
(19) United States
US 20060031833A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0031833 A1
Huang et al. (43) Pub. Date: Feb. 9, 2006

(54) METHODS AND APPARATUS FOR A WEB
APPLICATION PROCESSING SYSTEM

(75) Inventors: Yun-Wu Huang, Chappaqua, NY (US);
Robert David Johnson, Ridgefield, CT
(US); Sean James Martin, Boston, MA
(US); Simon L. Martin, Oxford (GB);
Moshe Morris Emanuel Matsa,
Cambridge, MA (US); Roger A. Pollak,
Pleasantville, NY (US); John J. Ponzo,
Cortlandt Manor, NY (US); Ronald
So-tse Woan, Somerville, MA (US)

Correspondence Address:
RYAN, MASON & LEWIS, LLP
90 FOREST AVENUE
LOCUST VALLEY, NY 11560 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY (US)

(21) Appl. No.: 11/245,828

(22) Filed: Oct. 7, 2005

Related U.S. Application Data

(63) Continuation of application No. 09/633,037, filed on
Aug. 4, 2000, now Pat. No. 6,968,539.

1101

NETWORK
(e.g., INTERNET)

DOWNLOAD

1105

CONFIGURE
1105

1106

STORAGEMEDIA
(e.g., DISKETTES, CDs)

INSTAL

INSTAL MANAGER

GRAPHIC INTERFACE PROGRAM

SYSTEM ADMINISTRATOR

(60) Provisional application No. 60/156.872, filed on Sep.
30, 1999.

Publication Classification

(51) Int. Cl.
G06F 9/445 (2006.01)

(52) U.S. Cl. .. 717/178

(57) ABSTRACT

A Software System is provided to allow a computer to install
and process web applications according to the invention.
Such web applications are written as web pages that have
access to the full range of operating System resources,
including those not accessible through a web browser.
Preferably, a web application is built using three types of
languages used for constructing Web pages, namely: (a) a
Visual presentation language; (2) a data modeling language;
and (3) a Scripting language for embedding logic. The
Software System preferably comprises a web application
manager, an operating System interface module, a Scripting
language interpreter, and optionally a web browser and/or a
data modeling language processor. Various other features
Such as data caching and Security filtering are provided in
accordance with Such a System.

1102

CREATE
UPDATE INSTALLATION

DOCUMENT OF
AN APPLICATION

Patent Application Publication Feb. 9, 2006 Sheet 1 of 12 US 2006/0031833 A1

FIG. 1

INPUT/OUTPUT
DEVICES
KEYBOARD,
MOUSE,
SCREEN

103

104

CODE BEING
EXECUTED

105 MAIN MEMORY

SYSTEMS,
APPLICATIONS, 1 102

DATA
STORAGE
MEMORY

FIG. 2

WEB APPLICATION

III, WEB PAGE

204 205

DATA SCRIPT MODELING
LANGUAGE LANGUAGE

201.

VISUAL
PRESENTATION

ANGUAGE

Patent Application Publication Feb. 9, 2006 Sheet 2 of 12 US 2006/0031833 A1

FIC. 3

WEB
APPLICATION

302

WEB APPLICATION MANAGER

50

SCRIPT
INTERPRETER

DATA MODELING
LANGUAGE PARSER

OPERATING SYSTEM
INTERFACE MODULE.

307 OPERATING SYSTEM

Patent Application Publication Feb. 9, 2006 Sheet 3 of 12 US 2006/0031833 A1

FIG. 4

40

READ CODE FROM
. ... WEB APPLICATION

2. 402 . .
1 END

OF CODE 2

NO
DATA

404 MODELING
LANGUAGE

VISUAL
PRESENTATION CODE LANGUAGE

TYPE

SCRIPT
LANGUAGE

SCRIPTPROCESS

408
EXTENDED
CALL

409

OS INTERFACE PROCESS

410

DATA
MODEL

PROCESS

VISUAL
PRESENTATION

PROCESS

NO

EXCEPTION HANDLING
PROCESS

(TERMINATE

Patent Application Publication Feb. 9, 2006 Sheet 4 of 12 US 2006/0031833 A1

FIG. 6

CHECK INPUT VISUAL PRESENTATION
CODE FOR ANY WIOLATIONS

502

RS

501

ANVOLATION OCCU
503

PROCESS WEB
BROWSER MODULE

ON THE INPUT WISUAL
PRESENTATION CODE

GENERATE AN
EXCEPTION FOR
THIS WIOLATION

RETURN TO WEB APPLICATION
MANAGEMENT PROCESS

505

FIG. 6

GET INPUT DATA 601
MODELING CODE .

PROCESS DATA
MODELING MODULE
of PUS71602
MODELING CODE

RETURN TO WEB
APPLICATION
MANAGEMENT
PROCESS

603

Patent Application Publication Feb. 9, 2006 Sheet 5 of 12

FIG. 7

PROCESS SCRIPT INTERPRETER
TO PARSE AND INTERPRET THE

INPUT SCRIPT CODE

702

EXTENDED CAL

CHECK WIOLATIONS

705

ANY VIOLATIONS

GENERATE AN EXCEPTION
FOR VIOLATION

RETURN to WEB
APPLICATION MANAGEMENT

PROCESS

701

704

EXECUTE
THE CODE

707

FIG. 8

INPUT: AN EXTENDED
SCRIPT FUNCTION CALL

801

PROCESS THIS SCRIPT
| CALL BY EXECUTING
OPERATING SYSTEM APIs

802

RETURN TO WEB
APPLICATION MANAGEMENT

PROCESS
805

US 2006/0031833 A1

Patent Application Publication Feb. 9, 2006 Sheet 6 of 12 US 2006/0031833 A1

FIG. 9

GENERAL INFORMATION, REQUIRED COMPONENTS,
DEPENDENCY INFORMATION, REGISTRY INFORMATION,

SHORT CUT INFORMATION, STORAGE QUOTA,
SECURITY SETTINGS, PRE-INSTALL SCRIPT,

POST-INSTALL SCRIPT........etc.

901

FIC. 10

1001 INSTALLATION 002
APPLICATION DOCUMENT

INSTALL MANAGER - 1003 .
1004

- ?- - - - -

OS
GENERAL INFORMATION ENVIRONMENT

COMPONENTS

DEPENDENCY

REGISTRIES

SHORT CUTS

STORAGE QUOTA

SECURITY SETTINGS

- - - - - - - - - - - as as as a as as a as s as a

Patent Application Publication Feb. 9, 2006 Sheet 7 of 12 US 2006/0031833 A1

FIG. 1 1

110 1102

NETWORK STORAGEMEDIA
(e.g., INTERNET) (e.g., DISKETTES, CDs)

