
US 20040010775A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0010775 A1

Matsa et al. (43) Pub. Date: Jan. 15, 2004

(54) METHOD, SYSTEM AND PROGRAM (22) Filed: Jul. 12, 2002
PRODUCT FOR RECONFIGURATION OF
POOLED OBJECTS Publication Classification

(75) Inventors: Moshe E. Matsa, Cambridge, MA (51) Int. Cl. ... G06F 9/44
(US); Julius Q. Quiaot, San Jose, CA (52) U.S. Cl. .. 717/116; 717/120
(US); Christopher R. Vincent,
Arlington, MA (US)

(57) ABSTRACT
Correspondence Address:
Floyd A. Gonzalez
IBM Corporation A method, System and program product for control of
2455 South Road, P386 regeneration of pooled objects in an object oriented pro
Poughkeepsie, NY 12601 (US) gramming environment. Objects in the pool are regenerated

according to various Schemes that define dependencies that
(73) Assignee: International Business Machines Cor- need to be observed in Scheduling a regeneration. According

poration, Armonk, NY to the invention, an object that is marked “reserved” (in use)
can be deferred for regeneration So as not to disrupt an active

(21) Appl. No.: 10/194,829 application for example.

301

Application

Extension

F
GbjectS" 403

See (gets
Reserved"

"F
ree engi

ree" "Free"

Object Pools

Method Call

Reserve
Request

2. Application
3& Server

2.
2. Object Pool

Manader
405

Object
Generator

404

Physical
Object 5

eServed"
Object returned
after method
Call

US 2004/0010775 A1 Jan. 15, 2004 Sheet 1 of 9

Z || ||

Patent Application Publication

JOSSÐOOue-|) ÁJOUuÐIN

US 2004/0010775 A1 Jan. 15, 2004 Sheet 2 of 9 Patent Application Publication

I?WTHÔTELET?T?JE 802902

US 2004/0010775 A1 Jan. 15, 2004 Sheet 5 of 9 Patent Application Publication

G09

9

zue6eu |zepoo ||ue6eu || epoo | eueu

Patent Application Publication Jan. 15, 2004 Sheet 6 of 9 US 2004/0010775 A1

702
701 Regeneration request

for pool object 'A'

Valid
Criteria

find regeneration
criteria for object 'A'

Create regeneration
process for Object 'A'

707

execute regeneration
process for object 'A' Fig. 7

US 2004/0010775 A1 Jan. 15, 2004 Sheet 7 of 9 Patent Application Publication

608

sSeOOud uo?eueue6?I ??eeuo
G08 | 08

US 2004/0010775 A1

sSeOOuae uo?eJeue6?H ??eeJO

Jan. 15, 2004 Sheet 8 of 9 Patent Application Publication

?Se L LUO?SnO

US 2004/0010775 A1 Jan. 15, 2004 Sheet 9 of 9 Patent Application Publication

US 2004/0010775 A1

METHOD, SYSTEM AND PROGRAM PRODUCT
FOR RECONFIGURATION OF POOLED OBJECTS

0001. The present invention is related to an object ori
ented programming computer System and more specifically
to managing objects in a pool of objects.

BACKGROUND OF THE INVENTION

0002) The World Wide Web (The Web) is a popular
computer networking platform today with millions of people
daily using it for a wide variety of applications from
personal e-mail and research “web Surfing to highly Sophis
ticated busineSS and Scientific uses. The web was developed
to make the use of the Internet Simple and easy to use. The
concept was to provide Browser programs at user (client)
personal computers (PCs) to interpret information from host
servers using HTML and graphic files. The Internet provided
the communication means to interconnect web clients and
SCWCS.

0.003 FIG. 1 shows an example computer system useful
for Web or Internet Peer-to-Peer network communications
and executing object oriented programs. The System is
comprised of a processor 106 for executing program instruc
tions fetched from memory 105. Storage Media 107 (mag
netic or optical) is used to hold programs and data that is not
currently being operated on by the processor 106. The base
computer optionally has peripheral devices attached to it to
Supply a user interface. Typically peripherals include a
Display 102, Keyboard 104 and a network connection 108.
Optionally, a mouse 103, printer/Scanner 110 are also con
nected to the example computer System. Programs 111 held
in Storage Media 107 is paged into memory 105 for pro
ceSSor execution. Programs 111 include an operating System
and applications for example. Object oriented programs are
programs that generate program objects during run time.
These objects are held in memory 105 for execution by the
processor.

