
US 20080028374A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/00283.74 A1

Matsa et al. (43) Pub. Date: Jan. 31, 2008

(54) METHOD FOR VALIDATING AMBIGUOUS (52) U.S. Cl. 717/141; 715/237; 717/143
W3C SCHEMA GRAMMARS

(75) Inventors: Moshe E. Matsa, Cambridge, MA (57) ABSTRACT
(US); Eric Perkins, Boston, MA A method for generating XML (Extensible Markup Lan
(US) guage) parsers, including: parsing an input document with a

Correspondence Address: generated parser where the generated parser is generated by
CANTOR COLBURN LLP-IBM YORKTOWN a three-stage compilation of an XML Schema, where in a
SS GRIFFINROAD SOUTH first stage the XML Schema is read and modeled in terms of
BLOOMFIELD, CT 06002 abstract schema components, where in a second stage the

XML Schema is augmented with a set of calculated schema
(73) Assignee: INTERNATIONAL BUSINESS components and properties, and where in a third stage the

MACHINES CORPORATION, XML Schema is traversed to generate validation code; the
Armonk, NY (US) validation code is generated by: calculating prohibited

(21) Appl. No.: 11/460,044 occurrence ranges; generating code to: evaluate each of the
plurality of particles in an inner loop conditioned on an

(22) Filed: Jul. 26, 2006 effective upper bound; then, once the inner loop terminates,
check forbidden occurrence ranges for an inner particle, and

Publication Classification calculate a range of possible repetitions of an outer particle:
(51) Int. Cl. and once an outer loop terminates, check a range of total

G06F 9/45 (2006.01) possible repetitions of the outer particle against its actual
G06F 7700 (2006.01) occurrence limits.

Given a content modclof (A : I.J. B{0.K}){L.M} and a set of prohibited A counts
(computed from I, J, L, and M):

so it Initialize counters a, b, and X and y

next itcm in thc input
sequence does not match A

NO

Initialize counteria

Read content matching A from the input sequence -

YES

4.

YES

STEP 24
NO

STEP 6
o: If the next item in the

input Scquence
matches A

YES

NO

Patent Application Publication Jan. 31, 2008 Sheet 1 of 5 US 2008/00283.74 A1

Given a content model of (A : I.J. B{0,K) {L.M} and a set of prohibited A counts
(computed from I, J, L, and M):

Initialize counters a, b, and X and y - it

Ifa is equal to J*M OR If the
next item in the input

sequence does not match A

NO

Initialize counteria

Read content matching A from the input sequence or 6

YES

STEP 34

YES If a is equal to

NO
STEP 24

STEP 16

YES If the next item in the >e
input Sequence
matches A

NO

TO FIG 2

Patent Application Publication Jan. 31, 2008 Sheet 2 of 5 US 2008/00283.74 A1

FROM FIG.

Ifia is in the set of
prohibited A

COuntS

YES
FAIL

Initialize inner counterib, and increment X by 1 + (ia-1)/J, and y by ia/I o

STEP 12

YES If b is equal to K*MOR
If the next item in the

input sequence does not
match B

NO

Read content matching B from the input sequence -

Increment bandib --'

STEP 28

wa
If X is greater than M, OR

y is less than L

Patent Application Publication Jan. 31, 2008 Sheet 3 of 5 US 2008/00283.74 A1

Given a content model of ((A {I,J)B{0,K){L.M. C{0,N){O.P. and a set of prohibited A
counts (computed from I.J.L.M., and P):

Initialize counters a, b, c, V, and w -i.

