
(19) United States
US 2005O187912A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0187912 A1
Matsa et al. (43) Pub. Date: Aug. 25, 2005

(54) MANAGEMENT OF CONFIGURATION DATA
USING EXTENSIBLE MARKUP LANGUAGE

(75) Inventors: Moshe E. Matsa, Cambridge, MA
(US); Julius Q. Quiaot, San Jose, CA
(US); Christopher R. Vincent,
Arlington, MA (US); Thomas D.
Brown, Champaign, IL (US)

Correspondence Address:
FLEIT, KAIN, GIBBONS, GUTMAN,
BONGIN
& BIANCO PL.
ONE BOCA COMMERCE CENTER
551 NORTHWEST 77TH STREET, SUITE 111
BOCA RATON, FL 33487 (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY

(21) Appl. No.: 10/786,786

(22) Filed: Feb. 24, 2004

Hierarchical
Configuration
Manager

108

Database

Publication Classification

(51) Int. Cl." ... G06F 7700
(52) U.S. Cl. .. 707/3

(57) ABSTRACT

A System, method and computer program product are pro
Vided for managing configuration data. According to the
method, a plurality of configuration values are Stored in a
hierarchical tree having a plurality of nodes, a defined
Structure, and defined data types for the Stored configuration
values, with each node being associated with at least one
configuration value. At least one application component is
registered with at least one of the nodes of the tree, based on
at least one query received from the at least one application
component. The at least one application component is noti
fied when a configuration value associated with the at least
one node is modified, based on an addition or change in at
least one configuration value that matches the at least one
query. In a preferred embodiment, the hierarchical tree is an
Extensible Markup Language (XML) tree, and an XML
Schema describes the structure of the XML tree and the data
types that are Stored.

104

Application
Component 1

Application
Component in

Patent Application Publication Aug. 25, 2005 Sheet 1 of 6 US 2005/0187912 A1

104

Application
Component 1

Hierarchical
Configuration
Manager

108 Application

C d Component in

Database

FIG. 1

Patent Application Publication Aug. 25, 2005 Sheet 2 of 6 US 2005/0187912 A1

204

N 2O6

Request for data

Access database for
requested data

Provide requested
data to requesting

party

Modification request

Modify configuration data
in Storage

ldentify components that
are registered with

modified data

hat type o
request?

214

Registe
212 request

Register with
the HCM

216

Notify components of
modified data

218

FG. 2

Patent Application Publication Aug. 25, 2005 Sheet 3 of 6 US 2005/0187912 A1

302

Initialize application component

Require config data?

304

306

Request configuration data
from HCM

3O8

Receive configuration data
from HCM and store data

310

equire config data
updates?

312

Register components with
HCM for configuration data

updates 314

316

FIG 3

Patent Application Publication Aug. 25, 2005 Sheet 4 of 6 US 2005/0187912 A1

402

Normal execution

Notification
received?

Request new configuration
data from HCM

Receive new configuration
data from HCM and store 410

404

406

408

FG. 4

Patent Application Publication Aug. 25, 2005 Sheet 5 of 6 US 2005/0187912 A1

504 506 508

StatuS
Application
Component

Instant Messaging
Server

Hierarchical
Configuration
Manager

Display
Application
Component

108

t
C d

Database

F.G. 5

Patent Application Publication Aug. 25, 2005 Sheet 6 of 6 US 2005/0187912 A1

() rose
606

() Main Memory
610

608

() Display Interface - D Display Unit

Secondary Memory

612

Communication
Infrastructure

(Bus)
618

Removable
Storage

Unit

622

Removable
Storage Drive

624 626

Communication () Communication Path Interface

FIG. 6

Removable
Storage

Unit

US 2005/0187912 A1

MANAGEMENT OF CONFIGURATION DATA
USING EXTENSIBLE MARKUP LANGUAGE

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention generally relates to the field of data
management and more Specifically to dynamic configuration
data management.
0003 2. Description of Related Art
0004. Application components, such as a Graphical User
Interface (GUI), an object, an Application Programming
Interface (API), a plug-in, an application, a user or the like,
often need to handle configuration data that dictates how an
application component will behave and interact with other
application components. Configuration data includes a plu
rality of configuration values, Such as data associated with
any of: user login information, an email application, an
instant messaging application, a Word processing applica
tion, a spreadsheet application, an image processing appli
cation or the like. AS configuration data changes, application
components must be able to receive those changes to operate
effectively. Thus, techniques for handling configuration data
must be able to handle changing configuration data, as well
as arbitrary Sets of data.
0005. An example of conventional configuration data
handling will be explained with reference to an email
application. Examples of configuration values that are
required by the email application are the user's preferred
Server for receiving incoming email, the protocol with which
to retrieve the mail, the user name, the reply-to address, and
various other information. An interface, Such as a GUI, may
allow the user to change any of the configuration data by
clicking on a menu option, Such as Properties, altering data
in the GUI and clicking OK. At this point, an update of the
configuration data occurs.
0006. In a conventional system that manages configura
tion data, upon clicking "OK, for each configuration value
that is changed, there is a corresponding code Segment that
is invoked. This code Segment identifies those variables that
must be altered and which application components must be
informed. For example, for certain configuration values, the
mail retrieval component must be notified, for certain con
figuration values the mail Sending component must be
notified, for Some configuration values all active windows of
the application must be notified, and So on. Finally, the
modified configuration values must be written to Some
persistent Storage. Thus, in a conventional System that
manages configuration data, when functionality is added to
the application, code segments must be added: 1) for the new
functionality, and 2) to the code for the properties dialog box
Such that it informs the new function when configuration
values are modified. As different modules of code are tied
together, the entire code is rendered more complex and
harder to write, change, and understand.
0007. The Microsoft Windows operating system does
include a “registry’ that Stores configuration data in a tree
format. More specifically, the registry is a System-defined
database in which each node in the tree is called a registry
key. Each registry key can contain Subkeys and/or data
values. Applications and System components use the registry
API to Store and manipulate configuration data in the

