
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0028375 A1

Matsa et al.

US 20080028375A1

(43) Pub. Date: Jan. 31, 2008

(54) VALIDATOR-DRIVEN ARCHITECTURE OF
AN XML PARSING AND VALIDATING

Publication Classification

(51) Int. Cl. SOLUTION hazoo (2006.01)
(75) Inventors: Moshe E. Matsa, Cambridge, MA G06F 9/45 (2006.01)

SS Eric Perkins, Boston, MA (52) U.S. Cl. 717/141; 715/234; 715/237; 717/142:
(US) 717/143

Correspondence Address:
CANTOR COLBURN LLP-IBM YORKTOWN (57) ABSTRACT

SS GRIFFINROAD SOUTH A method for parsing a document in an Extensible Markup
BLOOMFIELD, CT 06002 Language (XML) format includes identifying data via the

(73) Assignee: INTERNATIONAL BUSINESS XML format, defining a tag set including a plurality of tags,
MACHINES CORPORATION defining a tokenizer that produces one token at a time,
Armonk, NY (US) s parsing the XML document via a parser, validating the XML

s document via a validation engine, the validation engine
(21) Appl. No.: 11/460,050 driving the tokenizer, the validating being an integral part of

the parsing, and permitting the validation engine to be
(22) Filed: Jul. 26, 2006 written in a recursive-descent code-driven manner.

SAR - 50

EFA E. R. XX - 5.

DEFINING ATAGSET INCLUDING A PLURALITY OFTAGS --- is:

EFINING ATOKEZERA PROCES ONE KEN AAVE -- s

VALIDATING THEXMLDOCUMEN, VAAVALIDATION ENGINE, THE VALIDATION ENGINE
RWING THE KEZER, AN EAANG BEING AN INEGRAL PAR FEPARSING

Patent Application Publication Jan. 31, 2008 Sheet 1 of 6 US 2008/002837S A1

Patent Application Publication Jan. 31, 2008 Sheet 2 of 6 US 2008/002837S A1

Patent Application Publication Jan. 31, 2008 Sheet 3 of 6 US 2008/002837S A1

A. E. or

etextag)

<as 3 - 3 </> <A (2 tie 3 file <fae - 4

l

Patent Application Publication Jan. 31, 2008 Sheet 4 of 6 US 2008/002837S A1

Patent Application Publication Jan. 31, 2008 Sheet 5 of 6 US 2008/002837S A1

EY A X FRA --52

| DEFINING ATAGSET INCLUDING A PLURALITY OF TAGS ---

DEFINING ATOKENIZER THAT PRODUCES ONE TOKEN ATA TIME --
X -58

w w w w w w w w w w w VALIDATING THEXMLDocuMENT VAAVALIDATION ENGINE, THE VALIDATION ENGINE
RYING, EOKEZER, ANE ABA N BEING AN INEGRAPAR FEPARSG

Patent Application Publication Jan. 31, 2008 Sheet 6 of 6 US 2008/002837S A1

VE CAS Get Nextiag) ONE PE

PE READS THE <a--- 71

MXXX

P: UPDATEs is star NCLUDING UPDATING ISPONTERITO l-76
THE DATABFFER AER THE -<a

ensura acrony an autocal -
E EY cus validate ao - 80

cusationer - 8.

XXX XXX XXXPEREDs is cuRRETSAEAND READSTHE FROM HEBUFFER
MX XXX XXXX-XXXX XXX XXX XXX XXXP: UPDATESISSIAIENcubic UPDANG ISPONIER l- 8t

INTO THE DATABUFFER TO AFTER THE

Pest-sector venth celetal cu |- 88

US 2008/0028375 A1

VALIDATOR-DRIVEN ARCHITECTURE OF
AN XML PARSING AND VALIDATING

SOLUTION

TRADEMARKS

0001 IBM(R) is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks,
trademarks or product names of International Business
Machines Corporation or other companies.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. This invention relates to XML parsers, and par