Ifa is equal to J*M*P OR
If the next item in the input
Sequence does not match A

YES

Step 78

Initialize counters ia, X, and y

Read content matching A from the input sequence or

Step 54

YES
or 5:

If a is equal to
J*M*P

NO
Step 46

If the next item in the
input matches A

or 2

YES

NO

TO FIG. 4

FIG. 3

Patent Application Publication Jan. 31, 2008 Sheet 4 of 5 US 2008/00283.74 A1

FROM FIG 3

re:
YES

FAIL

Initialize inner counterib, and increment X by 1 + (ia-1)/J, and y by ia/

Ifia is in the set of
prohibited A counts

NO

on 8
If b is equal to K*M*P OR
If the next item in the input
sequence does not match B

YES

Step 64
NO

w X o f STEP 58 Read content matching B from thc input scquence

Increment bandib --ré2

If a is equal to s
J*M*P

If the next item in the input
matches A

TO FIG 5

Patent Application Publication Jan. 31, 2008 Sheet 5 of 5 US 2008/00283.74 A1

FROM FIG. 4

oS
If X is greater than M, or

y is less then L

YES
FAIL

NO

Initialize counter ic, and increment v by 1+(x-1)/M, and w by y/L or

Step 42

YES If c is equal to N*P OR If
the next item in the input

does not match C

NO

Read content matching C from the input sequence - f
STEP 72

If V is greater than Por w is less than O

US 2008/00283.74 A1

METHOD FOR VALIDATING AMBIGUOUS
W3C SCHEMA GRAMMARS

TRADEMARKS

0001 IBM(R) is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks,
trademarks or product names of International Business
Machines Corporation or other companies.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. This invention relates to schema grammars, and
particularly to a method of validating ambiguities of schema
grammars by eliminating DFA (Deterministic Finite
Automata) based schemes that evaluate content models.
0004 2. Description of Background
0005 XML (Extensible Markup Language) has begun to
work its way into the business computing infrastructure and
underlying protocols such as the Simple Object Access
Protocol (SOAP) and Web services. In the performance
critical setting of business computing, however, the flexibil
ity of XML becomes a liability due to the potentially
significant performance penalty. XML processing is concep
tually a multitiered task, an attribute it inherits from the
multiple layers of specifications that govern its use includ
ing: XML, XML namespaces, XML Information Set (In
foset), and XML Schema. Traditional XML processor imple
mentations reflect these specification layers directly. Bytes,
read off the "wire' or from disk, are converted to some
known form. Attribute values and end-of-line sequences are
normalized. Namespace declarations and prefixes are
resolved, and the tokens are then transformed into some
representation of the document Infoset. The Infoset is
optionally checked against an XML Schema grammar (XML
schema, Schema) for validity and rendered to the user
through some interface, such as Simple API for XML (SAX)
or Document Object Model (DOM) (API stands for appli
cation programming interface).
0006. With the widespread adoption of SOAP and Web
services, XML-based processing, and parsing of XML docu
ments in particular, is becoming a performance-critical
aspect of business computing. In Such scenarios, XML is
invariably constrained by an XML Schema grammar, which
can be used during parsing to improve performance.
Although traditional grammar-based parser generation tech
niques could be applied to the XML Schema grammar, the
expressiveness of XML Schema does not lend itself well to
the generic intermediate representations associated with
these approaches.
0007 Indeed, for parsing in domains other than XML
(e.g., programming languages), grammars have long been
used to generate optimized special purpose parsers that
operate much more efficiently than their generic counter
parts while performing validation checking. The XML
specifications were designed to enable the compilation of an
XML Schema grammar to a special-purpose parser. How
ever, traditional parser-generation schemes are not particu
larly well suited to XML parsing and have difficulty repre
senting some XML Schema constructs that are not found in
traditional parsing situations. Furthermore, traditional mod
els are inefficient as intermediate representations of the
schema. Traditional automaton based schemes are used to