0004 FIG. 2 shows a plurality of computer systems of
various designs interconnected by local and Internet net
works. Any or all of the computers 201-206, 208 in FIG. 2
could employ Object Pooling 100.
0005. In object oriented programming (OOP), objects are
program entities that are created at run time. For example, an
application might create a client object that needs a connec
tion object in order to connect to network resources. The
creation and destruction of the connection object delays the
execution of the application. A connection object is needed
for each client object that wants to connect to network
CSOUCCS.

0006 Object pooling overcomes the overhead of creating
and destroying objects by allowing many clients to reuse
objects (in a pool FIG.3). Object pooling is described in the
“Developer's Guide'. Using Object Pools document from
iplanet at Sun MicroSystems, Inc.
0007. The use of Object pooling solves potential limited
resource issues. Limited resources can cause performance
bottlenecks when there are not enough resources to meet
clients demands. Connections to networked resources, Such
as databases, require non-trivial amounts of time to create
and destroy. In high-throughput applications, client objects
must wait for a connection object to become available,
creating a bottleneck in the flow of the application.

Jan. 15, 2004

0008 Through the use of object pooling, a plurality of
clients can share a limited resource (Such as a connection),
using it only when they need it. In this way, the performance
cost of creating and destroying the resource is reduced. This
benefit applies to any client of the pool-enabled extension.
0009 Extension writers and server administrators work
together as follows To enable object pooling. In Netscape
Extension Builder Designer for example, an extension writer
adds object pooling decorations. These tasks are described in
“Developer's Guide”. Using Object Pools from iPlanet.
0010. In the generated source code, an extension writer
completes method stubs related to object pooling. These
tasks are described in “Developer's Guide'. Using Object
Pools document from iplanet at Sun Microsystems.
0011. Object pooling FIG. 3 involves the concepts of a
pool of objects (Object Pool), Virtual 311 and Physical
Objects 314, Clients 310 and, an Object Pool Manger 312.
0012 An object pool is a set of limited resources (such as
connections) that can be “Reserved” for use by clients and
then returned to the pool (for probable reuse) when the
object is no longer needed. Reserving returning pooled
objects avoids the overhead of Separately creating and
destroying an object each time a client requests it. Multiple
object pools can be used. For example, one object pool
might contain database connection objects, and another pool
might contain CICS connection objects.
0013 Without object pooling, whenever a client 310 of
an extension (typically an application) requests an object, a
physical object 314 is created and destroyed when no longer
needed. On the other hand, when an extension uses object
pooling, the application's request for a poolable object
generates a virtual object 311 instead. The virtual object
Supports all the methods of the requested object, but the
application Sees only the virtual object.
0014 When an application calls an interface method
from the virtual object 311, the virtual object’s implemen
tation requests a physical object 314 from the pool and
delegates the request to the physical object. When the
request is complete, the extension returns the physical object
314 to the Object Pool Manager for use by other virtual
objects.
0015. In the context of object pooling, a client 310 is the
code that calls into the extension. The client is typically an
application but can also be another extension. The extension
requests objects, and the Object Pool Manager 312 makes
callbacks to the extension to determine how to fulfill the
request.

0016. The Object Pool Manager in the referenced docu
ment (“Developer's Guide”. Using Object Pools document
from iplanet at Sun MicroSystems.) is a Service of Netscape
Application Server. In response to clients requests for
objects, the Object Pool Manager 312 controls one or more
pools by reserving and releasing the objects in the pool. The
Object Pool Manager queues virtual objects requests for
physical objects, markS physical objects as either “Free' or
“Reserved'; attempts to create physical objects when nec
essary and destroys physical objects in a pool, based on idle
time or usage limits.
0017 FIG. 3 shows the interrelationship between a pool
enabled extension and the key components of object pool
ing:

US 2004/0010775 A1

0018 1. The client of an extension calls an interface
method on the virtual object. 301

0019 2. The virtual object's implementation
reserves a matching physical object from a named
pool. 302

0020 3. The method call is delegated to the physical
object. 303

0021 4. When the method call is completed, the
physical object is returned to the appropriate pool for
use by other virtual objects. The Object Pool Man
ager uses a timer thread that periodically releases
unused physical objects after a timeout.