Aug. 25, 2005

registry's tree. In Windows 98 and newer versions, the
registry API includes a function, RegNotify ChangeKey
Value, that notifies the caller about changes to the attributes
or contents of a specified registry key. (A complete descrip
tion is available on the Web for the Windows registry at
“msdn.microsoft.com/library/default.asp?url=/library/en
uS/Sysinfo/base/registry. asp' and the links therein, and for
the RegNotify ChangeKeyValue function at “msdn.mi
crosoft.com/library/default.asp?url=/library/en-us/sysinfo/
base/regnotify changekey value.asp', which descriptions are
herein incorporated by reference.) While Microsoft Win
dows does include the registry for Storing configuration
values, the RegNotify ChangeKeyValue function provides an
application component with only limited functionality for
registering for notification of changes in the Stored configu
ration data.

0008. Therefore a need exists to overcome the problems
discussed above, and particularly for a way to more effi
ciently manage configuration data.

SUMMARY OF THE INVENTION

0009 Briefly, in accordance with the present invention,
disclosed is a System, method and computer program prod
uct for managing configuration data. One embodiment of the
present invention provides a method for managing configu
ration data. According to the method, a plurality of configu
ration values are Stored in a hierarchical tree having a
plurality of nodes, a defined structure, and defined data types
for the Stored configuration values, with each node being
asSociated with at least one configuration value. At least one
application component is registered with at least one of the
nodes of the tree, based on at least one query received from
the at least one application component. The at least one
application component is notified when a configuration
value associated with the at least one node is modified, based
on an addition or change in at least one configuration value
that matches the at least one query. In a preferred embodi
ment, the hierarchical tree is an Extensible Markup Lan
guage (XML) tree, and an XML schema describes the
structure of the XML tree and the data types that are stored.
0010 Another embodiment of the present invention pro
vides a computer System for managing configuration data.
The computer System includes an organization module that
organizes a plurality of configuration values into a hierar
chical tree having a plurality of nodes, a defined Structure,
and defined data types for the Stored configuration values,
with each node being associated with at least one configu
ration value. The computer System further includes Storage
that Stores the plurality of configuration values in the hier
archical tree and a registration module that registers at least
one application component with at least one of the nodes of
the tree, based on at least one query received from the at
least one application component. The computer System also
includes a notification module that notifies the at least one
application component when a configuration value associ
ated with the at least one node is modified, based on an
addition or change in at least one configuration value that
matches the at least one query.
0011. The foregoing and other features and advantages of
the present invention will be apparent from the following
more particular description of the preferred embodiments of
the invention, as illustrated in the accompanying drawings.

US 2005/0187912 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The subject matter, which is regarded as the inven
tion, is particularly pointed out and distinctly claimed in the
claims at the conclusion of the Specification. The foregoing
and other features and also the advantages of the invention
will be apparent from the following detailed description
taken in conjunction with the accompanying drawings.
Additionally, the left-most digit of a reference number
identifies the drawing in which the reference number first
appearS.

0013 FIG. 1 is a block diagram illustrating the overall
System architecture of one embodiment of the present inven
tion.

0.014 FIG. 2 is a flowchart depicting the overall opera
tion and control flow of the hierarchical configuration man
ager of one embodiment of the present invention.
0.015 FIG. 3 is a flowchart depicting the operation and
control flow of the application component start-up proceSS
of one embodiment of the present invention.
0016 FIG. 4 is a flowchart depicting the operation and
control flow of the application component execution proceSS
of one embodiment of the present invention.
0017 FIG. 5 is a block diagram of an exemplary system
architecture for an instant messaging application according
to one embodiment of the present invention.
0018 FIG. 6 is a block diagram of a computer system
useful for implementing the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

1. Introduction

0019. The present invention, according to a preferred
embodiment, overcomes problems with the prior art by
providing an efficient and easy-to-implement method for
managing configuration data using Extensible Markup Lan
guage (XML).
0020 Preferred embodiments of the present invention
provide the ability for application components, Such as a
Graphical User Interface (GUI), an object, an Application
Programming Interface (API), a plug-in, an application, a
user or the like, to handle changing configuration data, and
handle configuration data in a hierarchical structure (for
example, using the extensibility of XML). Configuration
data includes a plurality of configuration values.
0021. The embodiments of the present invention organize
configuration data into a hierarchical tree. Application com
ponents can register interest in a particular node of the tree,
or a particular Sub-tree. By registering interest, these com
ponents receive notifications whenever a configuration value
changes. Any component that is a current holder of a
registration or reference will be notified when a configura
tion value changes. Because the configuration values are
arranged hierarchically in a tree Such as an XML tree, the
programmer and various application components can regis
ter for callbacks or notification upon modification of any
nodes in any Sub-tree.
0022. The structure of the configuration data in the XML
tree can be altered, for example by adding more Sub-nodes

Aug. 25, 2005

to a particular node in the tree. An interested party to the
changed Sub-tree will now receive the new configuration
data, but will only utilize what that party originally was
programmed to handle. In other words, the addition of new
data to a Sub-tree has no effect on a registered party's ability
to handle that Sub-tree of configuration data.
0023 The present invention allows an application com
ponent to register itself as an interested party to any change
in a configuration value. The present invention preferably
uses XML to organize the configuration data, and allows an
application component to register itself as an interested party
to not only a single configuration value but possibly an entire
Sub-tree of configuration values. Also, because XML is used
to represent the tree, a Sub-tree of configuration data can
easily be expanded, with no change in how an application
component handles those configuration values.