Jan. 31, 2008

eliminate non-determinism in the grammar, and thus to
generate efficient parsers. XML Schema, however, already
enforces a constraint on all schemas called the Unique
Particle Attribution Constraint, which mandates that XML
Schema content models be deterministic. This built-in deter
minism greatly simplifies parser generation, eliminating the
need for DFA-based schemes to arrive at simple, efficient
parsers for XML.
0008. The UPA does not, however, eliminate all ambigu
ities for bounded-range content models. In particular, gram
mars defined by W3C (World Wide Web Consortium) XML
Schema are not, strictly speaking, LL(1). The rules of XML
Schema demand only that element information items be
uniquely attributed, without lookahead, to particles in the
schema. Due to the relative complexity of occurrences
allowed on individual particles, and the composability of
those particles, it is possible to define grammars for which
the particle is uniquely attributable, but which are not LL(1)
because a whole sequence of repeated information items
must be processed before the validity determination on the
occurrence can be made. The canonical example is (Ai,
j}B{0,k}){1.m} for any i, j, k, l, m where 0<(-i)<i-1 and
where m>1. In this case, a sequence of information items
matching the production for A must be read in its entirety,
before the occurrence range can be evaluated. For example,
if i=3 and j=4, a sequence of A's may be of length 3, 4, 6,
7 or 8, but not 5. This situation can be handled by DFA
(Deterministic Finite Automata) based validation, but this
involves an exponential blowup of DFA states.
0009. It is therefore well known that, apart from the
particular legal ambiguous cases outlined above, the UPA
prohibits ambiguity in XML Schema content models, and
therefore simplifies the task of validation such that DFA
based schemes are not needed to ensure deterministic con
trol flow. Considering the limitations of DFA-based
schemes, it is desirable, therefore, to formulate a method for
validation of the specifically legal ambiguous cases that does
not rely on DFA-based methods, so as to completely elimi
nate the need for DFA-based schemes in XML Schema
validation.

SUMMARY OF THE INVENTION

0010. The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a method for generating XML (Extensible Markup Lan
guage) parsers through compilation of XML Schema gram
mars, the method comprising: parsing an input document
with a generated parser, where the generated parser is
generated by a three-stage compilation of an XML Schema,
where in a first stage the XML Schema is read and modeled
in terms of abstract schema components, where in a second
stage the XML Schema is augmented with a set of calculated
schema components and properties used to drive code
generation, and where in a third stage the XML Schema is
traversed to generate validation code for each of a collection
of elements; wherein the validation code for ambiguous but
legal content models is generated by: calculating prohibited
occurrence ranges for each of the plurality of particles
involved; generating code to: evaluate each of the plurality
of particles in an inner loop conditioned on an effective
upper bound; then, once the inner loop terminates, check
forbidden occurrence ranges for an inner particle, and cal
culate a range of possible repetitions of an outer particle; and

US 2008/00283.74 A1

once an outer loop terminates, check a range of total possible
repetitions of the outer particle against actual occurrence
limits of the outer particle.
0011 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed
invention. For a better understanding of the invention with
advantages and features, refer to the description and the
drawings.

Technical Effects

0012. As a result of the summarized invention, techni
cally we have achieved a solution that eliminates large
code/memory blowup for bounded range content models by
eliminating the need for a DFA based scheme that evaluates
content models.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The subject matter, which is regarded as the inven
tion, is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:
0014 FIGS. 1 and 2 illustrate one example of a flow
diagram describing validation of a content model where the
complexity of the content model is directly related to the
complexity of the content-model expression itself, and
0015 FIGS. 3-5 illustrate one example of a flow diagram
describing validation of a content model where the ambigu
ous pattern is extended with an additional level of nesting.