SUMMARY OF THE INVENTION

0022. This patent is directed to object pooling in object
oriented programming. In object pooling, objects are shared
Such that they need not be created and destroyed by appli
cations as needed. Instead, Virtual objects request physical
objects from a pool. If the physical object doesn’t exist, one
is created. If it exists, it is marked “Reserved” while in use
by the application. The physical object includes a Special
field which includes a version identifier.

0023. It is therefore an object of the present invention to
regenerate physical objects based on whether they are
marked “free” or “reserved’;
0024. It is another object of the present invention to
Selectively regenerate objects based on their version;
0.025. It is yet another object of the present invention to
delay regeneration of objects based on constraints associated
with that regeneration. For example, it may be desirable to
allow current jobs to complete uninterrupted, operating on
their original configuration. The objects associated with
Such jobs would be reconfigured when they are returned to
the pool.
0026. These and other objects will be apparent to one
skilled in the art from the following detailed description of
the invention taken in conjunction with the accompanying
drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

0.027 FIG. 1 is a high level depiction of a computer
System for executing program applications,
0028 FIG. 2 is a high level depiction of a computer
network employing a multiplicity of interconnected com
puter Systems,

0029 FIG. 3 is a diagram of a process overview for
object pooling,
0030 FIG. 4 is a diagram of an object pooling configu
ration with an object regeneration function of the present
invention;
0.031 FIG. 5 is an example regeneration encoding
Scheme for an object according to the invention;
0.032 FIG. 6 is an example regeneration encoding
Scheme for multiple objects according to the invention;
0033 FIG. 7 is a flowchart representing a preferred
embodiment of the present invention;

Jan. 15, 2004

0034 FIG. 8 is a flowchart representing a preferred
embodiment of creating a regeneration process,
0035 FIG. 9 is a table representing an example regen
eration criteria/process decision table according to the
present invention; and
0036 FIG. 10 is a flowchart representing an example
regeneration execution process.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

0037. In a preferred embodiment FIG. 4, the virtual
object 401 signals the object pool manager 402 that it needs
a physical object 403. The physical object is created if it
doesn't already exist and if it is marked “free”, it is marked
“reserved” and made available to the virtual object (physical
object 404). When it is not needed, the object is marked
“free” and returned to the pool 403.
0038. Thus, in an operating system many physical objects
may be pooled. The pooled objects are under the control of
the object pool manager 402. Some pooled objects may be
available (marked “free”) and others in use (marked
“reserved”). When the object data (configuration data) must
be changed, the object pool manager 402 is informed and
can decide either to fail (abort) all current jobs, recall those
objects outstanding in the pool and Start all new jobs with
new configuration data or to let old jobs finish and hold all
new jobs in a queue until all old jobs have finished and then
change the objects configuration.

0039. In another embodiment, the object pool manager
402 would let old jobs proceed and immediately start new
jobs with the new configuration data. The decision of how to
proceed is made on the basis of the constraints of the
reconfiguration, Such as whether it is acceptable to work on
assumptions from the old configuration (old pooled objects
403) while the new data is ready, whether it is acceptable to
have different pooled objects 403 working on different
configurations, and whether it is allowed to cancel a job once
one of the pooled objects 404 has started working on it. With
this design pattern, these decisions are abstracted into a
object generator object 405 (which may be incorporated in
the object pool manager object). The object generator 405
acts as a generator (regenerator) for all of the objects 403404
in the pool.
0040. In a preferred embodiment, as pooled objects 404
complete their jobs and returned to the pool 403, version
numbers are used to determine whether reconfiguration is
needed. If the version number of the target pooled object is
less than a specified value, the pooled object is regenerated.
0041. In one preferred embodiment, regeneration infor
mation is incorporated in each pooled object. When regen
eration of an object is required, the object generator makes
the determination of if, when and how to regenerate the
object based on the object's regeneration information of
FIG. 5. In the example embodiment, the object generator
receives the regeneration information from the object (abc,
v7.33,03, -, -) 501-505 The information includes the object
name 501 and various code fields 502504. Each code field
502504 has a regeneration field 50o3505 associated with it.
In the example, Object name abc'501 includes code1=v7.33
502. The associated regeneration field regen1=03 503 tells
the object generator 405 how to regenerate the object based