DOWNLOAD INSTAL

INSTALL MANAGER
CONFIGURE

GRAPHIC INTERFACE PROGRAM

SYSTEM ADMINISTRATOR

CREATE UPDATE INSTALLATION
DOCUMENT OF
AN APPLICATION

103

1105

1106

FIG. 12

12O1

CHECK DEPENDENCY SETTING IN INSTALL
DOCUMENT OF THE ARGET APPLICATION

1202
AN

APPLICATION
THIS TARGET APPLICATION

DEPENDS ON IS NOT
INSTALLED

INSTALL THE
"DEPENDED'
APPLICATION

1205

INSTALL THE
TARGET

APPLICATION

SEEK USER CONFIRMATION ON INSTALLING
THE "DEPENDED' APPLICATION

CONFIRMED USER CONFIRMED 2

DECLINED

TERMINATE
1205

Patent Application Publication Feb. 9, 2006 Sheet 8 of 12 US 2006/0031833 A1

FIC. 13

TRADITIONAL
APPLICATIONS

NETWORK
APIs

1305 N1 OPERATING SYSTEM

FIG. 14

VM BASED |
APPLICATIONS

VIRTUAL
MACHINE
CAS

1401

OTHER APIs

1406 N1OPERATING SYSTEM

Patent Application Publication Feb. 9, 2006 Sheet 9 of 12 US 2006/0031833 A1

FIG. 16

1502

APPLICATION 2

1501 * r

APPLICATION 1 APPLICATION 3

APPLICATION CALLS

SECURITY
1504-1SNS

SECURITY
1505 SETTINGS 2

SECURITY 15061s's
SECURITY | | |
FILTERED N-s de
CALLS OTHER

FILE K NETWORK PROCESS APIs
APIs APIs APIs

FILE
SYSTEM NETWORK PROCESS

OPERATING SYSTEM 1so 1509 1510

APPLICATION MANAGER

1511

Patent Application Publication Feb. 9, 2006 Sheet 10 of 12

FIG. 1 6
RECEIVE A CAL FROM

AN APPLICATION

CHECK THE SECURITY
SETTINGS OF THIS

APPLICATION FOR THIS CALL

1603

SECURITY WIOLATED 2

CALL OPERATING SYSTEM
APIS TO PROCESS THIS CALL

TERMINATE

1601

1602

1605

1606

FIG. 1 7

1701
WEB

OBJECTS
WEB |

OBJECTS

APPLICATION 1 APPLICATION 2

1704
WEB

BROWSER

OPERATING SYSTEM

SECURITY
EXCEPTION
HANDLING

INTERNET 1703

US 2006/0031833 A1

1604

1706

Patent Application Publication Feb. 9, 2006 Sheet 11 of 12 US 2006/0031833 A1

FIG. 18

1801 WEB l
OBJECTS

INTERNET

1802 1803

WEB WEB
APPLICATION 1 APPLICATION 2

1804

WEB APPLICATION MANAGER

WEB
BROWSER 1

WEB
BROWSER2

WEB CACHE 1 WEB CACHE 2
FOR HTTP OBJECTS FOR HTTP OBJECTS
WEB CACHE FOR WEB CACHE 2 FOR
NON-HTTP OBJECTS NON-HTTP OBJECTS

1807 1808

OPERATING SYSTEM

1809

Patent Application Publication Feb. 9, 2006 Sheet 12 of 12

FIC. 19

RECEIVE A REQUEST FOR HTTP
OBJECTS FROMAN APPLICATION

INVOKE THE WEB BROWSER
TO RETRIEVE THIS OBJECT

1903
EXCEPTION
OCCURS

SEND THE OBJECT RETURNED
BY THE WEB BROWSER TO

THE REQUESTING APPLICATION

TERMINATE

1901

1902

1905

1906

FIC. 20

CALL FROMAN APPLICATION

2003

NO
NON-HTTP WEB

OBJECT CACHE FOR
THIS APPLICATION

WIOLATION EXISTS

TERMINATE

HTTP WEB OBJECT
CACHE FOR THIS

EXCEPTION
HANDLING PROCESS

RECEIVE A CACHE MANAGEMENT API

CHECK ANY CACHE WIOLATIONS

VIOLATION EXISTS 2 -

ROCESS THIS AP BY EXECUTING
NATIVE OPERATING SYSTEM APIs sig

US 2006/0031833 A1

1907

APPLICATION

1904

2001

2002

EXCEPTION
HANDLING
PROCESS

US 2006/0031833 A1

METHODS AND APPARATUS FOR AWEB
APPLICATION PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED

APPLICATION(S)
0001. This application is a continuation of U.S. applica
tion Ser. No. 09/633,037 filed on Aug. 4, 2000, which claims
the benefit of U.S. Provisional Application Ser. No. 60/156,
872 filed on Sep. 30, 1999, the disclosures of which are
incorporated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates generally to the field
of Software Systems that manage the life-cycle of Software
applications, e.g., installation, configuration, resource man
agement, Security management, execution, and de-installa
tion, and, more particularly, to methods and apparatus for
processing of web applications that are written in the form
of web pages which can be downloaded through the Internet
using web communication protocols, installed in local com
puters, and executed utilizing web components, Such as a
web browser and JavaScript'TM interpreter, in the local com
puters.

BACKGROUND OF THE INVENTION

0003) The recent explosion of the popularity of the World
Wide Web (“Web” for short, and hereinafter referred to in
the lower case as “web' in the context of an adjective or
adverb, e.g., web pages) has made the Internet one of the
most important media for mass communication. The Web is
used for many applications Such as information retrieval,
personal communication, and electronic commerce and has
been rapidly adopted by a fast growing number of Internet
users in a large part of the World.
0004. Using the Web, users can access remote informa
tion by receiving web pages through the Hypertext Transfer
Protocol (HTTP). The information in a web page is
described using the Hypertext Markup Language (HTML)
and eXtensive Markup Language (XML), and is displayed
by software called web browser. Web pages of earlier design
are considered Static because they do not include any logic
that can dynamically change their appearances or provide
computations based on user input. Subsequently, the Java"
(Sun MicroSystems) programming language was incorpo
rated in web pages in the form of applets. An applet is a
Small Java" program that can be sent along with a web page
to a user. Java" applets can perform interactive animation,
immediate calculations, or other simple tasks without having
to Send a user request back to the Server, thereby providing
the dynamic logic in web pages.
0005 JavaTM is an object-oriented programming lan
guage which can be used for creating Stand-alone applica
tions. Writing JavaTM programs typically requires different
and more extensive skills and training than composing web
pages. The learning curve for writing Java" programs is
typically longer than that for writing web pages. Not all web
page authors therefore are expert Java" programmerS.
0006 Recently, to make it easier to embed logic in web
pages, an easy-to-write Script language called JavaScript"
(Sun Microsystems) has been supported by popular web
browsers to be incorporated into web pages. JavaScript"M,

Feb. 9, 2006

capable of embedding logic for computation based on user
input, brings dynamic and powerful capabilities to web
pages. JavaScript'TM, unlike JavaTM which is a full-fledged
programming language, has a simpler Syntax and is much
easier to learn. Because of this easy-to-write feature, Java
Script'TM has currently become a popular way to embed logic
in web pages by many web page authors.
0007 Although JavaScript TM brings easy-to-write logic
to web pages, it is limited to browser functions and works
with HTML elements only. It can only be used to create
Simple applications under the contexts of the browser, Such
as changing the web page's Visual presentation dynamically
and computing user input quickly without Sending a user
request back to the server (for Such computation). Thus, web
pages with JavaScript" logic cannot be used to create
Stand-alone applications that require access to a full range of
resources on the user's computer Such as the file System
management and the display area beyond the browser's
window. In general, web pages cannot be processed in
non-browser contexts.