DETAILED DESCRIPTION OF THE
INVENTION

0016 One aspect of the exemplary embodiments is a
method for validating ambiguous schema grammars.
Another aspect of the exemplary embodiments is a method
of evaluating particles in a loop conditioned on an effective
upper bound in order to calculate occurrence ranges prohib
ited by constraints.
0017 XML is the Extensible Markup Language. It
improves the functionality of the Web by allowing a user to
identify information in a more accurate, flexible, and adapt
able way. It is extensible because it is not a fixed format like
HTML, which is a single, predefined markup language.
Instead, XML is actually a meta-language, that is, a language
for describing other languages that allows a user to design
his/her own markup languages for limitless different types of
documents.
0018. The purpose of a schema is to define a class of
XML documents, and so the term “instance document” is
often used to describe an XML document that conforms to
a particular schema. In fact, neither instances nor Schemas
need to exist as documents perse. They may exist as streams
of bytes sent between applications, as fields in a database
record, or as collections of XML Infoset “Information
Items.” Also, developing schema requires specifying formal
data typing and validation of element content in terms of
data types.
0019. In XML Schema, there is a basic difference
between complex types, which allow elements in their
content and may carry attributes, and simple types, which

Jan. 31, 2008

cannot have element content and cannot carry attributes.
There is also a major distinction between definitions, which
create new types (both simple and complex), and declara
tions, which enable elements and attributes with specific
names and types (both simple and complex) to appear in
document instances.
0020 New complex types are defined using the complex
type element and Such definitions typically contain a set of
element declarations, element references, and attribute dec
larations. The declarations are not themselves types, but
rather an association between a name and the constraints,
which govern the appearance of that name in documents,
governed by the associated Schema. Elements are declared
using the element element, and attributes are declared
using the attribute element.
0021. Like the Document Type Definition (DTD) gram
mar used in XML, XMS, Schema can specia, an elements
content model as a regular expression over its contained
element. In contrast to the gramnears that can be specified
with an XML DTD however, XML. Schema supports a
wider range of operators in the composition of content
models.
0022. To represent and operate on the XML Schema
grammar, a publicly available implementation of the schema
components is utilized. The schema components, taken in
aggregate, are referred to as the schema. It is assumed that
the schema for any given grammar is fully resolved before
compilation begins; that is, there are no missing Subcom
ponents, and no attempt will be made to further resolve
components. The schema components have four primary
component types: element declarations, attribute declara
tions, complex type definitions, and simple type definitions.
Complex type definitions also reference a set of helper
components: particle, model group, wildcard, and attribute
US

0023 Complex types may have content that is simple,
complex, or empty. In the case when the content is simple,
the value of the content-type property is a simple-type
definition that defines the content. In the case when the
content is empty, the content type is empty. If the complex
type has complex content, then the content-type is a particle,
which defines a complex content model. The content model
for such a complex type is defined in terms of the helper
components (particles, model groups, and wildcards). A
particle is the basic unit of an XML Schema content model.
Every particle has an occurrence range and a term. The term
is the model-group, element-declaration, or wildcard that
defines the content which the particle will match. The
occurrence range defines the number of consecutive times
the particle will match the input sequence. Particles are
grouped together with model-groups (which are in turn
contained by their own particles), which allow particles to be
matched in “sequence', or “choice,” or “all” patterns.
Together, particles and model groups structure the content
model for validating element content, which is eventually
validated by element declarations or wildcards. In this way
content models of great complexity may be constructed.
0024. In the exemplary embodiments of the present appli
cation the technique followed for compilation of ambiguous,
but legal content models, is to calculate the occurrence
ranges for each of the particles that are specifically prohib
ited by constructs. The validation code for each particle is
then evaluated in a loop conditioned on its effective upper
bound. Once the inner loop terminates (either by reaching