US 2004/0010775 A1

on the code 1 field 502. In this example, regen1 503 con
taining 03 is interpreted as a requiring the regeneration to
occure immediately for a “free” object and to abort the
object for regeneration only if the version of the update is
newer than code 1 (>7.33). In this example coding, regen1
503 is the only coded field. In another preferred implemen
tation of FIG. 5, code 2504 would also be coded and regen2
505 would specify another regeneration function associated
with code2 504. There are a great number of combinations
of object regeneration criteria (codes) and methods (regen)
that would be useful over and above the examples taught in
the present invention. These would be obvious options to
one skilled in the art practicing the present invention.
0042. In another preferred embodiment, the object gen
erator holds a table FIG. 6. The table comprises regeneration
codes 604606 for all pooled objects by name 603. In the
example, regeneration for object named abc. 614 is coded as
previously described in FIG. 5. Object name Zza 603 is
coded as a pseudo object name where a separate list 602 of
objects is provided under the name Zza 608 and the listed
objects share the regeneration methods of Zza 604-607. In
this example, objects in pseudo name “Zza 603 all share
regen method '09'605 and 73607. Additionally, the objects
of pseudo Zza 603 have other associated fields 610611 in
the pseudo table 602. In the example, object bba'609,
“bbb’612 and 'bbc’613 are objects under pseudo
Zza 603608. In the Zza'608 table 602 each object has a
codea field 610615 that defines a hierarchy. If the regenera
tion is being performed for object “bbb 612 which has a code
of 2615, any object with a lower priority code (3 or higher)
must be regenerated at the same time. Thus if “bbb 612 is to
be regenerated, bba'609 must be available for regeneration
as well.

0.043 Objects needing regeneration are dependent on
other objects in one embodiment. Such dependencies
include sequence of regeneration (which objects to regen
erate first, Second . . . n"), version number dependencies
(regenerate objects of specific version number, version num
ber range, higher/lower version number, Version number
relationship between codependent objects . . .), simulta
neous regeneration requirement (objects a, b, . . . m must be
regenerated at the same time i.e. none can be in use during
regeneration).
0044) Objects are individually specified with regenera
tion criteria codes. Such regenerations require that the object
is marked “free” (as object 6 407), that the object must be
allowed to be returned to the pool before regeneration, a new
object is generated that coexists with the original object until
the original is “free”, at which time the old object is
discarded, a new object is generated that coexists with the
original object until a separate action enables all new
versions of original objects at one time and discards all old
versions.

0.045. In one preferred embodiment, the application pro
gram FIG. 1111 triggers a regenerate Safe period Such that
the object to be regenerated is quiesced or paused to permit
the regeneration without returning the object to the pool. The
object regeneration program 405 Signals the application to
enter the pause state FIG. 101013, the application responds
when it is paused with a special message 1014. When the
object(s) in use by the application have been regenerated, the
regeneration program Signals the application to continue
normal operation (removes pause signal 1013).

