention, techni
cally we have achieved a solution that performs well
formedness checking, validation, and datatype conversion of
simple types in one single pass by generating specialized
simple type validator modules.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The subject matter, which is regarded as the inven
tion, is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention

US 2008/002837.6 A1

are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:
0014 FIG. 1 illustrates an example of an XML document
and the XML Schema it conforms to:
0015 FIG. 2 illustrates an example XML document that
causes the optimistic generated simple type validator to
return with a provisional failure code due to the comment
embedded in the character data;
0016 FIG. 3 illustrates one example of a flowchart
describing the operation of a generated XML parser;
0017 FIG. 4 illustrates one example of a flowchart
describing the operation of a specialized simple type vali
dator, and
0018 FIG. 5 illustrates one example of a flowchart
describing the operation of the generic simple type validator.

DETAILED DESCRIPTION OF THE
INVENTION

0019. One aspect of the exemplary embodiments is a
method for generating specialized simple type validator
modules. Another aspect of the exemplary embodiments is
an XML parser that performs all its simple-type processing
tasks in a single pass.
0020 XML is an Extensible Markup Language. It
improves the functionality of the Web by allowing a user to
identify information in a more accurate, flexible, and adapt
able way. It is extensible because it is not a fixed format like
HTML, which is a single, predefined markup language.
Instead, XML is actually a meta-language, that is, a language
for describing other languages that allows a user to design
his/her own markup languages for limitless different types of
documents.
0021. The purpose of a schema is to define a class of
XML documents, and so the term “instance document” is
often used to describe an XML document that conforms to
a particular schema. In fact, neither instances nor Schemas
need to exist as documents perse. They may exist as streams
of bytes sent between applications, as fields in a database
record, or as collections of XML Infoset “Information
Items.” Also, developing schema requires specifying formal
data typing and validation of element content in terms of
data types.
0022. In XML Schema, there is a basic difference
between complex types, which allow elements in their
content and may carry attributes, and simple types, which
cannot have element content and cannot carry attributes.
There is also a major distinction between definitions, which
create new types (both simple and complex), and declara
tions, which enable elements and attributes with specific
names and types (both simple and complex) to appear in
document instances.
0023 New complex types are defined using the complex
type element and Such definitions typically contain a set of
element declarations, element references, and attribute dec
larations. The declarations are not themselves types, but
rather an association between a name and the constraints,
which govern the appearance of that name in documents,
governed by the associated Schema. Elements are declared
using the element element, and attributes are declared
using the attribute element.
0024 Like the Document Type Definition (DTD) gram
mar used in XML, XML Schema can specify an elements
content model as a regular expression over its contained
element. In contrast to the grammars that can be specified

Jan. 31, 2008

with an XML DTD, however, XML Schema supports a
wider range of operators in the composition of content
models.

0025 A tag set is defined locally within the schema.
However, the structure of an XML document constrained by
a schema cannot be decomposed below the tag level.
Because meta-markup (such as XML namespace declara
tions and Xsi:type declarations) is contained in conceptually
unordered attributes, no conclusive information about the
document can be inferred until the entire tag is read. Thus,
no exchange of information between the scanner and the
validation logic can be made to refine the scanning of the
rest of the tag without possibly hang to back up and correct
mistaken assumptions. As a result, the grammar cannot
direct scan at a granularity any finer than the tag. Accord
ingly, the generated validation logic may be separated from
the scanning infrastructure, at the tag level, without loss of
any significant performance opportunity. Thus, the gener
ated parser is divided into two logical layers, Scanning and
validation.

0026. The exemplary embodiments of the present appli
cation illustrate a system in which customized high perfor
mance XML parsers are prepared using parser generation
and compilation techniques. Parsing is integrated with
Schema-based validation and deserialization, and the result
ing validating processors have been shown to be as fast as
or in many cases significantly faster than traditional non
validating parsers. High performance is achieved by inte
gration across layers of Software that are traditionally sepa
rate, by avoiding unnecessary data copying and
transformation, and by careful attention to detail in the
generated code.
0027. The prior knowledge, from the schema that the data