0008. At the present, stand-alone applications are typi
cally written in traditional programming languages (also
called 3GL for 3rd Generation Languages) Such as C, C++,
and Java", or Fourth Generation Languages (4GL) Such as
Visual Basic". Through these languages, Stand-alone appli
cations interact directly with operating Systems through
operating System APIs (application programming interfaces)
or indirectly with library functions which may in turn call
these operating System APIs. The capability of accessing the
operating System APIs gives an application the control of
computing resources in a computer.
0009 If web pages had embedded logic that could access
a whole range of computing resources enabled by these
operating System APIs, they could then be used to develop
Stand-alone applications just like any of the aforementioned
3GL and 4GL languages. Using web pages to develop
Stand-alone applications would have many advantages.
First, web page authors who do not possess the skill and
experience in writing 3GL/4GL applications could develop
Stand-alone applications using the web page technology they
profess.
0010 Secondly, the web technology components that can
process the Visual presentation language (e.g., HTML), the
data modeling language (e.g., XML), and the communica
tion protocol (e.g., HTTP) are available in most computers,
which can connect to the Internet through the Web. This
would provide an advantage in that using web pages to
develop applications, a developer could very efficiently
integrate these components. This is because, whereas 3GL/
4GL applications can integrate these components program
matically, web pages could integrate them declaratively
through languages Such as HTML and XML. In general, the
Shorter learning curve and development time of web pages,
as compared with 3GL/4GL programs, would result in a
shorter time and lower cost in the development of software
applications. The present invention addresses this issue by
providing methods and apparatus in a Software System that
manage the life-cycle of Software applications, which are
composed of web pages that are not limited to the browser
contexts and that have access to the full range of operating
System resources.
0011) Another issue of the processing of computer soft
ware addressed by the present invention is the Software

US 2006/0031833 A1

installation proceSS. Typically, the installation of a Software
application is achieved by a Special-purpose program which
comes with this Software and is written only for the purpose
of installing this software. This is evident in the existence of
a "setup.eXe' or “install.exe' program in almost all Software
packages for PCs (personal computers). This method of
Software installation means that developerS for each Soft
ware application have to write a specific install program just
to install their Software.

0012. In general, an install program for an application
needs to configure a list of Settings that are used to establish
a proper environment or context for this application before
it can be properly installed. These Settings may include, for
example, the basic operating System Setup Such as the
registry entries, location Setup Such as the directory or folder
in which the application is to be Stored, link Setup Such as the
Short-cut link to this application, the graphic Setup Such as
the icon of this application, and the dependency Setup Such
as other applications that this application depends on for
execution.

0013 To properly setup each setting, e.g., one of the
aforementioned Settings, the install program typically takes
the determined value of this Setting and processes an action
Specific to this Setting. For example, the registry entry Setup
action may be to add the determined registry entry values to
the proper registry files, whereas the dependency Setup
action may be to investigate if all applications that the
application to be installed depends on are already installed
and, if not, to display an error message. Typically, the value
of a Setting is either determined by user input during the
installation process, Such as the directory where the appli
cation is to be Stored, or predetermined by the install
program, Such as the list of applications that its application
depends on.
0.014. In general, an install program first configures each
Setting by determining its value (by user input or pre
configuration) and then invokes the Setup action for this
Setting. Because applications may have a different Set of
pre-configured Setting values, each application requires a
unique install program. Furthermore, if a new version of an
application changes the value of one of its install Settings,
Such as a new icon, the install program for this application
has to be rewritten to incorporate this new value.
0.015. It would be advantageous to the application devel
operS if they did not need to write a new install program for
each new version of an application they develop. Instead, it
would be desirable, for each version of an application, to
construct a list of install Settings with pre-configured values
for this application using a data modeling language Such as
XML, which could be provided together with this applica
tion for installation. This way, a Standardized install program
would then be deployed by the user's computer to decode
the install Settings and values and conduct proper installation
for this application based on these values. This Standardized
install program could then be used to install all applications
whose install Settings and values are modeled by a language
understood by this install program. With many applications
installed using a Standardized install program, the users
would also have a consistent experience in the installation
proceSS for all these applications.
0016. The present invention addresses this issue by pro
Viding methods and apparatus of Software installation in

Feb. 9, 2006

which a Standardized install manager exists in a computer
System to perform the installation process for all Software
applications whose install Settings and values are modeled
by a language understood by this install program.

0017. Yet another issue of today's computer software
addressed by the present invention is the Security manage
ment of Software applications. Traditional Stand-alone appli
cations based on programming languages Such as C and C++
typically have access to all the operating System resources
through the calling of operating System APIs. In this case,
the Security context, i.e., the limit of System resource access,
for these applications is the entire System. Based on this
Security context, it is possible that an application can,
inadvertently or maliciously, damage not only its own data
but those of other applications that share the same computer
System.

0018. In a virtual machine environment, such as the
JavaTM Virtual Machine, the security context of an applica
tion (such a JavaTM program) is defined by the virtual
machine. A misbehaving application thus can only create
external damage allowable by the Virtual machine. However,
there can be many different types of applications running on
the same virtual machine and while each one of them may
have a different Security need, they are forced to run under
the same security context (that defined by the virtual
machine).
0019. It would be advantageous if each application had

its own Security context that is predetermined by the System
management policy. Thus, based on its level of Security risk,
an application could be associated with a Security context
which regulates the System resources to which this applica
tion can or cannot acceSS. This way, a misbehaving program
in an application with a restrictive Security context would
cause minimum damage to the System as a whole. The
present invention addresses this issue by providing methods
and apparatus of a computer System in which each applica
tion has its own Security context.
0020 Yet another issue of today's computer software
addressed by the present invention is the web cache System
for Software applications. Web caching is traditionally per
formed by the web browsers and web proxies whose primary
tasks include transmitting web objects over the network.
Web pages in the context of a web browser contain hyper
links to web objects through textual or graphic anchors. The
user requests a web object from a web page when this page
is displayed by the web browser and the user Selects, through
the mouse or other pointing mechanism, the anchor of this
object.

0021 When a web object is requested through a web
browser with the web caching feature, the web browser first
checks to See if the object exists in its cache. If So, this object
in the browser's cache is returned to the request web page.
If the object does not exist in the browser's cache, the
browser uses the Uniform Resource Locator (URL) of this
object to locate its location in the Internet and retrieves it
through a data transfer protocol such as HTTP. When the
browser receives this object, it typically displays this object
while Storing a copy in its cache.
0022 Applications accessing web objects could be com
posed using web pages. However, if web pages are pro
cessed in the context of the browser, the web objects

US 2006/0031833 A1

requested by them in a client computer can only be cached
by the browser in the computer. In other word, in a client
computer, web page based applications under the browser
contexts use only the browser's cache for web caching.
0023. Different web applications however may access
web objects with different characteristics. For example, one
web application may access web objects that rarely change
over time whereas another may access web objects that
change highly frequently. It would be advantageous to
deploy a sizable Space to cache Static web objects for the first
application while little or no space for the Second because
any cached objects will be outdated immediately. In general,
it would be advantageous that each application has its own
web cache.

0024. Furthermore, traditional web caching by browsers
only cache web objects of certain types that are defined in
HTTP. Some applications may need to retrieve objects from
the Web with types not defined in HTTP. Examples of object
types not defined by HTTP may include executable files,
Spreadsheet files, and documents with proprietary Structures.
Caching these non-HTTP-defined objects could provide a
performance advantage to applications that retrieve objects
of these types through the Web.
0.025 The present invention addresses the issue of web
caching for applications by providing methods and appara
tus to provide each web application a separate cache for both
the HTTP-defined and non-HTTP-defined objects from the
Web.