2. Using XML and Hierarchical Trees
0024 AS explained above, the present invention provides
a method for managing configuration data using a hierar
chical Structure. The present invention provides the ability
for application components, Such as a GUI, an object, an
API, a plug-in, an application, a user or the like, to handle
changing configuration data, and preferably utilizes the
extensibility of XML to handle the configuration data by
organizing it into an XML tree.
0025 XML is an initiative defining a simple dialect of
Standard Generalized Markup Language (SGML) suitable
for use on the World-Wide Web. XML is a simple, very
flexible text format derived from SGML (ISO 8879). Origi
nally designed for large-scale electronic publishing, XML is
playing an increasingly important role in the exchange of a
wide variety of data on the Web and elsewhere. The current
XML specifications, “Extensible Markup Language (XML)
1.0 (Second Edition)" and “XML 1.1", are available on the
Internet at “www.w3.org/XML/Core/#Publications”, which
is herein incorporated by reference.
0026 Structured data includes items like spreadsheets,
address books, configuration parameters, financial transac
tions, and technical drawings. XML is a set of rules for
designing text formats for the Structuring of data. XML is
not a programming language. XML allows an application to
generate data, read data, and ensure that a data structure is
unambiguous. XML avoids common pitfalls in language
design: it is extensible, platform-independent, and Supports
internationalization and localization. XML is fully Unicode
compliant.
0027 SGML is a generic markup language for represent
ing documents. SGML is an International Standard that
describes the relationship between a document's content and
its structure. SGML allows document-based information to
be shared and re-used acroSS applications and computer
platforms in an open, vendor-neutral format. SGML is
Sometimes compared to Structured Query Language (SQL),
in that it enables companies to Structure information in
documents in an open fashion, So that it can be accessed or
re-used by any SGML-aware application acroSS multiple
platforms. SGML is defined in “ISO 8879:1986 Information
processing-Text and office Systems-Standard General
ized Markup Language (SGML)”, which is available from
the International Organization for Standardization
(www.iso.ch) and herein incorporated by reference.

US 2005/0187912 A1

0028. Unlike other common document file formats that
represent both content and presentation, SGML represents
only a documents content data and structure (interrelation
ships among the data). Removing the presentation from
content establishes a neutral format. SGML documents and
the information in them can be re-used by publishing and
non-publishing applications.

0029 SGML identifies document elements such as titles,
paragraphs, tables and chapters as distinct objects, allowing
users to define the relationships between the objects for
Structuring data in documents. The relationships between
document elements are defined in a DTD (Document Type
Descriptor). This is roughly analogous to a collection of field
definitions in a database. Once a document is converted into
SGML and the information has been tagged with DTDs, it
becomes a database-like document. It can be searched,
printed or even programmatically manipulated by SGML
aware applications.
0030 AS explained above, the present invention orga
nizes configuration data into a hierarchical tree. A tree
comprises a plurality of nodes and relationships between
nodes. Various types of trees can be used. A binary tree is a
tree in which each node has at most two Successors or child
nodes. A balanced tree is an optimization of a binary tree,
which aims to keep equal numbers of items on each side of
each node So as to minimize the maximum path from the
root to any leaf node. AS items are inserted and deleted with
a binary tree, the tree is restructured to keep the nodes
balanced and the Search paths uniform. Such a tree is
appropriate when the overhead for the reorganization of the
tree on update is outweighed by the benefits of faster
Searching through a tree.
0031. In one embodiment of the present invention, each
node of the tree includes at least one configuration value,
and, optionally, a reference to at least one other node.
Configuration values can be any configuration data, Such as
data associated with user login information, an email appli
cation, an instant messaging application, a Word processing
application, a Spreadsheet application, or an image process
ing application.

3. Exemplary Email Application Implementation
Using XML

0032. An email application is described below to illus
trate the principles of one embodiment of the present inven
tion. Examples of configuration values that are required by
various components of the email application are the user's
preferred Server for receiving incoming email, the protocol
with which to retrieve the mail, the user name, the reply-to
address, and various other information. An interface, Such as
a GUI, may allow the user to change any of the configuration
data above by clicking on a menu option, Such as Proper
ties, altering data in the GUI and clicking OK. At this
point, an update of the configuration data occurs.
0033. In a conventional system that manages configura
tion data, upon clicking "OK, for each configuration value
that is changed, there is a corresponding code Segment that
is invoked. This code Segment identifies those variables that
must be altered and which application components must be
informed. For example, for certain configuration values, the
mail retrieval component must be notified, for certain con
figuration values the mail Sending component must be

Aug. 25, 2005

notified, for Some configuration values all active windows of
the application must be notified, and So on. Finally, the
modified configuration values must be written to Some
persistent Storage. Thus, in a conventional System that
manages configuration data, when functionality is added to
the application, code segments must be added 1) for the new
functionality and, 2) to the code for the properties dialog box
Such that it informs the new function when configuration
values are modified. As different modules of code are tied
together, the entire code is rendered more complex and
harder to write, change, and understand.
0034. The present invention, however, provides advan
tages over a conventional System that manages configuration
data. The present invention includes a Hierarchical Configu
ration Manager (HCM) that manages all configuration data.
Upon start-up, the HCM of the preferred embodiment ini
tializes from Some persistent Store, Such as a configuration
file of Saved configuration values. When each application
component Starts-up or changes, it checks the configuration
values in the HCM, and utilizes them. If the application
component requires the current version of a configuration
value, the application component registers for callback, or
notification, with the HCM upon change of that configura
tion value.

0035. For example, an email reply window might register
for the configuration value Properties/User Settings/User
Data/Current User/Reply To Address which is originally set
to defaultG example.com. This configuration value is then
displayed in the email reply window as if it is part of the
current email message. If the user then changes the reply-to
address to meGexample.com the HCM is notified of the
change. Application components that register with this con
figuration value are notified of the change by the HCM,
which also writes the new data out to persistent Storage.
0036) Thus, using the present invention, when adding
functionality to an application, only code Segments describ
ing the new functionality must be added. Because of the
extensible and hierarchical nature of the tree used by the
HCM, there is no need for new code segments to be added
to the HCM. If one application component registers for all
configuration values in a Sub-tree, that application compo
nent will receive all of those configuration values even if
Some of the configuration values were added by code written
after the requesting proceSS was written. In this case, the
application component can either ignore the new configu
ration values or display them in a generic fashion. This
paradigm decouples the code that alters configuration data
from the code that uses the configuration data. The result of
this improved proceSS is that code is simpler, leSS complex,
and easier to write, change, and understand.