ticularly to a method that treats validation engines as an
integral part of parsing by allowing the validation engines to
be written in a recursive-descent code-driven manner.
0004 2. Description of Background
0005 XML (Extensible Markup Language) has begun to
work its way into the business computing infrastructure and
underlying protocols such as the Simple Object Access
Protocol (SOAP) and Web services. In the performance
critical setting of business computing, however, the flexibil
ity of XML becomes a liability due to the potentially
significant performance penalty. XML processing is concep
tually a multitiered task, an attribute it inherits from the
multiple layers of specifications that govern its use includ
ing: XML, XML namespaces, XML Information Set (In
foset), and XML Schema. Traditional XML processor imple
mentations reflect these specification layers directly. Bytes,
read off the "wire' or from disk, are converted to some
known form. Attribute values and end-of-line sequences are
normalized. Namespace declarations and prefixes are
resolved, and the tokens are then transformed into some
representation of the document Infoset. The Infoset is
optionally checked against an XML Schema grammar (XML
schema, Schema) for validity and rendered to the user
through some interface, such as Simple API for XML (SAX)
or Document Object Model (DOM) (API stands for appli
cation programming interface).
0006. With the widespread adoption of SOAP and Web
services, XML-based processing, and parsing of XML docu
ments in particular, is becoming a performance-critical
aspect of business computing. In Such scenarios, XML is
invariably constrained by XML parsing and validation by
having the tokenizer drive the validation engine. In fact,
most tokenizers parse the entire XML document by per
forming tokenizing with a DOM or SAX event stream and
then run the validation engine over the stream of tokens or
the DOM. However, technologies that treat validation as an
integral part of parsing have not reached their full potential.
Regardless of which manner of pushing the tokens is used,
none of the current technologies allow the validation engine
to be written in a recursive-descent code driven manner. As
a result, this requires large tables, which increase the
memory footprint, thus slowing processing efficiency. It also
makes the validation code slower, and obscures the control
flow of the whole parsing and validation processes.
0007 Thus, it is well known that there are no existing
technologies that treat validation as an integral part of
parsing. Therefore, it is desired to integrate validation and

Jan. 31, 2008

parsing, and enable the writing of the validation engine in a
recursive-descent code-driven manner.

SUMMARY OF THE INVENTION

0008. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a method for parsing a document, the document being in an
Extensible Markup Language (XML) format, the method
comprising: identifying data via the XML format; defining
a tag set including a plurality of tags; defining a tokenizer
that produces one token at a time; parsing the XML docu
ment via a parser, validating the XML document via a
validation engine, the validation engine driving the token
izer, and the validating being an integral part of the parsing:
and permitting the validation engine to be written in a
recursive-descent code-driven manner.

0009. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a system for parsing a document, the document being in an
Extensible Markup Language (XML) format, the system
comprising: a network; and a host system in communication
with the network, the host system including XML software
to implement a method comprising: identifying data via the
XML format; defining a tag set including a plurality of tags;
defining a tokenizer that produces one token at a time;
parsing the XML document via a parser; validating the XML
document via a validation engine, the validation engine
driving the tokenizer, and the validating being an integral
part of the parsing; and permitting the validation engine to
be written in a recursive-descent code-driven manner.

0010. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a computer program for parsing a document, the document
being in an Extensible Markup Language (XML) format, the
computer program product comprising: a storage medium
readable by a processing circuit and storing instructions for
execution by the processing circuit for performing a method
comprising: identifying data via the XML format; defining
a tag set including a plurality of tags; defining a tokenizer
that produces one token at a time; parsing the XML docu
ment via a parser, validating the XML document via a
validation engine, the validation engine driving the token
izer, and the validating being an integral part of the parsing:
and permitting the validation engine to be written in a
recursive-descent code-driven manner.

0011 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
advantages and features, refer to the description and the
drawings.

TECHNICAL EFFECTS

0012. As a result of the summarized invention, techni
cally we have achieved a solution that integrates validation
and parsing, thus resulting in a faster and more efficient
validating parser, without large tables, and with a clear
control flow through the entire parsing and validating pro
CCSSCS.

US 2008/0028375 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The subject matter, which is regarded as the inven
tion, is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:
0014 FIG. 1 illustrates one example of a diagram show
ing a validating engine communicating with a parser in order
to receive a start tag;
0015 FIG. 2 illustrates one example of a diagram show
ing the parser communicating with the validating engine in
order to send the start tag:
0016 FIG. 3 illustrates one example of a diagram show
ing the validation code calling a function GetNextTag();
0017 FIG. 4 illustrates one example of a diagram show
ing the parser transferring control back to the validating
engine;
0018 FIG. 5 illustrates one example of a method for
parsing and validating a document in a XML (Extensible
Markup Language) format; and
0019 FIG. 6 illustrates one example of a communication
between a validating engine and a parsing engine.