US 2008/00283.74 A1

the effective upper bound, or by reaching an item in the input
sequence that does not match the inner particle), the forbid
den occurrence ranges are checked, and a range of possible
repetitions of the outer particle is calculated. Once the loop
on the outer particle terminates, the total range of possible
occurrences is checked against the actual bounds of the outer
particle. This technique eliminates, completely, the need for
a DFA based scheme for evaluating content models, thus
rendering a significant gain in complexity, and eliminating
code/memory blowup for bounded-range content models.
0025. The formulation of the exemplary embodiments is
based on the fact that the Unique-Particle-Attribution con
straint prohibits any other forms of ambiguity. For these
remaining ambiguities, then, the occurrences of the particle
“A” may be efficiently evaluated against the effective upper
bounds (e.g., {i-1, j*m}), provided that the individual
production sequences are checked against the set of known
prohibitions. These functions for prohibited sequences are
fixed functions of i, j. 1, and m above, which can be
calculated at compile time.
0026. Assuming a computed set of prohibited occurrence
counts for the particle “A”, the ambiguous content model (A
{I, J B {0, K}) {L, M can be validated with the control
flow shown in FIGS. 1-2. As FIGS. 1-2 show, the complexity
of the control flow for this content model is not dependant
on the specific occurrence bounds (I, J, K, L, and M), but
rather directly related to the apparent complexity of the
content-model expression itself.
0027) Given a content model of (A{I.JB {0,K}) {L.M
and a set of prohibited A counts (computed from T. J. L. and
M) the following steps are performed in FIGS. 1 and 2. In
step 10, counters a, b, X, and y are initialized. In step 12, if
'a' is equal to JM or if the next item in the input sequence
does not match A, the process flows to step 34 or else the
process flows to step 14. In step 14, counter “ia' is initial
ized. In step 16, content matching A is read from the input
sequence. In step 18, “ia' and “a” are incremented. In step
20, if “a” is equal to JM, the process flows to step 24 or else
the process flows to step 22. In step 22, if the next item in
the input sequence matches A, the process flows to step 16
or else the process flows to step 24. In step 24, if “ia' is in
the set of prohibited A counts the process FAILS or else the
process flows to step 26. In step 26, the inner counter “ib'
is initialized, and X is incremented by 1+(ia-1)/J, and y by
ia/I. In step 28, if “b' is equal to K*M or if the next item in
the input sequence does not match B, the process flows to
step 12 or else the process flows to step 30. In step 30,
content matching B is read from the input sequence. In step
32, “b' and “ib' are incremented and the process flows to
step 28. In step 34, if X is greater than Mory is less then L,
the process returns “FAIL or else the process flows to step
36. In step 36, the process flow is completed.
0028. Also, since the nesting loop counts are removed
from the formulation, it can be applied at arbitrary levels of
nested repetition of the same pattern. For example, for the
production ((A {I,J B {0.K.) L.M C {0.N}) {O.P., and
again assuming a computed set of prohibited occurrence
counts for “A”, this time a function of (I, J. L. M. O. and P)
then the control flow given in FIGS. 3-5 may be utilized.
Comparing FIGS. 1 and 2, and FIGS. 3-5, the close relation
between the two algorithms demonstrates the simple pattern
by which they may be extended to cover further nesting.
0029 Given a content model of ((A{I,J)B{0,K}){L,
MC{0.N}){0,P} and a set of prohibited A counts (com