4. Exemplary Instant Messaging Application
Implementation

0037. An instant messaging application is described
below to illustrate the principles of another embodiment of
the present invention. The instant messaging application is
written in a programming language, Such as a high level
object-oriented language (e.g., C++). The instant messaging
application allows the instantaneous exchange of text mes
Sages between users, who are typically connected via a
central Server. The instant messaging application allows
users to maintain lists of users (i.e., buddy lists), View the

US 2005/0187912 A1

Status of users (e.g., currently online, offline, busy and not
accepting messages) and compose and Send text messages.
0.038. Different application components manage various
aspects of the instant messaging application. For example,
the Graphical User Interface (GUI) application component
handles graphical display of the buddy list, perhaps using
colors and icons to indicate buddy Status (online and offline),
and provides a means for the user to Send and receive
messages to buddies. Underneath the interface is the appli
cation’s “busineSS logic', for managing connections to Vari
ous instant messaging Servers, internal representations of
buddy lists, information about the current user of the appli
cation, preferences, and So on.
0.039 Conventionally, each application component main
tains its list of configuration values that it requires for
operation. For instance, the GUI application component
maintains its own buddy list, along with extra information
possibly needed for display purposes (see List A below). A
connection manager application component maintains its
version of a buddy list, with information related to the type
of connection each buddy uses (see List B below).

LISTA
BUDDY: Abe: STATUS: Online; ICON: 1
BUDDY: Bill; STATUS: Busy; ICON: 2
BUDDY: Carol; STATUS: Offline; ICON: 3

LISTB

BUDDY: Abe: SERVER: AOL
BUDDY: Bill; SERVER: Sametime
BUDDY: Carol; SERVER: Yahoo

0040. In this embodiment of the present invention, all the
configuration data that each application component requires
is consolidated into one managing object. Furthermore, the
configuration values are arranged in a way that allows
application components to share common data in addition to
data Specific to each component. Additionally, application
components are allowed to register interest in one or more
configuration values, So that the application component can
be notified if any changes occur.
0041. The managing object is referred to as a Hierarchal
Configuration Manager, or HCM. The HCM internally
maintains a tree Structure for the configuration data, with
Sub-trees representing collections of related data. Below is
shown a Subset of an XML tree data structure that holds
configuration data, including the buddy list configuration
data of List A and List Babove.

CONFIGs
BUDDYLIST

BUDDY.
<NAMEAbe&/NAMEs
<STATUS-Online</STATUS
&ICON-1</ICON
<SERVERAOL&FSERVER

</BUDDYs
BUDDY.

<NAME-Bill &/NAMEs
<STATUS:Busya/STATUS:
&ICON >2</ICON
<SERVERSametime</SERVER

</BUDDYs

Aug. 25, 2005

-continued

BUDDY.
<NAME-Carol&/NAMEs
<STATUS-Offline</STATUS
&ICON-3</ICON
<SERVERYahoo</SERVER

</BUDDYs
</BUDDYLIST

</CONFIGs

0042. The HCM maintains the configuration data for all
application components. Where configuration data may
overlap, the HCM nests them under a common sub-tree. In
our example, both the user interface application component
and the connection manager application component require
knowledge of the buddy list. Both application components
would query the HCM for the sub-tree CONFIG:BUDDYL
IST, and would receive all the configuration data in that
Sub-tree. The user interface application component can then
access configuration data for each BUDDY in the BUD
DYLIST, and only use the configuration values it needs
namely, the buddy name, icon, and Status configuration
values. Similarly, the connection manager application com
ponent only uses the buddy name and Server configuration
values.

0043. In addition to this consolidation and reorganization
of configuration data, the HCM provides a facility for
application components to register “interest” in Subsets or
Sub-trees of configuration data. In one embodiment, the user
interface application component needs to know if and when
a buddy's Status changes. Another application component,
Such as a Status updater application component, communi
cates with the instant messaging Servers and receives noti
fications for any Status changes. When a status change
occurs, the Status updater application component Sends a
message to the HCM. The HCM determines which buddy's
Status has changed, and updates its internal data Structures
accordingly. Furthermore, because the user interface appli
cation component has registered its interest for changes in
buddy status, the HCM will send the updated data (or a
notification of data update) to the user interface application
component, at which point the user interface application
component can update its display.
0044) The hierarchical nature of the HCM and the XML
tree provides various advantages. One advantage is a uni
form interface for managing and accessing configuration
data. Another advantage is that the code that each individual
application component must implement to manage its con
figuration data is consolidated into one managing object
the HCM. Application components Send a message to or
issue a function call against the HCM to retrieve a sub-tree
or subset of configuration data. Standard APIs are used to
navigate the Sub-tree and retrieve Specific configuration
values. For example, in an XML implementation, generic
XML tree manipulation APIs, such as the MSXML library,
can be used.

5. Overview of the System
004.5 FIG. 1 is a block diagram illustrating the overall
System architecture of one embodiment of the present inven
tion. FIG. 1 shows the HCM 102, and a database 108, which
is any commercially available data repository System or
database, including a database management System.