Jan. 15, 2004

0046 FIG. 7 demonstrates an example object generator
regeneration process according to the present invention. A
regeneration request is received 702 by the object Generator
405. If the object to be regenerated is in the pool 703, the
regeneration criteria is retrieved 704. The criteria may be
retrieved from the object itself or may be held in a separate
table available to the object Generator. If the regeneration
criteria is valid 705, a process is created 706 to regenerate
the object according to the program Status, object Status and
regeneration criteria. Finally, the regeneration proceSS is
executed 707 resulting in an immediate regeneration, a
delayed regeneration, a generation of a new object with a
delayed elimination of the original object or the like.
0047 FIG. 8 is a depiction of a preferred embodiment of
regeneration process creation 706. The criteria for the regen
eration of the object is retrieved 801, the status of the object
to be regenerated is retrieved 802. If 803 the regeneration is
dependent on the Status of other objects or if the regeneration
is dependent on regeneration of other objects, the Status of
the other objects is retrieved 804. A regeneration process is
created 805 based on the criteria associated with the
object(s) included in the regeneration criteria. If 806 the
Status of System and object(s) included in the regeneration
criteria indicate that regeneration must be postponed, the
object generator monitors 807 the status until the status has
been achieved 808. (The status might include a time-out
indicator to prevent an endless loop). When the criteria and
state agree, the regeneration is performed 809.
0048. The create regeneration process in the preferred
embodiment FIG. 9805, utilizes the status of the target
object (marked “Free” or “Reserved”, version number for
example), the Status of related objects if any (are they
marked “Free” or “Reserved”, their version number, any
hierarchical relationship between related objects (what order
to regenerate each object)), and the create process criteria
(dependent in part on codes Supplied by the object) (delay
dependencies, abort conditions, regenerate if Status met,
Generate new pool object, discard old pool object when
“free”, application status Signals (triggers)).
0049. A regen process using the create regeneration pro
cess 805 is exemplified in FIG. 10. Various test criteria are
designated according to predefined specifications for the
object. Test criteria includes the object version related to a
specified value 1001, The objects relative position in a
hierarchy of objects 1002, the application program require
ments for the object to not change 1003 (regeneration
override), the status of the object 1004 or a customized
criteria 1005 for the object. The test criteria may result in a
delay of the regeneration or proceed directly to perform
regeneration 1009. The regeneration may proceed immedi
ately 1010 or regeneration may comprise generating a new
object 1011 while the old object is in use and later deleting
the object 1012. The regeneration may request a status
condition from the application or another object Such as
“pause'1013. The regeneration proceSS may comprise
regeneration of multiple related objects 1008.
0050. Other forms of regeneration controls include: hier
archical, time based, event based, frequency of use based for
example.

0051) While the preferred embodiment of the invention
has been illustrated and described herein, it is to be under
stood that the invention is not limited to the precise con

US 2004/0010775 A1

struction herein disclosed, and the right is “reserved” to all
changes and modifications coming within the Scope of the
invention as defined in the appended claims.

What is claimed is:
1. A method for managing regeneration of pooled objects

in object oriented programming, the method comprising the
Steps of:

receiving a request for regeneration of a first pooled
object;

obtaining first predefined regeneration criteria, the first
predefined regeneration criteria defining the conditions
for regeneration of the first pooled object;

obtaining first status information, the first status informa
tion indicating the Status of Said first pooled object;

creating a first regeneration process from the first pre
defined regeneration criteria using the first Status infor
mation; and

regenerating the first pooled object based on the first
regeneration process.

2. The method according to claim 1 wherein the first
regeneration proceSS permits regeneration when the first
pooled object is marked “free”.

3. The method according to claim 1 wherein the first
regeneration proceSS permits regeneration when the first
pooled object is marked “reserved”.

4. The method according to claim 1 wherein the first
regeneration process comprises the further Steps of

generation of a Second pooled object when the first pooled
object is marked “reserved”; and

discarding the first pooled object when the first pooled
object is marked “free”.

5. The method according to claim 1 wherein the first
regeneration proceSS permits regeneration of the first pooled
object and a Second pooled object when both pooled objects
are “free’.

6. The method according to claim 1 wherein the first
regeneration process permits regeneration the first pooled
object based on a first version number associated with the
first pooled object.

7. The method according to claim 6 wherein the first
regeneration proceSS permits regeneration when the first
version number of the first pooled object is any one of
greater than, equal to and less than a predefined Second
version number.

8. The method according to claim 1 wherein the first
regeneration proceSS permits regeneration of the first pooled
object based on a regeneration hierarchy.

9. The method according to claim 8 wherein the regen
eration hierarchy represents a Sequence number associated
with the first pooled object wherein the first pooled object is
regenerated based on whether the Sequence number associ
ated with the first pooled object is any one of less than, equal
to and greater than a predefined regeneration Sequence
number.