SUMMARY OF THE INVENTION

0026. In accordance with the aforementioned needs, the
present invention is directed to a System in which applica
tions are written as web pages that have access to the full
range of operating System resources, including those not
accessible through the web browser. The applications
described in the present invention are called web applica
tions. In a preferred embodiment of the present invention,
three types of languages used for constructing web pages are
used for building web applications. They are: (1) a visual
presentation language; (2) a data modeling language; and (3)
a Scripting language for embedding logic. Those skilled in
the art will appreciate that currently the three most com
monly used languages in web pages are HTML for Visual
presentation, XML for data modeling, and JavaScript'TM for
Scripting.

0.027 According to the present invention, a software
System is provided to allow a computer to install and proceSS
web applications. This System preferably comprises a web
application manager, an operating System interface module,
a Scripting language interpreter, and optionally a web
browser and/or a data modeling language processor. The
web application manager manages the life-cycle for appli
cations, which may include the installation, execution, de
installation of these applications, as well as the Security
control and web caching for these applications. The Script
language interpreter (Such as the JavaScript" interpreter)
parses and interprets the Scripting language embedded in the
web pages. The operating System interface module is used to
convert the Scripting language calls that request access to
System resources into appropriate native operating System
APIs. The web browser can be used to display the content of
web applications and transfer databased on the data transfer

Feb. 9, 2006

protocol deployed by the browser (such as HTTP). The data
modeling language processor (Such as the XML parser)
decodes the contents in the web applications that are written
in the data modeling language (such as XML).
0028. According to one feature of the present invention,
the Scripting language used in Web pages that are typically
restricted to the web browser functions can be extended to
include function calls that access System resources normally
beyond the limit of browser functions. Those skilled in the
art will appreciate that Screen display outside of the browser
window and general file System management are two
examples of the types of System resources beyond browser's
control.

0029. According to yet another feature of the present
invention, the operating System interface module can accept
an extended Scripting language function call that access
operating System resources beyond the browser contexts
and, based on the type of this function call, execute code that
includes calls to the native operating System APIs.
0030. According to yet another feature of the present
invention, the Web application manager can manage instal
lation for all web applications by invoking its install man
ager module. To install a web application, the install man
ager first obtains a copy of this application and the install
document associated with this application. In a preferred
embodiment of the present invention, the install manager
can obtain the application and its install document by a
network download process through the Web or other data
transfer protocols. The install document for a web applica
tion contains a set of install Settings and their values, which
are modeled in language understood by the install manager.
The install document for a web application can be written by
the creator of this application. When installing this applica
tion, the install manager decodes the Settings and their
values in the install document of this application, and
configures each Setting based on its value accordingly.
0031. According to yet another feature the present inven
tion, the web application manager can conduct Security
control for a web application based on the Security context
of this application. According to the present invention, the
Security context of a web application is the limits of access
to the operating System resources this application is
restricted to. The Security context of an application can be
modeled with a list of Security Settings for this application.
Each Security Setting regulates the behavior of its host
application in terms of a specific Security feature. In a
preferred embodiment of the present invention, the Security
context of a web application can be pre-configured by the
creator or Supplier of this application, and obtained by the
user together with its application when this application is
downloaded for installation. In this preferred embodiment,
the Security context of a web application can also be
modified by the administrator of a software system in which
this application is deployed. According to the present inven
tion, when a web application is being executed, the web
application manager can check each Setting in the Security
context of this application to ensure that no Security rules,
based on the Settings configured in the Security context of
this application, are violated at any time while this applica
tion is running.
0032. According to yet another feature of the present
invention, the web application manager can create a web

US 2006/0031833 A1

cache for each application it installs. The cacheable web
objects include both the HTTP-defined objects and non
HTTP-defined ones. In a preferred embodiment of the
present invention, the two types of web objects can be stored
in two different pools of the same cache for an application.
The Settings of the cache for an application can be pre
configured and obtained together with this application by a
client computer. They can also be modified by the admin
istrator of the System in which their application is installed.
0.033 According to yet another feature of the present
invention, the Scripting language used in web pages that are
typically restricted to the web browser functions can be
extended to include function calls that manage the web
cache for each application. Those skilled in the art will
appreciate that typical cache APIs may include the Search,
insertion, and deletion of an object, as well as the reset of the
whole cache.

0034. According to yet another feature of the present
invention, when the web application manager executes an
extended cache management API for a Web application, it
checks the cache Settings for this application and may take
proper cache management action to ensure that these cache
Settings are not violated.
0035. These and other objects, features and advantages of
the present invention will become apparent from the fol
lowing detailed description of illustrative embodiments
thereof, which is to be read in connection with the accom
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0.036 FIG. 1 is an example of an architecture of a server
or a client of the present invention;
0037 FIG. 2 is an example of an architecture of a web
application of the present invention;

0038 FIG. 3 is an example of an architecture of a web
application process System of the present invention;
0.039 FIG. 4 is an example of a web application manager
process of the present invention;

0040 FIG. 5 is an example of a visual presentation
process of the present invention;

0041 FIG. 6 is an example of a data model process of the
present invention;

0.042 FIG. 7 is an example of a script process of the
present invention;

0.043 FIG. 8 is an example of an operating system
interface process of the present invention;

0044 FIG. 9 is an example of an install document of the
present invention;

004.5 FIG. 10 is an example of an architecture of a
System deploying the install manager of the present inven
tion;

0.046 FIG. 11 is an example of a process of obtaining or
updating an install document of the present invention;
0047 FIG. 12 is an example of a dependency install
process of the present invention;

Feb. 9, 2006

0048 FIG. 13 is an example of a security context for
traditional applications,
0049 FIG. 14 is an example of a security context for
Virtual machine based applications,
0050 FIG. 15 is an example of a security context for
applications managed by a System of the present invention;
0051 FIG. 16 is an example of a security manager
process of the present invention;
0.052 FIG. 17 is an example of an architecture of a web
caching System of traditional web applications,
0053 FIG. 18 is an example of the architecture of a web
caching System for web applications of the present inven
tion;
0054 FIG. 19 is an example of a web caching manage
ment process utilizing a web browser caching mechanism of
the present invention;
0055 FIG. 20 is an example of a web caching manage
ment proceSS for web applications of the present invention
to manage their own caches,

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0056 Referring initially to FIG. 1, an example is shown
of a computing device that is capable of implementing the
features of the present invention. This computing device can
be, for example, a PC (personal computer), a workstation, or
a mainframe, and may typically include elements Such as:
one or more processors, e.g., CPUs (central processing
units) 101; input and output devices 103 such as a keyboard,
a mouse and a Screen monitor, main memory 104 Such as
RAM (random access memory); and storage memory 102
Such as disks. These elements are interconnected through a
bus 105 on which information can travel. AS is known, the
main memory 104 stores code being executed by the CPU
and the Storage memory 102 Serves as the permanent Storage
for the Systems (such as the operating System), the applica
tions (Such as the Software System of the present invention),
as well as the data.