US 2005/0187912 A1

0.046 FIG. 1 further shows application components 104
through 106, which comprise the components of an appli
cation program, Such as an email application, an instant
messaging application, a Word processing application, a
Spreadsheet application or an image processing application.
An application component can be a GUI, an object, an API,
a plug-in, an application, a user or the like. Although FIG.
1 shows only two application components 104 and 106, the
present invention Supports any number of application com
ponents and Subcomponents.
0047. In this embodiment of the present invention, the
system of FIG. 1 is one or more Personal Computers (PCs)
(e.g., IBM or compatible PC workstations running the
Microsoft Windows operating system, Macintosh computers
running the Mac OS operating System, or equivalent), main
frame computers (e.g., IBM S/390), Personal Digital Assis
tants (PDAS), hand held computers, palm top computers,
Smart phones, game consoles or any other information
processing devices. In another embodiment, the System of
FIG. 1 is a server system (e.g., SUN Ultra workstations
running the SunOS operating system or IBM RS/6000
workstations and Servers running the AIX operating System).
The system of FIG. 1 is described in greater detail below
with reference to FIG. 6.

0.048. In this embodiment of the present invention, all of
the elements and modules of the system of FIG. 1 are
located on one computer System. In another embodiment of
the present invention, the elements and modules of the
system of FIG. 1 are distributed over a distributed computer
system. This embodiment allows for the use of the present
invention in a distributed computing environment. This also
allows for the remote Storage and/or backup of the infor
mation in database 108. This is beneficial as it allows for
more than one copy of the database 108 to exist on a
network, which reduces the possibility of information loSS in
the event of a System crash or other disaster.
0049 FIG. 2 is a flowchart depicting the overall opera
tion and control flow of the hierarchical configuration man
ager of one embodiment of the present invention. The
operation and control flow of FIG. 2 depicts the overall
processes of the present invention. The operation and control
flow of FIG. 2 begins with step 202 and proceeds directly
to step 204.
0050. In step 204, the HCM 102 is initialized, which
includes the reading of configuration data from the database
108. In step 206, it is determined whether a request is
received. If the result of the determination of step 206 is
affirmative, then control flows to step 208. Otherwise, con
trol flows to step 207. In step 207, HCM 102 waits for a
predetermined period of time, after which control flows back
to step 206. In step 208, it is determined which type of
request was received in Step 206. If the request is a request
for configuration data, then control flows to step 210. If the
request is a request to modify configuration data, then
control flows to Step 214. If the request is a registration
request, then control flows to step 220.
0051). In step 210, the HCM 102 accesses the database
108 for the requested configuration data. In step 212, the
requested configuration data is provided to the requesting
party by the HCM 102. In one example of the execution of
StepS 204-212, an email application component Sends a
request to the HCM 102 for a reply-to email address. The

Aug. 25, 2005

HCM 102 accesses the database 108, retrieves the requested
configuration value and provides to the email application
component. After step 212, control flows back to step 207,
where the process is repeated.

0052. In step 214, the HCM 102 receives a request to
modify configuration data and accesses the database 108 to
modify the configuration data. In step 216, the HCM 102
identifies those application components that have registered
to be notified when this configuration value is modified. In
step 218, the HCM 102 notifies those application compo
nents that have registered to be notified when the modified
configuration value is modified. In one example of the
execution of steps 204-218, a GUI being utilized by a user
sends a request to the HCM 102 to modify a reply-to email
address. The HCM 102 accesses the database 108, modifies
the configuration value and notifies those application com
ponents that have registered to be notified when that con
figuration value is modified. After step 218, control flows
back to step 207, where the process is repeated.
0053. In step 220, the HCM 102 receives a registration
request. Consequently, the HCM 102 registers the applica
tion component as an interested party to receive notification
whenever there is any change in one or more Specified
configuration values. For example, the application compo
nent can register interest in a particular node of the hierar
chical tree (i.e., a single configuration value) or an entire
Sub-tree of configuration values. After Step 220, control
flows back to step 207, where the process is repeated.

6. The Dynamic Configuration Data Update Process

0054 FIG. 3 is a flowchart depicting the operation and
control flow of the application component start-up process
of one embodiment of the present invention. The operation
and control flow of FIG. 3 begins with step 302 and
proceeds directly to step 304. In step 304, the application
component, Such as application component 104, is initial
ized. In step 306, it is determined whether the application
component requires configuration data from the HCM 102.
If the result of the determination of step 306 is affirmative,
control flows to step 308. Otherwise, control flows to step
316.

0055. In step 308, the application component requests
certain configuration data from the HCM 102. In step 310,
the application component receives the requested data from
the HCM 102 and stores the data. More detail on the data
request and response is described above with respect to Steps
206 to 212 of FIG. 2. In step 312, it is determined whether
the application component requires updates on the configu
ration data from the HCM 102. If the result of the determi
nation of step 312 is affirmative, control flows to step 314.
Otherwise, control flows to step 316.
0056. In step 314, the HCM 102 registers the application
component as an interested party to receive notification
whenever there is any change in one or more Specified
configuration values, as described above with reference to
step 220 of FIG. 2. In general, more detail on data modi
fication requests and corresponding responses is provided
above with respect to steps 206 to 218 of FIG.2. In step 316,
the control flow of FIG. 3 stops.
0057 FIG. 4 is a flowchart depicting the operation and
control flow of the application component execution process

US 2005/0187912 A1

of one embodiment of the present invention. The operation
and control flow of FIG. 4 begins with step 402 and
proceeds directly to step 404. In step 404, the application
component, Such as application component 104, executes
normally. In step 406, it is determined whether the applica
tion component has received a configuration data modifica
tion notice from the HCM 102. If the result of the determi
nation of step 406 is affirmative, control flows to step 408.
Otherwise, control flows back to step 404.
0.058. In step 408, the application component requests
certain configuration data (the configuration data referenced
in the notification of step 406) from the HCM 102. In step
410, the application component receives the requested con
figuration data from the HCM 102 and stores the data. More
detail on the data request and response is provided above
with respect to steps 206 to 212 of FIG. 2. In one alternative
embodiment of the present invention, the configuration data
referenced in the notification of step 406 is automatically
transmitted to the application component in Step 406, elimi
nating the need for step 408. Subsequent to step 410, control
flows back to step 404.
0059 FIG. 5 is a block diagram of an exemplary system
architecture for an instant messaging application according
to one embodiment of the present invention. FIG. 5 shows
the HCM 102 and the database 108. FIG. 5 also shows an
instant messaging Server 508 for handling instant messaging
functions over a network. The instant messaging server 508
is connected to a network 506.