is required to conform to, is used to generate specialized
simple type validator modules, as part of the generated XML
parser, that perform validation of the simple types during the
parsing phase. When deserialization of the simple type data
into business objects is also desirable, the conversion to a
datatype-specific form is itself integrated into the parsing
phase of the generated validator module. This avoids the
need for multiple passes on the character data, and results in
increased performance of the overall application.
0028. In particular, XML documents are composed of
markup and content. There are six kinds of markup that can
occur in an XML document: elements, entity references,
comments, processing instructions, CDATA sections, and
document type declarations.
0029 Elements are the most common form of markup.
Delimited by angle brackets, most elements identify the
nature of the content they surround. Some elements may be
empty, in which case they have no content. If an element is
not empty, it begins with a start-tag. <element>, and ends
with an end-tag. </element>. If an element is empty, it can
be represented with a self-closing start-tag. <element />.
Attributes are name-value pairs that occur inside start-tags
after the element name. In order to introduce markup into a
document, Some characters have been reserved to identify
the start of markup. The left angle bracket, <, for instance,
identifies the beginning of an element start- or end-tag. In
order to insert these characters into a document as content,
there must be an alternative way to represent them. In XML,
entities and character references are used to represent these
special characters.

US 2008/002837.6 A1

0030 XML-based technology uses a technique called
data serialization/deserialization to transform data from one
language or application environment into another. In
essence, XML-based technology allows any application to
take data it is using and serialize that into an XML document
instance. This XML data can then be transferred over the
network, or stored in a file or database. XML-based tech
nology Supports both simple and complex data structures,
Such as strings, numbers, boolean values, and dates and
times, as well as multi-dimensional arrays, associative
arrays, and tabular data record sets. XML serialization is a
great way for applications to maintain state, read, and write
configuration files, and transfer data between processes,
applications, and enterprises over a network, including the
Internet. Because XML documents are text-based, a user can
view and modify serialized data with a text editor.
0031. In the exemplary embodiments of the present appli
cation, the XML parser does all necessary work in a single
pass. In other words, it performs the well-formedness check
through the simple type data while validating the simple
type data, and converting simple type data in the same pass.
The datatype-specific form can then have facets checked
against the simple type definition and can be passed directly
to the application.
0032. When validating the simple type content of a tag,
a general purpose parser checks every character to determine
if it is a special XML character introducing a comment,
processing instruction, entity declaration, etc. and processes
the following characters accordingly. If no special character
is found, the simple type content is processed and when the
matching close tag is found, the simple type data will be
checked to make sure it is valid for the specified simple type
(e.g., only integers for an integer typed tag). Checking each
character to see if it is one of those “special characters is
expensive, and since most of the time those special charac
ters are not found in the data content of a tag which is of
simple type (e.g. boolean, integer etc.), the generated vali
dating parser of the exemplary embodiments makes the
optimistic assumption that no special characters appear in
the content of simple types, and proceeds to validate the data
contents of a tag, given that assumption.
0033. When the optimism in the validating algorithm

fails, character data is required to be revisited and revali
dated. Because this path is followed much less often than the
optimistic path, the overall parsing, validation, and deseri
alization of simple type data is much faster than in other
existing XML parsers.
0034. In the exemplary embodiments, the XML parser
includes two types of validators: the generic STV, and the
specialized STV. The specialized STV processes the char
acters assuming that no “unexpected characters are found
in the content (i.e., no comments, processing instructions
(PIs), entities, or character data sections (CDATA)). Com
ments, PIs, entities, and CDATA sections are expected in the
middle of simple type fields, and the specialized STV does
not perform the extra work of processing these unexpected
(but legal) items in the input. In the event that the specialized
validator fails because the input contained one or more Such
“unexpected' items, processing falls back to the generic
STV which handles all legal content but may require several
passes over the input to achieve a complete validation.
0035. The specialized STV validates that every character
found in the content is indeed legal at this point (i.e., only
Arabic digits for the SimpleTypeValidator XSD INT), but