0057 More generally, it is to be appreciated that the term
“processor as used herein is intended to include any pro
cessing device Such as, for example, one that includes a CPU
(as illustrated in FIG. 1) and/or other processing circuitry.
The term “memory' as used herein is more generally
intended to include memory associated with a processor or
CPU, such as, for example, RAM (as illustrated in FIG. 1),
ROM, a fixed memory device such as a hard disk (as
illustrated in FIG. 1), a removable memory device (e.g.,
diskette), flash memory, etc. In addition, the term "input and
output devices” as used herein is more generally intended to
include any computer-based input and output devices, for
example, one or more input devices, e.g., keyboard and
mouse (as illustrated in FIG. 1), for entering data to the
processing unit, and/or one or more output devices, e.g.,
display monitor (as illustrated in FIG. 1) and/or printer, for
presenting results associated with the processing unit. It is
also to be understood that the term “processor” may refer to
more than one processing device and that various elements
asSociated with a processing device may be shared by other
processing devices. Accordingly, Software components
including instructions or code for performing the method

US 2006/0031833 A1

ologies of the invention, as described herein, may be Stored
in one or more of the associated memory devices (e.g.,
ROM, fixed or removable memory) and, when ready to be
utilized, loaded in part or in whole (e.g., into RAM) and
executed by a CPU.
0.058 Referring now to FIG. 2, an example is shown of
a web application of the present invention. AS shown, a web
application 201 comprises one or more web pages 202. In a
preferred embodiment of the present invention, each web
page 202 of a web application 201 contains text composed
in any combinations of three types of languages: a visual
presentation language 203, a Script language 204 and a data
modeling language 205.
0059. The visual presentation language is used to provide
a graphic user interface (GUI) on the browser window. It can
be used to visually present the text or linked objects (such as
a voice or a graphic file), to receive user input, and transfer
data to and from a remote host through web browser. Those
skilled in the art will appreciate that currently the most
commonly used Visual presentation language for browserS is
HTML and the data transfer protocol used by browsers is
HTTP

0060. The script interpreter is used to parse and interpret
the text of the web page that is written in a Script language.
Those skilled in the art will appreciate that currently the
most commonly used Script language in web pages is
JavaScript. Script in a web page provides a way to embed
logic that creates dynamic Visual displayS or conducts imme
diate computations when its web page is processed. Tradi
tional Script language used in web pages is limited to the
browser functions and HTML elements. According to a
feature of the present invention, the Script language used in
a web application of the present invention can be extended
to contain function calls that have access to a full range of
operating System resources, including those beyond the
browser contexts (details depicted in FIGS. 4 and 8).
0061 The data modeling language is used to describe
certain data in web applications Such that their structures and
definitions of data elements inside them can be easily
applied by other applications that understand the same
language and uses the same definitions for data elements.
This way no specialized code is needed to decode data
received from other applications. Those skilled in the art will
appreciated that currently the most common language used
for data modeling on the Web is XML.
0.062 FIG. 3 depicts an overall software system archi
tecture of a preferred embodiment of the present invention.
In this embodiment, the Software System having the features
of the present invention comprises five Software compo
nents. They are the web application manager 302, the web
browser 303, the operating system interface module 304, the
Script interpreter 305 and the data modeling language parser
306. As depicted in FIG. 3, the four modules 303 through
306 can directly access operating system 307 resources by
calling the operating System APIs (depicted as the four links
between block 307 and the four modules 303 through 306,
respectively). The web application manager 302 is the
top-level module that executes web applications by driving
the other four modules. It does So by taking a web applica
tion 301 as input and executes the various language codes in
this applications web pages and invokes the other four
modules (303 through 306). FIG. 4 provides a more detailed
depiction of the process of the web application manager.

Feb. 9, 2006

0063 Those skilled in the art will appreciate that there
are a number of ways for one software module to drive other
Software modules. For example, in an object-oriented
approach, with all modules modeled as classes, a driving
class can create an instance of a driven class and calls the
methods associated with this driven class to invoke the
behavior of the former. In a non-object-oriented approach,
the driven modules can be invoked by the driving module
through the API functions provided by the former.

0064. Referring now to FIG. 4, the process of the web
application manager is shown. AS depicted in FIG. 4, the
web application manager executes a web application by first
reading the language code in the web pages of this appli
cation (step 401), and does not terminate (block 403) until
all code has been processed (step 402). For each unit of code
read, the web application manager determines the language
type of this code (step 404).
0065. If the language type of this code is visual presen
tation language, the web application invokes the Visual
presentation process (step 405) that takes this code as input.
If the language type of this code is the data modeling
language, the web application manager invokes the data
modeling process (step 406) that takes this code as the input.
If the language type is the Script language, the web appli
cation manager invokes the Script process (Step 407) that
takes this code as input.

0066. When the visual presentation process (step 405)
and the data modeling process (Step 406) terminate, they
return control back to the web application manager and
indicate to the latter if an exception has occurred (step 410).
If So, the web application manager invokes the exception
handling process (Step 411) and then terminates this execu
tion (block 403). If no exception occurs, the web application
manager goes on to read the next code unit (Step 401).
0067. When the script process (step 407) terminates and
returns control back to the web application manager, it
returns information about the Script code it just processed in
terms of whether this Script code belongs to the original
Script language under the browser contexts, or it is extended
code based on the features of the present invention to have
access to a full range of operating System APIs (step 408).
If this Script code is part of the original web page Script
language, it had already been parsed, decoded, and executed
by the script interpreter (module 305 in FIG.3) in the script
process (step 407). In this case, in this embodiment exem
plified in FIG. 4, the web application goes on to check if an
exception has occurred (step 410). If this Script code is an
extended call, then it has been parsed, decoded, but not
executed by the script interpreter (module 305 in FIG.3) in
the script process (step 407). Instead, the decoded informa
tion of this Script code is passed to the operating System
interface process (step 409) for execution. When the oper
ating System interface process (Step 409) completes the
execution for this Script, it returns control back to the web
application manager which then checks for an exception
(step 410) and processes the exception handling process
(step 411) if an exception has occurred, or, if not, goes on to
read the next code unit (step 401). The details of the visual
presentation process (step 405), the data modeling process
(step 406), the script process (step 407) and the operating
system interface process (step 408) are explained below in
the context of FIGS. 5, 6, 7 and 8, respectively.

US 2006/0031833 A1

0068 FIG. 5 is a detailed depiction of the visual presen
tation process (step 405 in FIG. 4). As depicted in FIG. 5,
the Visual presentation process takes, as input, Visual pre
Sentation code and checks to see if this code incurs any
Violations against the System policy as manifested by Secu
rity and cache Settings of the web application currently being
executed (Step 501). For example, one Security Setting for an
application may regulate that it can only link to a fixed
external URL (uniform resource locator). If in the visual
presentation process of an HTML code of this application, a
link different from that in the aforementioned Setting exists,
then this link causes a violation.

0069. If a violation occurs (step 502), the visual presen
tation process generates an exception (step 503) and then
returns this exception to the web application management
process (step 505) depicted in FIG. 4. Those skilled in the
art can appreciate that exceptions can be implemented in
various ways, including for example using error codes and
using objects of the object-oriented model to represent
exceptions. If the input visual presentation code causes no
Violations, the Visual presentation process passes this code to
the web browser module for execution (step 504).
0070 The web browser module (303 in FIG. 3) can be
the web browser software available in most computers in the
world. The most popular web browsers are Netscape TM and
Microsoft's Internet Explore TM. These two web browsers
Serve as client programs that use the HTTP to make requests
of web servers throughout the Internet on behalf of the
browser user. They also provide a graphic user interface to
display the retrieved web objects and to interact with the
user by accepting user input. Those skilled in the art can
appreciated that these two browser Software packages can be
incorporated by a Software System using various methods,
including for example linking and invoking APIs calls they
provide or incorporating their Source code for compilation.
In a preferred embodiment of the present invention, the web
application manager incorporates web browser Software and
drives it based on the processes depicted in FIGS. 3 and 4.