0060. In one embodiment of the present invention, the
network 506 is a circuit Switched network, Such as the Public
Service Telephone Network (PSTN). In another embodi
ment, the network is a packet Switched network. The packet
switched network is a wide area network (WAN), such as the
global Internet, a private WAN, a local area network (LAN),
a telecommunications network or any combination of the
above-mentioned networks. In yet another embodiment, the
network is a wired network, a wireleSS network, a broadcast
network or a point-to-point network.
0061 FIG. 5 also shows a display application component
502, or GUI, that handles graphical display of certain
information, Such as a buddy list, perhaps using colors and
icons to indicate buddy Status, and provides a means for the
user to Send and receive messages to buddies.
0.062 FIG. 5 also shows a status application component
504 that communicates with the instant messaging Server
508 and receives notifications for any status changes. When
a Status change occurs, the Status application component 504
sends a message to the HCM 102. The HCM 102 determines
which buddy's Status has changed, and updates its internal
data structures in the database 108 accordingly. Further
more, because the display application component 502 has
registered its interest for changes in buddy status, the HCM
102 Sends the updated configuration data to the display
application component 502, at which point the display
application 502 component can update its display.

7. Tree and Queries in an Exemplary XML
Implementation

0.063. In this exemplary implementation, an XML tree is
used to store the configuration data. The XML tree includes
user-definable types for defining Structures. The configura

Aug. 25, 2005

tion manager provides a System and Syntax to allow appli
cation components to define queries that refer to the Struc
ture of the XML tree and the stored configuration values.
The configuration manager parses the XML tree and notifies
the application component when values matching its query
are added or changed. Some exemplary Scenarios that Show
the power and flexibility of this configuration manager will
now be described with reference to the following portion of
an XML schema and portion of a hierarchical XML tree.

<xsd:element name="user type="client1:user />
<xsd:complexType name="user's

<Xsd:sequences
<xsd:element name="name type="other:name f>
<xsd:element name="id type="other:email-address' fs
<Xsd:element name="nickname' type="xsd:string f>
<xsd:element name="homepage' type="xsd:anyURI fs

</xsd:sequences
</xsd:complexTypes

<instant-messaging-config>
<login-inford

</login-inford

<SeS>

<user Xsi:type="client1:user's
<name title="Dr. Alice B. Smith.</name>
<ideabsmithGibm.com.<fids
<nickname>Alice</nickname>
<homepage: http://ibm.com/smith?alice.htmlk/homepages
<...f>

<fusers
<users ... <fusers
<users ... <fusers

<fusers>

</instant-messaging-config>

0064. The first schema fragment above defines the XML
data structure for a valid “user” in the buddy list of an instant
messaging client1 application. This user is defined as a new
type on the Second line above. In the first Scenario, the
application component that implements Support for instant
messaging client1 registers its interest in configuration Val
ues by Submitting a query to the configuration manager. The
configuration manager then notifies the application compo
nent upon any new element matching the query. For
example, if the configuration manager is built around an
XML parser that uses the Standard Xpath Syntax for querying
an XML document, then the query “instant-messaging
config/userS/user' requests that the application component
be notified whenever a new user is added to the buddy list.
The Xpath parser would also be general enough to allow an
application component to make more Specific queries, Such
as whether any user added to the buddy list has an “ID'
element containing "(Glcompany.com'. A description of
xpath is available on the Internet at “www.w3.org/TR/
Xpath', which is herein incorporated by reference.
0065. The application component can submit a one-time
query, or can Set up a Standing query So that the configura
tion manager notifies the application component whenever a
change in configuration data matches that component's
query. For example, this would allow an application com
ponent to be written to perform additional processing when
ever a new user added to the buddy list has an “ID' element
containing "(a)company.com', Such as filling in information

US 2005/0187912 A1

in the user's profile from a corporate database. Further, the
application component could request notification for any
change in the configuration data of any user added to the
buddy list having an "ID' element containing “Gcompany
.com', So as to be alerted to office moves by the corporate
database's configuration manager.

0066. The portion of the XML tree shown below is used
in the Second Scenario.

<user Xsi:type="client1:user's
<name>John Q. Smith.</name>
<id>jqsmith(Gibm.com.<?ide
<nickname>Johnny</nickname>
<homepage: http://ibm.com/John-Q-Smith.htmlk/homepages
<... f>

<fusers

0067. In this second scenario, a second application com
ponent that integrates with a web browser's “favorites' list
Submits a query So as to register with the configuration
manager for notification upon any new element matching the
standard W3C XML schema type “xsd:URI”. (A description
of the standard W3C XML Schema is available on the
Internet at “www.w3.org/TR/xmlschema-1” and
“www.w3.org/TR/xmlschema-2', which are herein incorpo
rated by reference.)
0068). If “John Smith’ is then added to the buddy list of
application client 1 through the Schema fragment above, the
configuration manager notifies the Second application com
ponent that it found a URI Schema type in this new con
figuration data. This would allow the Second application
component to pop up a window to ask the user whether this
URI should be added to the favorites list. Thus, anytime an
element of the specified type is added anywhere in the XML
tree, the application component is notified, even if the
application component knows nothing about the Structure of
that portion of the XML tree.
0069. The following schema fragment is used in the third
Scenario.