Jan. 31, 2008

puted from I, J. L. M. O. and P) the following steps are
performed in FIGS. 3-5. In step 40, counters a, b, c, V, and
w are initialized. In step 42, if “a” is equal to JM*P or if
the next item in the input sequence does not match A, the
process flows to step 78 or else the process flows to step 44.
In step 44, counters ia, X, and y are initialized. In step 46.
content matching A is read from the input sequence. In step
48, “ia” and “a” are incremented. In step 50, if “a” is equal
to JM*P the process flows to step 54 where if “ia” is in the
set of prohibited Acounts, the process returns “FAIL or else
the process flows to step 52. In step 52, if the next item in
the input matches A, the process flows to step 46 or else the
process flows to step 54. In step 54, if “ia” is in the set of
prohibited A counts, the process returns “FAIL or else the
process flows to step 56. In step 56, the inner counter “ib'
is initialized, and X is incremented by 1+(ia-1)/J, and y by
ia/I. In step 58, if “b' is equal to K*M*P or if the next item
in the input sequence does not match B, the process flows to
step 64 or else the process flows to step 60. In step 60.
content matching B is read from the input sequence. In step
62, “b” and “ib' are incremented and the process flows to
step 58.
0030. In step 64, if “a” is equal to JM*P the process
flows to step 68 or else the process flows to step 66. In step
66, if the next item in the input matches A, the process flows
to step 44 or else the process flows to step 68. In step 68, if
X is greater than M or y is less then L, the process returns
“FAIL or else the process flows to step 70. In step 70,
counter “ic' is initialized, and V is incremented by 1+(x-
1)/M, and w by y/L. In step 72, if “c” is equal to N*P or if
the next item in the input does not match C, the process
flows to step 42 or else the process flows to step 74. In step
74, content matching C is read from the input sequence. In
step 76, “ic' and 'c' are incremented and the process flows
to step 72. In step 78, if v is greater than P or w is less than
O, the process returns “FAIL or else the process flows to
step 80. In step 80, the process flow is completed.
0031. The influence of the ambiguity extends only
through nested productions, which match the canonical
example above at each level. Thus, if either of the examples
above are contained inside non-problematic content models,
the solutions outlined above can be treated as black-box
validators for the ambiguous content models, and have no
effect on the outer model. Similarly, if the productions for A,
B, and C do not match the canonical example, then their
content models may be treated as black-box functions, and
have no effect on the solutions above.

0032. The capabilities of the present invention can be
implemented in Software, firmware, hardware or some com
bination thereof.

0033. As one example, one or more aspects of the present
invention can be included in an article of manufacture (e.g.,
one or more computer program products) having, for
instance, computer usable media. The media has embodied
therein, for instance, computer readable program code
means for providing and facilitating the capabilities of the
present invention. The article of manufacture can be
included as a part of a computer system or sold separately.
0034 Additionally, at least one program storage device
readable by a machine, tangibly embodying at least one
program of instructions executable by the machine to per
form the capabilities of the present invention can be pro
vided.

US 2008/00283.74 A1

0035. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams
or the steps (or operations) described therein without depart
ing from the spirit of the invention. For instance, the steps
may be performed in a differing order, or steps may be
added, deleted or modified. All of these variations are
considered a part of the claimed invention.
0036 While the preferred embodiment to the invention
has been described, it will be understood that those skilled
in the art, both now and in the future, may make various
improvements and enhancements which fall within the
scope of the claims which follow. These claims should be
construed to maintain the proper protection for the invention
first described.
What is claimed is:
1. A method for generating XML (Extensible Markup

Language) parsers through compilation of XML Schema
grammars, the method comprising:

parsing an input document with a generated parser, where
the generated parser is generated by a three-stage
compilation of an XML Schema, where in a first stage
the XML Schema is read and modeled in terms of
abstract Schema components, where in a second stage
the XML Schema is augmented with a set of calculated
Schema components and properties used to drive code
generation, and where in a third stage the XML Schema
is traversed to generate validation code for each of a
collection of elements;

wherein the validation code for ambiguous but legal
content models is generated by:

Jan. 31, 2008

calculating prohibited occurrence ranges for each of the
plurality of particles involved;

generating code to:
evaluate each of the plurality of particles in an inner

loop conditioned on an effective upper bound;
then, once the inner loop terminates, check forbidden

occurrence ranges for an inner particle, and cal
culate a range of possible repetitions of an outer
particle; and

once an outer loop terminates, check a range of total
possible repetitions of the outer particle against
actual occurrence limits of the outer particle.

2. The method of claim 1, wherein the XML Schema
includes either one of complex types, simple types or a
combination of simple types and complex types.

3. The method of claim 1, wherein the XML Schema
specifies content models.

4. The method of claim 1, wherein the generated parser is
divided into two logical layers, one a scanning layer and the
other a validation layer.

5. The method of claim 4, wherein the validation layer is
a generated recursive-descent parser that drives a scanner by
utilizing compiled, predictive knowledge from the XML
Schema.

6. The method of claim 4, wherein the scanning layer
includes a set of fixed XML primitives for scanning content
at a byte level.