0071 FIG. 6 is a detailed depiction of the data modeling
process (step 406 in FIG. 4). As depicted in FIG. 6, the data
modeling process takes, as input, data modeling code (Step
601) and runs the data modeling module (306 in FIG. 3) to
decode the data types and values encoded in the input data
modeling code (step 602). After the data modeling module
is completed, the data modeling process returns control back
to the web application manager (step 603). Those skilled in
the art will appreciate that currently the most commonly
used data modeling language for web data is XML. The data
modeling module processing (step 602) in this embodiment
of FIG. 6 may therefore correspond to an XML parser.
Similar to the web browser Software, various versions of
XML parser software are available to be incorporated by a
Software System using the aforementioned methods in incor
porating the web browser Software.
0.072 FIG. 7 is a detailed depiction of the script process
(step 407 in FIG. 4). As depicted in FIG. 7, the script
process takes a Script code as input, then parses and inter
prets this code (701). If the code is a function call, the script
proceSS checks to see if this function is a Standard function
that is under the web browser contexts or an extended
function created based on the features of the present inven
tion to access the operating System resources beyond the

Feb. 9, 2006

browser contexts (step 702). If the function being interpreted
is a standard function, the Script process executes it (Step
703). If it is an extended function, without executing it, the
Script process checks to see if this function call would cause
any violations against any management policies (Step 704).
0073. In a preferred embodiment of the present invention,
an extended function can cause a management policy vio
lation by requesting operating System resources that are
configured by the System management to be beyond the
access of the underlying web application. For example, the
administrator of a Software System having the features of the
present invention can Set a limit of disk Storage quota for a
Specific application. During an execution of this application,
if an extended Script function call requests to allocate disk
Space that exceeds the disk quota for this application, this
call then causes a management policy violation.

0074 As depicted in FIG. 7, if a violation occurs (step
705), the Script process generates an exception for this
violation (step 706). Next, the script process terminates and
returns control back to the web application manager (Step
707).
0075 Those skilled in the art will appreciated that cur
rently the most commonly used Scripting language for web
pages is JavaScript. The parsing and interpreting proceSS
(step 701) and the executing step (step 703) in the script
processing of this preferred embodiment of FIG. 7 may
therefore correspond to the parsing, interpreting and execut
ing processes of the JavaScript software. Similar to the web
browser Software, the JavaScript Software can be incorpo
rated by a Software System using the aforementioned meth
ods in incorporating the web browser Software, and modified
Such that when an extended function call is parsed and
interpreted, instead of attempting to execute this call, it
returns and gives the information about this call to the web
application manager, which then uses the information about
this call as input and calls the operating System interface
process (step 409 in FIG. 4) to execute it.
0076 Referring now to FIG. 8, the operating system
interface process (step 409 in FIG. 4) that is called by the
web application manager to execute an extended Script call
is shown. As depicted in FIG. 8, the operating system
interface process takes an input which is information of an
extended script function call (step 801) and, for each
extended Script call, it executes a regular code that was
written with the native operating system APIs to perform the
task of its associated script call (step 802). After the pro
cessing of the native operating System APIs for executing
the Script function call, the operating System interface pro
cess returns control to the web application manager (Step
803).
0.077 FIG. 9 depicts an example 901 of an install docu
ment of an application used in accordance with the present
invention to properly install this application. AS depicted by
FIG. 9, the install document of an application may include,
but is not limited to, general information, Various required
components, dependency information, registry information,
Short cut information, Storage quota, and Security Settings of
this application.

0078 Those skilled in the art will appreciate that the
general information of an application may include, for
example, the Global Unique ID, title, author, description,

US 2006/0031833 A1

versions of this application. The required components of an
application may include, for example, the icon of this
application, HTML pages, Scripts, and other documents
required to run this application. The dependency informa
tion of an application may include, for example, all appli
cations that this application depends on in order to execute.
The registry information of an application may include, for
example, all registry entries required for this application to
execute properly. The short cuts for an application may
include, for example, the directory or the location in the
Storage management System in which this application is to
be stored, as well as all the links in the operating System
graphic user interface from which the icon of this applica
tion is visible and can be used to directly invoke the running
of this application. The Storage quota for an application may
include, for example, information that limits the maximum
disk Space which this application may use. The Security
information for an application may include, for example, the
abilities of this application to access operating System
resources, Such as, for example, the abilities to Spawn new
processes, to connect to certain external hosts, to execute
dynamic link library calls, to access file I/O (inputs/outputs),
to create Short-cuts and to access network and interface
ports. The install document may also include pre-install and
post-install Scripts which are logic in the form of Scripting
language that is required to execute before and after the
installation, respectively.
007.9 FIG. 10 depicts an example of the tasks performed
by an install manager of the present invention. AS depicted
by FIG. 10, to install an application, the install manager or
program 1003 of the present invention takes two inputs: the
application to be installed (block 1001) and the install
document for this application (block 1002). Next, the install
program 1003 sets up each setting in the install document of
this application (e.g., general information, components,
dependency, etc.) in order to establish an operating System
environment or context 1004 under which this application
can be properly executed.
0080 FIG. 11 is an example depicting how the install
manager 1103 having the features of the present invention
can be deployed to create or update an install document 1104
for an application. As depicted by FIG. 11, an install
document 1104 for an application can be downloaded from
a network Such as the Internet 1101. It can also be installed
through storage media such as diskettes or CD-ROMs 1102.
The install manager can also provide a graphic interface
1105 for the system administrator 1106 to configure an
existing install document 1104. Those skilled in the art will
appreciate that the install document for an application can be
written in a data modeling language Such as XML that is
widely used for modeling electronic documents.
0.081 Referring now to FIG. 12, the dependency instal
lation feature of an install manager of the present invention
is shown. As depicted in FIG. 12, the install manager first
checks the install document of the application to be installed
(step 1201) to see if any applications this target application
depends on are no yet installed (step 1202). If an application
the target application depends on is not installed, the install
manager may display a message about the “depended”
application and ask for the user's confirmation to install this
“depended” application first (step 1204). If the user confirms
(step 1206), the install manager may go to the network to
retrieve and install this “depended' application or asks the