<xsd:element name="user type="client2:user />
<xsd:complexType name="user's

<Xsd:sequences
<xsd:element name="name type="other:name f>
<xsd:element name="id type="other:email-address' fs
<xsd:element name="picture type="xsd:URI fs
<xsd:element name="public-key type="xsd:hexBinary f>

</xsd:sequences
</xsd:complexTypes

<Xsd:complexType name="required-user-info''>
<Xsd:sequences

<xsd:element name="name type="other:name f>
<xsd:element name="id type="other:email-address' fs
<xsd:any namespace="##other processContents="skip

minOccurs="O' maxOccurs="unbounded f>
</xsd:sequences

</xsd:complexTypes

0070. In this third scenario, a third application compo
nent Supports instant messaging client2. This third applica
tion component desires to be notified of all users that are
added to the XML tree by any application regardless of the

Aug. 25, 2005

Schema type that was used to validate that user's data when
it was added to the XML tree, so as to allow the third
application component to use just the new user's name and
id values to query the client2 application's user database. If
a match is found in this database, then the third application
component can pop up a window to ask whether this new
user should also be added to the client2 application. For this
purpose, the XML Schema fragment above shows the
schema type definition for the “user' type used by the client2
application, as well as a Schema type definition for the
minimum amount of information that is needed in order to
identify a user. The third application component registers
with the configuration manager to be notified whenever a
new element is added using Xpath query “instant-messaging
config/userS/user'. This query validates against the type
client2:required-user-info. So, when John Smith is added,
the configuration manager tries to validate the data for the
new user against the type client2:required-user-info. In other
words, the configuration manager ignores what the type
actually is, and tries parsing it as a different type. If it
Succeeds, then the third application component is notified.
0071 Accordingly, embodiments of the present invention
provide for Storage of configuration values of various types
in a structured hierarchy. Application components create
complex queries that depend on location in the hierarchy,
data types, and/or actual Stored values. The queries may also
match Subtrees of the hierarchy. The configuration manager
notifies components when values matching a query are
added or changed. For example, XML can be used to
provide a structure for storing such a hierarchy. The XML
Schema describes this structure and the types it stores,
application components describe queries (e.g., using Xpath)
that trigger notification.

8. Exemplary Implementations
0072 The present invention can be realized in hardware,
Software, or a combination of hardware and Software in a
computer. A computer System according to a preferred
embodiment of the present invention can be realized in a
centralized fashion in one computer System, or in a distrib
uted fashion where different elements are spread acroSS
Several interconnected computer Systems. Any kind of com
puter System-or other apparatus adapted for carrying out
the methods described herein-is Suited. A typical combi
nation of hardware and Software could be a general-purpose
computer System with a computer program that, when being
loaded and executed, controls the computer System Such that
it carries out the methods described herein.

0073. An embodiment of the present invention can also
be embedded in a computer program product, which com
prises all the features enabling the implementation of the
methods described herein, and which-when loaded in a
computer System-is able to carry out these methods. Com
puter program means or computer program as used in the
present invention indicates any expression, in any language,
code or notation, of a Set of instructions intended to cause a
System having an information processing capability to per
form a particular function either directly or after either or
both of the following a) conversion to another language,
code or, notation; and b) reproduction in a different material
form.

0074. A computer system may include, inter alia, one or
more computers and at least a computer program product on

US 2005/0187912 A1

a computer readable medium, allowing a computer System,
to read data, instructions, messages or message packets, and
other computer readable information from the computer
readable medium. The computer readable medium may
include non-volatile memory, such as ROM, Flash memory,
Disk drive memory, CD-ROM, and other permanent storage.
Additionally, a computer readable medium may include, for
example, Volatile Storage Such as RAM, buffers, cache
memory, and network circuits. Furthermore, the computer
readable medium may comprise computer readable infor
mation in a transitory State medium Such as a network link
and/or a network interface, including a wired network or a
wireleSS network, that allow a computer System to read Such
computer readable information.
0075 FIG. 6 is a block diagram of a computer system
useful for implementing an embodiment of the present
invention. The computer system of FIG. 6 includes one or
more processors, such as processor 604. The processor 604
is connected to a communication infrastructure 602 (e.g., a
communications bus, cross-over bar, or network). Various
Software embodiments are described in terms of this exem
plary computer System. After reading this description, it will
become apparent to a perSon of ordinary skill in the relevant
art(s) how to implement the invention using other computer
Systems and/or computer architectures.

0.076 The computer system can include a display inter
face 608 that forwards graphics, text, and other data from the
communication infrastructure 602 (or from a frame buffer
not shown) for display on the display unit 610. The computer
System also includes a main memory 606, preferably ran
dom access memory (RAM), and may also include a Sec
ondary memory 612. The secondary memory 612 may
include, for example, a hard disk drive 614 and/or a remov
able Storage drive 616, representing a floppy disk drive, a
magnetic tape drive, an optical disk drive, etc. The remov
able storage drive 616 reads from and/or writes to a remov
able storage unit 618 in a manner well known to those
having ordinary skill in the art. Removable storage unit 618,
represents, for example, a floppy disk, magnetic tape, optical
disk, etc. which is read by and written to by removable
storage drive 616. As will be appreciated, the removable
Storage unit 618 includes a computer usable Storage medium
having Stored therein computer Software and/or data.

0077. In alternative embodiments, the secondary memory
612 may include other Similar means for allowing computer
programs or other instructions to be loaded into the com
puter System. Such means may include, for example, a
removable storage unit 622 and an interface 620. Examples
of Such may include a program cartridge and cartridge
interface (Such as that found in Video game devices), a
removable memory chip (such as an EPROM, or PROM)
and associated Socket, and other removable Storage units
622 and interfaces 620 which allow software and data to be
transferred from the removable storage unit 622 to the
computer System.

0078. The computer system may also include a commu
nications interface 624. Communications interface 624
allows Software and data to be transferred between the
computer System and external devices. Examples of com
munications interface 624 may include a modem, a network
interface (Such as an Ethernet card), a communications port,
a PCMCIA slot and card, etc. Software and data transferred

Aug. 25, 2005

via communications interface 624 are in the form of Signals
which may be, for example, electronic, electromagnetic,
optical, or other signals capable of being received by com
munications interface 624. These Signals are provided to
communications interface 624 via a communications path
(i.e., channel) 626. This channel 626 carries signals and may
be implemented using wire or cable, fiber optics, a phone
line, a cellular phone link, an RF link, and/or other com
munications channels.