DETAILED DESCRIPTION OF THE
INVENTION

0020. One aspect of the exemplary embodiments is a
method for integrating validation and parsing processes.
Another aspect of the exemplary embodiments is a method
for allowing a validation engine to be written in a recursive
descent code-driven manner.
0021. A recursive descent parser is a top-down parser

built from a set of mutually-recursive procedures (or a
non-recursive equivalent) where each Such procedure usu
ally implements one of the production rules of the grammar.
Thus the structure of the resulting program closely mirrors
that of the grammar it recognizes. Code-driven refers to the
design style that is common in some handcrafted programs.
In general, there are three styles of code in generated
programs. In a program-generation system, the need for
understanding and change occurs at the specification level.
not the program level. This results in greater flexibility in the
design of generated programs. Three styles of generated
programs are known. The OO (Object Oriented) approach
favors highly structured OO techniques. The code-driven
approach favors straightforward code with embedded data.
The table-driven approach puts data in a separate data
section that is used by the code section. A typical program
generator will use some combination of these three tech
niques. In the exemplary embodiments, a generated code is
preferred, which is generated from the DTD or other gram
mar information for the XML dialect. From the generated
code an XML parser that is code-driven or table-driven may
be generated. In most cases, most of the code for the parser
is static and unchanging, but tables are generated from the
DTD. In other words, these current solutions are table
driven because that is the only viable approach. The exem
plary embodiments of the present invention allow for a
code-driven approach.
0022. Once a class of XML documents is defined, there

is a need for a method of navigating through the XML
documents. XML cursors are a way to navigate through an
XML instance document. Once a user loads an XML docu

Jan. 31, 2008

ment, the user may create a cursor to represent a specific
place in the XML document. Because a user may utilize a
cursor with or without a schema corresponding to the XML
document, cursors are an ideal way to handle XML docu
ments without the schema. With the XML cursor, the user
may utilize a token model to move through the XML
document in Small increments, or in a manner similar to
using a DOM-based model.
0023. In the exemplary embodiments of the present appli
cation, the validator-driven architecture has a validation
engine drive the tokenizer and the tokenizer produces one
token at a time, as needed by the validation engine. This
enables the validation engine to be written in a recursive
descent code-driven manner. This results in a faster validat
ing parser, without large tables, and with a clear control flow
through the whole parsing and validation process. This
makes the validation code easier to write, test, maintain, and
extend, as well as making the code shorter and faster.
0024 Below is one example of an algorithm containing
the validation code written in a recursive-descent code
driven manner. In particular, at any given point in the parse,
the parsing engine maintains a pointer in the XML buffer, as
well as other states, as appropriate. The validating engine
maintains control of the parse, and engages the parsing
engine when it requires a next piece of information from the
XML instance document, using for example a call function
GetNextTag(). Consider the following DTD fragment:

<!ELEMENT a (bd)>
<!ELEMENT b (c):

In this case, the validation code could be written in a
recursive-descent code-driven manner, as indicated by this
pseudo-code:

0025

validate-top-level-tag {
tag = GetNextTag();
if (tag == "a')

validate-a();
else if (tag == “b')

validate-b();
else

error(“illegal top-level tag);

validate-a {
if (GetNextTag () == “b”)

validate-b();
else

error(“a should start with a b'):
if (GetNextTag () == “d')

validate-d();
else

error(“a should continue with a d’):
if (GetNextTag () == “?a)

return
else

error(“a should end with a fa);

validate-b {
if (GetNextTag () == “c”)

validate-cC);
else

error(“b should start with a c');

US 2008/0028375 A1

-continued

if (GetNextTag () == “/b')
return

else
error(“b should end with a b'):

0026 FIGS. 1-4 illustrate one example of a process
diagram showing a validating engine communicating with
the parser in order to receive one or more start tags.
0027 FIG. 1 illustrates a validating engine 10 commu
nicating with a parsing engine 12. The parsing engine 12
receives one or more tags from an input buffer 14. In FIG.
1, the process starts in a routine at the top and the validating
engine 10 requests a tag (i.e. <a> tag 3) from the parsing
engine 12.
0028. In FIG. 2, the parsing engine 12 has updated its
state, including moving the pointer ahead, beyond the <a>
tag 3, to the next spot 5 in an input buffer 14.
0029. In FIG. 3, the validating engine 10 receives the <ad
tag 3 and the validation code proceeds by calling a “validate
a routine, whose first action is to re-call the function
GetNextTag().
0030. In FIG. 4, the parsing engine 12 decides to return
the
 tag 5 it received from the input buffer 14. Finally,
the parsing engine 12 transfers control back to the validating
engine 10, deciding that when asked it will continue the
parse where its state indicates that it left off, namely at the
next spot 7.
0031 Processing continues in this manner until the vali
dating engine 10 completes a path through the entire XML
document. The validation code is very straightforwardly an
implementation of this particular DTD fragment, and thus
the validation code could be written in a generic manner to
process any DTD, and validate the XML instance document
against it.
0032 Referring to FIG. 5, a method for parsing a docu
ment in a XML format is shown. The parsing process
commences at Step 50 when a user commences a document
parsing operation. At step 52 the data is identified to
determine whether it is XML format data. At step 54 a tag
set is defined that includes a plurality of tags. At step 56 a
tokenizer that produces one token at a time is defined. At
step 58 the XML document is validated via a validation
engine, the validation engine driving the tokenizer, and the
validating being an integral part of the parsing. At step 60 the
parsing process terminates.
0033 Referring to FIG. 6, a communication between a
validating engine and a parsing engine is shown. At step 70.
the method sets up the input buffer and passes control to the
VE (validating engine). At step 72, the VE calls GetNext
Tag () on the PE (parsing engine). At step 74, the PE reads
the <ad tag. At step 76, the PE updates its state including
updating its pointer into the data buffer to after the <a> tag.
At step 78, the PE passes the <ad tag back to the VE, ending
the GetNextTag() call. At step 80, the VE internally calls
validate-a(). At step 82, the VE calls GetNextTag() on the
PE. At step 84, the PE reads its current state and reads the