Feb. 9, 2006

user to enter the proper portable Storage media Such as
diskettes or CD-ROMs to install it (step 1207). If the user
declines to install this “depended' application, the install
manager terminates the installation process (step 1205). If
all applications that the target application depends on are
installed (step 1202), the install manager installs the target
application (step 1203) before it terminates the installation
process (step 1205).
0082 FIG. 13 depicts the security context of traditional
applications, e.g., applications written in traditional 3GL/
4GL programming languages. The Security context of a
traditional application is the limits of access to the operating
System resources this application is restricted to. Traditional
applications typically call operating System APIs to access
operating System resources. AS depicted by FIG. 13, tradi
tional applications 1301 can call file I/O APIs to access the
file system 1302. They can call network APIs to access the
operating system's network services 1303. For process
management, the applications may call process APIs to
request operating System's proceSS management Services
1304. They can also call other operating systems APIs to
access other Services provided by the operating Systems. In
general, in this type of System, the Security context for an
application is the entire operating System 1305.
0083. In this security model, it is possible that a tradi
tional application can, inadvertently or maliciously, damage
not only its own data but those of other applications that
share the same computer System through the call of oper
ating System APIs.
0084 FIG. 14 depicts the security context of virtual
machine (VM) based applications. As depicted in FIG. 14,
direct calling of operating system 1406 APIs from the
applications is eliminated. Instead, applications 1401
request System resources through calls made to the Virtual
machine 1402. It is the virtual machine 1402 that makes the
operating Systems APIs acceSS operating System Services
such as the file system 1403, network services 1404, process
services 1405, and other operating system services on behalf
of the applications.
0085. In a virtual machine environment, such as the
JavaTM Virtual Machine, the security context of an applica
tion (such as a JavaTM program) is therefore defined by the
Virtual machine. A misbehaving application thus can only
create external damage allowable by the virtual machine.
However, there can be many different types of applications
running on the same virtual machine and while each one of
them may have a different Security need, they are forced to
run under the same Security context (that defined by the
Virtual machine).
0086) Referring now to FIG. 15, an example of an
architecture of a Security management System of the present
invention is shown. As depicted by the example in FIG. 15,
instead of Sharing one Security context, applications each
may have a unique list of Security Settings that define the
security context for each application. In FIG. 15, the Secu
rity context for application 1 (1503) is defined by security
settings 1 (1504); the security context for application 2
(1502) is defined by security settings 2 (1505); and the
security context for application 3 (1503) is defined by
security settings 3 (1506).
0087 Based on this preferred embodiment of the present
invention, applications calls that request operating System

US 2006/0031833 A1

1511 resources from the applications go through the appli
cation manager 1507 for security filtering. For example,
upon receiving a call from application 1 (1501), the appli
cation manager 1507 checks the security settings of this
application (1504) and makes sure that this call does not
Violate any of the Security Settings before it can be executed.
The security filtered calls may then be passed onto the APIs
associated with the file system 1508, the network services
1509 and the process services 1510 of the operating system
1511.

0088 FIG. 16 depicts a security filtering process of the
application manager (1507 in FIG. 15) having the features
of the present invention. As depicted by FIG. 16, the
application manager first receives a call from an application
(step 1601). Next, it checks the security settings of this
application for this call (step 1602).
0089. If a violation against the security settings exists for
this call (step 1603), the application manager may initiate a
security exception handling step (step 1604) before it ter
minates the process (step 1606) without executing this call.
A typical action to handle an exception may be to display an
error message and then exit the processing for the applica
tion that caused this exception. If no violations exist (Step
1603), the application manager processes this call by execut
ing operating system APIs (step 1605) before it terminates
the process (step 1606).
0090 Referring to FIG. 17, an architecture is shown of a
web caching System deployed by State-of-the-art browsers in
processing applications which comprise web pages. AS
depicted in FIG. 17, a user 1707 may use the browser 1704
to process applications (1701, 1702), such as a web-based
online purchasing application, or to Simply display Web
pages. The web caching System in this model is based on one
cache 1705 for all HTTP web objects displayed through this
browser 1704.

0.091 Based on this model, when the user requests a
HTTP web object through the web browser 1704, the
browser first checks its cache 1705 to see if the requested
web object exists in the cache (as shown, the web browser
and cache are associated with operating System 1706). If So,
the browser retrieves this object from the cache. If not, the
browser goes to the Source host of this object on the Internet
1703 and retrieves it through the Internet. In this case, the
browser may also insert this newly retrieved object in its
cache.

0092 For web browsers and web proxies that deploy a
conventional web caching System, Such as the one depicted
in FIG. 17, certain strategies may be used to remove objects
from the cache that are deemed out of date. One Strategy
may be to retrieve the meta-data from the Internet Source of
the requested object and compare that with the meta-data of
the same data in the cache to determine if the cached one is
outdated. Another Strategy may be to Set a time window and
to re-retrieve or to process the meta-data comparison based
on the above Strategy for any objects that have been cached
longer than this time window. A third Strategy may be to do
nothing and only to retrieve an object through the Internet if
it is not found in the cache or when the user requests So by
pressing the Reload button on the browser Screen.
0093. It is to be appreciated that cache coherency algo
rithms are not a feature of the present invention, hence any

Feb. 9, 2006

reasonable cache coherency algorithm can be deployed by a
web caching System of the present invention, as explained
below in the context of FIG. 18.

0094 FIG. 18 depicts an architecture of a web caching
system of the present invention. As depicted in FIG. 18, web
objects (1801) are retrieved via the Internet by the web
application manager (1804). For each web application (1802
or 1803), the web application manager creates a separate
web cache (1807 or 1808). In a preferred embodiment of the
present invention, the web cache for an application contains
two pools, one for HTTP objects and the other one for
non-HTTP objects. In this preferred embodiment, the web
application manager runs a separate copy of the web
browser software (1805 or 1806) for each web application,
and uses the web browser's web caching System to cache
HTTP objects for each application. Those skilled in the art
can appreciate that browser Software can be incorporated by
the present invention using various methods, including for
example linking and invoking APIs calls they provide or
incorporating their Source code for compilation. Alterna
tively, the web application manager can be developed with
the capabilities to create and manage a cache for HTTP
objects for each application without the incorporation of the
browser's caching System.
0095. In a preferred implementation of the present inven
tion, the web application manager provides cache manage
ment APIs to web applications to let them manage their own
caches for non-HTTP objects. Each web application can
manage a separate cache for non-HTTP web objects by
issuing these cache management APIs. Upon receiving these
API calls, the web application manager may then, on behalf
of the application issuing these calls, conduct cache man
agement tasks directly using the native operating System
1809 APIs.

0096 FIG. 19 depicts an example of an HTTP web object
retrieval process of a web application manager having the
features of the present invention. As depicted by FIG. 19,
the web application manager first receives a request for an
HTTP web object from an application (step 1901). Next, the
web application manager invokes web browser Software to
retrieve this HTTP web object (step 1902). The web browser
will retrieve this HTTP web object by first checking its web
cache 1907. If the web browser returns an exception in
retrieving this object (step 1903), the web application man
ager invokes the exception handling process (Step 1904)
before it terminates the process (step 1906). If no exception
occurred (step 1903), the web application manager sends the
object returned by the browser to the requesting application
(step 1905) and then terminates the process (step 1906).
0097 FIG. 20 depicts a process of the web application
manager of the present invention that executes non-HTTP
web object cache management APIs. According to the
present invention, a web application manages its own non
HTTP web object cache by calling cache management APIs.
AS depicted in FIG.20, upon receiving a cache management
API call (step 2001), the web application manager first
checks to see if this API call will result in any violations
against the cache Settings for the application that issues this
call (step 2002). For example, a cache violation may be
caused by a cache management API requesting Space for its
non-HTTP object cache that will result in the total storage
Space for the whole application exceeding that allowed for
this application.

US 2006/0031833 A1

0098) If a violation occurs (step 2003), the web applica
tion manager invokes the exception handling process (Step
2004) to handle this violation. A typical action may be to
display an error message and then exit the processing for the
application that caused this error. Next, if no violations
occur (step 2003), the web application manager processes
this API by executing native operating System APIs (step
2005) that directly manage the non-HTTP object cache 2008
for this application. Next, if any exceptions exist during the
cache management (Step 2006), the exception handling
process is invoked (step 2004). Otherwise, the API process
ing is complete and the process terminates (step 2007).
0099 Although illustrative embodiments of the present
invention have been described herein with reference to the
accompanying drawings, it is to be understood that the
invention is not limited to those precise embodiments, and
that various other changes and modifications may be made
by one skilled in the art without departing from the Scope or
spirit of the invention.