0079. In this document, the terms “computer program
medium,”“computer usable medium,' and “computer read
able medium' are used to generally refer to media Such as
main memory and Secondary memory, a removable disk for
use in a removable Storage drive, a hard disk installed in hard
disk drive, and Signals. These computer program products
are means for providing Software to the computer System.
The computer System can read data, instructions, messages
or message packets, and other computer readable informa
tion from the computer readable medium. The computer
readable medium, for example, may include non-volatile
memory, such as Floppy, ROM, Flash memory, Disk drive
memory, CD-ROM, and other permanent storage. It is
useful, for example, for transporting information, Such as
data and computer instructions, between computer Systems.
Furthermore, the computer readable medium may comprise
computer readable information in a transitory State medium
Such as a network link and/or a network interface, including
a wired network or a wireleSS network.

0080 Computer programs (also called computer control
logic) are stored in main memory 606 and/or secondary
memory 612. Computer programs may also be received via
communications interface 624. Such computer programs,
when executed, enable the computer System to perform the
features of the present invention as discussed herein. In
particular, the computer programs, when executed, enable
the processor 604 to perform the features of the computer
System. Accordingly, Such computer programs represent
controllers of the computer System.
0081 Although specific embodiments of the invention
have been disclosed, those having ordinary skill in the art
will understand that changes can be made to the Specific
embodiments without departing from the Spirit and Scope of
the invention. The scope of the invention is not to be
restricted, therefore, to the Specific embodiments. Further
more, it is intended that the appended claims cover any and
all Such applications, modifications, and embodiments
within the Scope of the present invention.
What is claimed is:

1. A method for managing configuration data, the method
comprising the Steps of:

Storing a plurality of configuration values in a hierarchical
tree having a plurality of nodes, a defined Structure, and
defined data types for the Stored configuration values,
wherein each node is associated with at least one
configuration value;

registering at least one application component with at
least one of the nodes of the tree, based on at least one
query received from the at least one application com
ponent; and

notifying the at least one application component when a
configuration value associated with the at least one

US 2005/0187912 A1

node is modified, based on an addition or change in at
least one configuration value that matches the at least
One query.

2. The method of claim 1, wherein the at least one query
depends on at least one of a location of a configuration value
in the tree and a data type of a configuration value.

3. The method of claim 1, wherein the hierarchical tree is
an Extensible Markup Language (XML) tree, and an XML
Schema describes the structure of the XML tree and the data
types that are Stored.

4. The method of claim 1, wherein the at least one
application component comprises a plurality of components
of an email application.

5. The method of claim 1, wherein a node further includes
a reference to at least one node.

6. The method of claim 1, wherein the notifying step
comprises:

modifying at least one configuration value;
Storing in the hierarchical tree the configuration value that
was modified; and

notifying the at least one application component that the
configuration value was modified.

7. The method of claim 6, further comprising the step of
Supplying the configuration value that was modified to the at
least one application component.

8. The method of claim 1, further comprising the step of
Supplying at least one of the configuration values Stored in
the hierarchical tree to the at least one application compo
nent.

9. A computer program product for managing configura
tion data, the computer program product comprising:

a storage medium readable by a processing circuit and
Storing instructions for execution by the processing
circuit for performing a method comprising the Steps
of:

Storing a plurality of configuration values in a hierar
chical tree having a plurality of nodes, a defined
Structure, and defined data types for the Stored con
figuration values, wherein each node is associated
with at least one configuration value;

registering at least one application component with at
least one of the nodes of the tree, based on at least
one query received from the at least one application
component; and

notifying the at least one application component when
a configuration value associated with the at least one
of the plurality of nodes is modified, based on an
addition or change in at least one configuration value
that matches the at least one query.

10. The computer program product of claim 9, wherein
the at least one query depends on at least one of a location
of a configuration value in the tree and a data type of a
configuration value.

11. The computer program product of claim 9, wherein the
hierarchical tree is an Extensible Markup Language (XML)

Aug. 25, 2005

tree, and an XML Schema describes the structure of the XML
tree and the data types that are Stored.

12. The computer program product of claim 9, wherein
the at least one application component comprises a plurality
of components of an email application.

13. The computer program product of claim 9, wherein a
node further includes a reference to at least one node.

14. The computer program product of claim 9, wherein
the notifying Step comprises:

modifying at least one configuration value;

Storing in the hierarchical tree the configuration value that
was modified; and

notifying the at least one application component that the
configuration value was modified.

15. The computer program product of claim 14, wherein
the method further comprises the Step of Supplying the
configuration value that was modified to the at least one
application component.

16. The computer program product of claim 9, wherein
the method further comprises the Step of Supplying at least
one of the configuration values Stored in the hierarchical tree
to the at least one application component.

17. A computer System for managing configuration data,
the computer System comprising:

an organization module organizing a plurality of configu
ration values into a hierarchical tree having a plurality
of nodes, a defined Structure, and defined data types for
the Stored configuration values, wherein each node is
asSociated with at least one configuration value;

Storage Storing the plurality of configuration values in the
hierarchical tree;

a registration module registering at least one application
component with at least one of the nodes of the tree,
based on at least one query received from the at least
one application component, and

a notification module notifying the at least one application
component when a configuration value associated with
the at least one node is modified, based on an addition
or change in at least one configuration value that
matches the at least one query.

18. The computer system of claim 17, wherein the at least
one query depends on at least one of a location of a
configuration value in the tree and a data type of a configu
ration value.

19. The computer system of claim 17, wherein the hier
archical tree is an Extensible Markup Language (XML) tree,
and an XML Schema describes the structure of the XML tree
and the data types that are Stored.

20. The computer system of claim 17, wherein the at least
one application component comprises a plurality of compo
nents of an email application.