Jan. 31, 2008

does not necessarily check against all characters that would
be considered legal at this point: for example, the Simple
TypeValidator XSD POSITIVEINTEGER might not
expect to find a '+' at the beginning of the input, even
though it is legal. In this case, the XML parser provides a
“STV FAILED' output, and the generic non-optimistic
simple type validator (generic STV) is invoked to validate
the input. The set of characters that the specialized STV
checks for are the ones most commonly appearing in the
input data, with the goal of maximizing the specialized
STV's performance.
0036 When parsing, for example, the XML instance
document illustrated in FIG. 1, a generic XML parser and
validator will parse the input simple type data and only
validate it when it gets to the matching close tag. After
making Sure the data is valid, facets are checked against the
given simple-type facets. As a third step, the data will either
be converted to a datatype specific data structure or will be
reported as an event stream, in a string format. If the
application needs the data as an Integer instead, it converts
the integer or string data to an Integer data structure. In
contrast, with our generated parser, the generated USAd
dressValidator uses the specialized SimpleTypeValidator
XSD STRING module to process the contents of the
<name>, <streetD, <city> and <stated elements, and the
SimpleTypeValidator XSD DECIMAL module to process
the contents of the <zip> element. These simple type vali
dator modules make optimistic assumptions about the for
mat of the data, and use configuration information about the
data structure needed by the application, so the conversion
to an Integer object occurs during the parse. Assumptions
about the format of the data may include: integer content
does not start with leading Zeros or a plus sign, there are no
comments or CDATA sections embedded in the string or
integer data, etc.
0037. However, if the data found in the instance docu
ment do not conform to the assumed format, the specialized
module falls back to a more generic validator that will
reparse the input stream. FIG. 2 illustrates such an example.
In FIG. 2, the SimpleTypeValidator XSD STRING parses
the contents of the <name> tag successfully. It then is
invoked again by the USAddressValidator to parse the
contents of the <street> tag. It parses successfully the
characters 1, 2, 3, ' ', 'M', 'a', p, l', 'e'. When it sees
the “-' character it expects a "/" character to follow,
signifying a close-tag. So when it sees the “” instead it fails,
with a failure code that signifies that the input might be valid
XML but was not recognized by the specialized validator.
Control is then passed to a more generic content model
validator to parse the content of the <streets tag from the
beginning. The generic validator module revalidates the
input data, while allowing for all types of data allowed by
the XML 1.0 specification, including comments, CDATA
sections, etc. Once the tag has been parsed, and any CDATA
sections, or entity references have been resolved, and col
lated into a contiguous, uneScaped sequence of characters,
the data can be validated in a straightforward manner against
the full definition for the relevant simple type. The need to
resolve and collate entities and CDATA sections in the
general case requires a lot of processing. Clearly, this is
significantly slower than the optimistic validator. Avoiding
the use of the generic validator module for common cases
results in significantly faster processing time overall.

US 2008/002837.6 A1

0038 Similarly, given the following input
<zip>90a952</zip> the SimpleTypeValidator XSD DECI
MAL will successfully process “9” and “0” but will fail
when it sees the “a.” In this case a different failure code is
returned to the USAddress Validator, signifying that errone
ous input was found in the input stream, and is definitively
not valid with respect to the relevant simple type. In this
case, a more generic validator will not be invoked, as the
failure was a result of erroneous XML input, and not due to
the inability of the specialized validator to process the data.
0039. If during processing, one of these unexpected char
acters is found, the specialized STV quits processing the
data and indicates either an error code that signifies that this
was one of the special characters (indicating that the input is
provisionally invalid), or a different error code for an
obviously illegal character (e.g., an “a” in the middle of
integer content), indicating that the input is definitively
invalid. Based on the error code, the parser either (i) quits
processing and reports an error in the case of definitively
invalid input or (ii) invokes the generic STV to parse the
character data. The generic STV starts looking at the data
from the beginning, so in the case that “special characters
appear often in the character data, the cost of invoking two
validators for every character data section is incurred, which
can become expensive. In practice, however, the use of these
unexpected constructs in simple data is rare. In the world of
Web Services in particular, where the XML data is typically
generated by applications, no “special content is expected.
0040. The exemplary embodiments of the present inven
tion generate a specialized STV for every type of simple
data contents that is expected to be in the input stream
(information about what types of simple data contents are
expected comes from the input schema). So the Simple
TypeValidator XSD INTEGER is only required to check if
everything in the input stream is integer data, whereas the
SimpleTypeValidator XSD DATE has to check if what is in
the input stream conforms to the XML Schema's specifica
tion of a valid date.

0041 Referring to FIG. 3, one example of a flowchart
describing the operation of a generated parser is illustrated.
In step 10, the process reads a tag. In step 12, the tag type
is checked. In step 14, it is decided whether the tag type is
a simple type. The determination of which tags are simple
types in which contexts can be made entirely at compile
time, and looking up the compile-time computed result for
the tag type found in step 12, in the current context, can be
done quickly at runtime for the generated parser, in step 14.
If the tag type is not a simple type, the process flows to a
complex type validator module (11). If the tag type is a
simple type then the process flows to step 16. In step 16, the
specialized STV is called and the result is stored in return
Value. If the returnValue is FAIL VALIDATION (step 22),
control flows to step 24 where it is determined that erroneous
characters were encountered and the process flow is termi
nated. If the returnValue is STV OK (step 28), the special
ized STV succeeded in validating the data and control is
passed to state 26. In step 18, if the returnValue is STV
FAILED, the specialized STV failed, and the process then
flows to step 20, where the generic STV is called to reparse
the input. The return value is stored in returnValue, and
again this must be checked to determine if FAIL VALIDA
TION (step 25) occurred, or STV OK (step 27). From step
25, control flows to step 24 where the process flow is
terminated. From step 27, control flows to step 26 where we