What is claimed is:
1. A method of installing web-based applications in a

computer System, the method comprising the Steps of:
obtaining a web-based application and an install docu

ment associated with the application, the install docu
ment including one or more installation Settings and
asSociated values Specific to the application and the
install document written in a particular data modeling
language;

decoding the one or more installation Settings and asso
ciated values of the install document;

establishing an operating System environment using the
one or more decoded installation Settings and asSoci
ated values in which the application can be properly
executed in accordance with the computer System; and

installing the application in the computer System.
2. The method of claim 1, wherein the install document

includes at least one of general information, component
information, dependency information, registry information,
Short cut information, Storage quota information, Security
information, a pre-installation Script and a post-installation
Script.

3. The method of claim 1, wherein the particular data
modeling language in which the install document is modeled
in is XML.

4. The method of claim 1, wherein the obtaining step
comprises downloading the install document from a net
work.

5. The method of claim 1, wherein the obtaining step
comprises retrieving the install document from the Internet.

6. The method of claim 1, wherein the obtaining step
comprises obtaining the install document from a portable
Storage medium.

7. The method of claim 1, wherein at least one of the
Settings in the install document relates to dependency infor
mation indicating whether the application being installed
depends on one or more other applications.

8. The method of claim 7, further comprising the step of
configuring the dependency Setting in the install document
by: (i) determining whether the one or more other applica
tions upon which the application depends have been previ
ously installed; (ii) when the one or more other applications

Feb. 9, 2006

upon which the application depends have not been previ
ously installed, installing the one or more applications
before installing the application.

9. The method of claim 8, wherein the dependency setting
configuration Step further includes prompting a user to
confirm or decline installation of the one or more other
applications upon which the application depends, prior to
installing the one or more other applications.

10. The method of claim 1, further comprising the step of
permitting modification of the install document.

11. Apparatus for installing web-based applications in a
computer System, the apparatus comprising:

at least one processor operative to: (i) obtain a web-based
application and an install document associated with the
application, the install document including one or more
installation Settings and associated values specific to
the application and the install document written in a
particular data modeling language; (ii) decode the one
or more installation Settings and associated values of
the install document; (iii) establish an operating System
environment using the one or more decoded installation
Settings and associated values in which the application
can be properly executed in accordance with the com
puter System; and (iv) install the application in the
computer System.

12. A Software System for installing web-based applica
tions in a computer System, the Software System comprising:

an application installation manager operative to: (i) obtain
a web-based application and an install document asso
ciated with the application, the install document includ
ing one or more installation Settings and asSociated
values specific to the application and the install docu
ment written in a particular data modeling language;
(ii) decode the one or more installation Settings and
associated values of the install document; (iii) establish
an operating System environment using the one or more
decoded installation Settings and associated values in
which the application can be properly executed in
accordance with the computer System; and (iv) install
the application in the computer System.

13. Apparatus for providing Security management with
respect to web-based applications running on a computer
System, the apparatus comprising:

at least one processor operative to: (i) obtain a set of
Security Settings for each web-based application to be
accessed on the computer System; and (ii) monitor
whether the execution of each web-based application
Violates the Security Settings associated there with.

14. The apparatus of claim 13, wherein each set of
Security Settings is unique.

15. The apparatus of claim 13, wherein at least one of the
web-based applications is composed of one or more web
pages and has access to one or more non-web browser-based
operating System resources associated with the computer
System.

16. A Software System for providing Security management
with respect to web-based applications running on a com
puter System, the Software System comprising:

a set of Security Settings for each web-based application
installed on the computer System; and

an application manager to: (i) obtain the set of Security
Settings for each web-based application; and (ii) moni

US 2006/0031833 A1

tor whether the execution of each web-based applica
tion violates the Security Settings of the application.

17. The software system of claim 16, wherein each set of
Security Settings is unique.

18. The software system of claim 16, wherein at least one
of the web-based applications is composed of one or more
web pages and has access to one or more non-web browser
based operating System resources associated with the com
puter System.

19. The software system of claim 16, wherein the security
Settings of an application may relate to one or more of: (i)
a disk quota for the application; (ii) an ability to spawn
processes; (iii) an ability to access certain external hosts; (iv)
an ability to access certain operating System resources, (v)
an ability to call dynamic link library calls; and (vi) an
ability to create Short-cuts.

20. The Software system of claim 16, wherein the moni
toring operation performed by the application manager
comprises: (i) retrieving the Security Settings for the appli
cation to be processed; (ii) calling a script interpreter to
parse each call in the application; (iii) for each call, checking
the Security Settings of the application to determine whether
a violation occurs; (iv) if a violation occurs, executing an
exception handling process, (v) if no violation occurs,
executing the call by one of calling the Script interpreter or
by calling one or more operating System application pro
gramming interfaces associated with the computer System.

21. The software system of claim 20, wherein a script
asSociated with the application is JavaScript and the Script
interpreter is a JavaScript interpreter.

22. The Software System of claim 16, further comprising
a data modeling language parser Such that the Security
Settings can be encoded using a corresponding data model
ing language.

23. The Software system of claim 22, wherein the data
modeling language is XML.

24. The software system of claim 16, wherein the appli
cation manager is further operative to permit modification of
the Sets of Security Settings.

25. Apparatus for providing cache management with
respect to web-based applications running on a computer
System, the apparatus comprising:

at least one processor operative to: (i) retrieve a web
based object from one of a network and a cache in
response to a request from a web-based application
running on the computer System; and (ii) provide a
cache management application programming interface

Feb. 9, 2006

for managing a cache of non-web-based objects in
response to a request from a web-based application
running on the computer System.

26. The apparatus of claim 25, wherein the at least one
processor is further operative to utilize a web browser to
retrieve the requested web-based object from one of the
network and the cache.

27. The apparatus of claim 25, wherein, in accordance
with the at least one processor, the web-based application
has a cache portion for maintaining web-based objects and
a cache portion for maintaining non-web-based objects
asSociated there with.

28. The apparatus of claim 25, wherein the cache man
agement application programming interface is implemented
in accordance with a Scripting language associated with a
web-based application.

29. The apparatus of claim 28, wherein the Scripting
language is JavaScript.

30. A Software System for providing cache management
with respect to web-based applications running on a com
puter System, the Software System comprising:

an application manager operative to: (i) retrieve a web
based object from one of a network and a cache in
response to a request from a web-based application
running on the computer System; and (ii) provide a
cache management application programming interface
for managing a cache of non-web-based objects in
response to a request from a web-based application
running on the computer System.

31. The software system of claim 30, wherein the appli
cation manager is further operative to utilize a web browser
to retrieve the requested web-based object from one of the
network and the cache.

32. The software system of claim 30, wherein, in accor
dance with the application manager, the web-based appli
cation has a cache portion for maintaining web-based
objects and a cache portion for maintaining non-web-based
objects associated therewith.

33. The software system of claim 30, wherein the cache
management application programming interface is imple
mented in accordance with a Scripting language associated
with a web-based application.

34. The software system of claim 33, wherein the script
ing language is JavaScript.