 tag from the buffer. At step 86, the PE updates its state
including updating its pointer into the data buffer to after the

 tag. At step 88, the PE passes the
 tag back to the
VE, ending the GetNextTag () call.

Jan. 31, 2008

0034. The capabilities of the present invention can be
implemented in Software, firmware, hardware or some com
bination thereof.
0035. As one example, one or more aspects of the present
invention can be included in an article of manufacture (e.g.,
one or more computer program products) having, for
instance, computer usable media. The media has embodied
therein, for instance, computer readable program code
means for providing and facilitating the capabilities of the
present invention. The article of manufacture can be
included as a part of a computer system or sold separately.
0036 Additionally, at least one program storage device
readable by a machine, tangibly embodying at least one
program of instructions executable by the machine to per
form the capabilities of the present invention can be pro
vided.
0037. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams
or the steps (or operations) described therein without depart
ing from the spirit of the invention. For instance, the steps
may be performed in a differing order, or steps may be
added, deleted or modified. All of these variations are
considered a part of the claimed invention.
0038. While the preferred embodiment to the invention
has been described, it will be understood that those skilled
in the art, both now and in the future, may make various
improvements and enhancements which fall within the
scope of the claims which follow. These claims should be
construed to maintain the proper protection for the invention
first described.

What is claimed is:
1. A method for parsing a document, the document being

in an Extensible Markup Language (XML) format, the
method comprising:

identifying data via the XML format;
defining a tag set including a plurality of tags;
defining a tokenizer that produces one token at a time;
parsing the XML document via a parser;
validating the XML document via a validation engine, the

validation engine driving the tokenizer, and the vali
dating being an integral part of the parsing; and

permitting the validation engine to be written in a recur
sive-descent code-driven manner.

2. The method of claim 1, wherein the parser maintains
one or more datatypes in a buffer.

3. The method of claim 1, wherein the validation engine
maintains control of the parser.

4. The method of claim 1, wherein the validation engine
activates the parser when the validation engine requires a
next piece of information from the XML document.

5. The method of claim 4, wherein the next piece of
information is retrieved via a function GetNextTag().

6. A system for parsing a document, the document being
in an Extensible Markup Language (XML) format, the
system comprising:

a network; and
a host system in communication with the network, the

host system including XML software to implement a
method comprising:
identifying data via the XML format;
defining a tag set including a plurality of tags;
defining a tokenizer that produces one token at a time;
parsing the XML document via a parser;

US 2008/0028375 A1

validating the XML document via a validation engine,
the validation engine driving the tokenizer, and the
validating being an integral part of the parsing; and

permitting the validation engine to be written in a
recursive-descent code-driven manner.

7. The system of claim 6, wherein the parser maintains
one or more datatypes in a buffer.

8. The system of claim 6, wherein the validation engine
maintains control of the parser.

9. The system of claim 6, wherein the validation engine
activates the parser when the validation engine requires a
next piece of information from the XML document.

10. The system of claim 9, wherein the next piece of
information is retrieved via a function GetNextTag().

11. A computer program product for parsing a document,
the document being in an Extensible Markup Language
(XML) format, the computer program product comprising:

a storage medium readable by a processing circuit and
storing instructions for execution by the processing
circuit for performing a method comprising:
identifying data via the XML format;

Jan. 31, 2008

defining a tag set including a plurality of tags;
defining a tokenizer that produces one token at a time;
parsing the XML document via a parser;
validating the XML document via a validation engine,

the validation engine driving the tokenizer, and the
validating being an integral part of the parsing; and

permitting the validation engine to be written in a
recursive-descent code-driven manner.

12. The computer program of claim 11, wherein the parser
maintains one or more datatypes in a buffer.

13. The computer program of claim 11, wherein the
validation engine maintains control of the parser.

14. The computer program of claim 11, wherein the
validation engine activates the parser when the validation
engine requires a next piece of information from the XML
document.

15. The computer program of claim 14, wherein the next
piece of information is retrieved via a function GetNextTag(
).