Jan. 31, 2008

continue processing the input, having Successfully validated
the current simple data type contents.
0042. Referring to FIG. 4, one example of a flowchart
describing the operation of an optimized STV is illustrated.
In step 30, the input character is read. In step 32, it is
determined if the input character was an “C” followed by a
"/. If so, the process flows to step 42, if not if flows to step
34. In step 42, it is determined if the current data as seen
represents an entire good string of the datatype that is being
validated. If so, the process flows to step 44 and returns
STV OK. If not, the process flows to step 46 and returns
FAIL VALIDATION. If the input is not a “<' character
followed by a “? character, then in step 34, it is determined
whether the input character is valid for this simple type data
at this point in the input string. If the input character is valid,
the process flows back to step 30. If the input character is
invalid, then the process flows to step 36. In step 36, it is
determined whether the character is a valid XML character.
If the character is not a valid XML character then the process
flows to step 40 where FAIL VALIDATION is returned. If
the character is a valid XML character then the process flows
to step 38 where STV FAILED is returned.
0043 Referring to FIG. 5, one example of a flowchart
describing the operation of a generic STV is illustrated. In
step 50, the input character is read. In step 52, it is deter
mined whether the input character is a valid XML character.
If the input character is a valid XML data character then the
input character is copied to an output buffer 54 and the
process flow continues at step 50. If the input character is not
a valid XML data character then if it is a “special XML
character 53 (i.e., one of the “special characters that indi
cate the beginning of a comment, PI, entity, etc.) all char
acters up to endOfComment/endCofProcessinglnstruction/
endOfEntity/endOfCDATA are processed. In step 58, the
relevant characters are copied to the output buffer, and
control flows to step 50. Otherwise, in step 60, when the “C”
and “7” data is reached the process validates that the data in
the output buffer is indeed a legal instance of the type. In
step 62, if the validation is true, then the process flows to
step 64 where STV OK is returned. In step 62, if the
validation is not true, then the process flows to step 66 where
FAIL VALIDATION is returned.
0044) The capabilities of the present invention can be
implemented in Software, firmware, hardware or some com
bination thereof.

0045. As one example, one or more aspects of the present
invention can be included in an article of manufacture (e.g.,
one or more computer program products) having, for
instance, computer usable media. The media has embodied
therein, for instance, computer readable program code
means for providing and facilitating the capabilities of the
present invention. The article of manufacture can be
included as a part of a computer system or sold separately.
0046 Additionally, at least one program storage device
readable by a machine, tangibly embodying at least one
program of instructions executable by the machine to per
form the capabilities of the present invention can be pro
vided.

0047. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams
or the steps (or operations) described therein without depart
ing from the spirit of the invention. For instance, the steps
may be performed in a differing order, or steps may be

US 2008/002837.6 A1

added, deleted or modified. All of these variations are
considered a part of the claimed invention.
0048 While the preferred embodiment to the invention
has been described, it will be understood that those skilled
in the art, both now and in the future, may make various
improvements and enhancements which fall within the
scope of the claims which follow. These claims should be
construed to maintain the proper protection for the invention
first described.
What is claimed is:
1. A method for validating simple type data in XML

documents, the method comprising:
identifying data via an Extensible Markup Language
(XML):

defining a tag set by developing schema for specifying
formal data typing and validation of element content in
terms of data types;

generating a parser for parsing the collection of elements
in a first stage where the schema is read and modeled
in terms of abstract schema components, a second stage
where the schema is augmented with a set of calculated
Schema components and properties used to drive code

Jan. 31, 2008

generation, and a third stage where the schema is
traversed to generate a validation code for each of the
collection of elements and generate simple type vali
dator modules which perform:

well-formedness checking the data;
validating the data against specific type data; and
converting the data to datatype-specific form data;
wherein the well-formedness checking step, the validating

step, and the converting step occur in a single pass.
2. The method of claim 1, wherein the schema for the data

are defined with XML Schema.

3. The method of claim 1, wherein the parser uses one or
more simple types defined in the schema for each of which
a separate type-specific validator is generated.

4. The method of claim 3, wherein the specialized type
specific simple type validators check for a common case and
in cases that common-case parsing fails, character content is
revisited and revalidated against a full set of valid input for
a given type.