10. The method according to claim 1 wherein the first
regeneration proceSS permits regeneration of the first pooled
object when the first pooled object and a Second pooled
object are both marked “free”.

Jan. 15, 2004

11. The method according to claim 10 wherein the first
regeneration process permits regeneration of the first pooled
object and the Second pooled object when both are marked
“free'.

12. The method according to claim 1 wherein a plurality
of pooled objects share the Same regeneration process.

13. The method according to claim 1 wherein an external
event comprising a message from an application program
enables regeneration of the first pooled object.

14. The method according to claim 1 wherein the first
pooled object is a pseudo object that represents a plurality of
pooled objects.

15. A System for managing regeneration of pooled objects
in object oriented programming, the System comprising:

a receiver for receiving a request for regeneration of a first
pooled object;

a first obtainer for obtaining first predefined regeneration
criteria, the first predefined regeneration criteria defin
ing the conditions for regeneration of the first pooled
object;

a Second obtainer for obtaining first Status information,
the first Status information indicating the Status of Said
first pooled object;

a creator for creating a first regeneration proceSS from first
predefined regeneration criteria wherein the first pre
defined regeneration criteria is uniquely associated
with the first pooled object; and

a regenerator for regenerating the first pooled object based
on the first regeneration process.

16. The system according to claim 15 wherein the first
regeneration proceSS permits regeneration when the first
pooled object is marked “free”.

17. The system according to claim 15 wherein the first
regeneration proceSS permits regeneration when the first
pooled object is marked “reserved”.

18. The system according to claim 15 wherein the first
regeneration process creator further comprises:

a generator for generation of a Second pooled object when
the first pooled object is marked “reserved”; and

a discarder for discarding the first pooled object when the
first pooled object is marked “free”.

19. The system according to claim 15 wherein the first
regeneration process permits regeneration of the first pooled
object and a Second pooled object when both pooled objects
are “free’.

20. The system according to claim 15 wherein the first
regeneration process permits regeneration the first pooled
object based on a first version number associated with the
first pooled object.

21. The system according to claim 20 wherein the first
regeneration proceSS permits regeneration when the first
version number of the first pooled object is any one of
greater than, equal to and less than a predefined Second
version number.

22. The system according to claim 15 wherein the first
regeneration process permits regeneration of the first pooled
object based on a regeneration hierarchy.

23. The System according to claim 22 wherein the regen
eration hierarchy represents a Sequence number associated
with the first pooled object wherein the first pooled object is
regenerated based on whether the Sequence number associ

US 2004/0010775 A1

ated with the first pooled object is any one of less than, equal
to and greater than a predefined regeneration Sequence
number.

24. The system according to claim 15 wherein the first
regeneration proceSS permits regeneration of the first pooled
object when the first pooled object and a Second pooled
object are both marked “free”.

25. The system according to claim 24 wherein the first
regeneration proceSS permits regeneration of the first pooled
object and the Second pooled object when both are marked
“free'.

26. The System according to claim 15 wherein a plurality
of pooled objects share the same regeneration process.

27. The system according to claim 15 wherein an external
event comprising a message from an application program
enables regeneration of the first pooled object.

28. The system according to claim 15 wherein the first
pooled object is a pseudo object that represents a plurality of
pooled objects.

29. A computer program product for managing regenera
tion of pooled objects in object oriented programming Said
computer program product comprising a computer readable
medium having computer readable program code therein
comprising:

computer readable program code for receiving a request
for regeneration of a first pooled object;

computer readable program code for obtaining first pre
defined regeneration criteria, the first predefined regen
eration criteria defining the conditions for regeneration
of the first pooled object;

computer readable program code for obtaining first Status
information, the first Status information indicating the
Status of Said first pooled object;

computer readable program code for creating a first
regeneration process from the first predefined regen
eration criteria using the first status information; and

computer readable program code for regenerating the first
pooled object based on the first regeneration process.

30. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
when the first pooled object is marked “free”.

31. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
when the first pooled object is marked “reserved”.

32. The computer program product according to claim 29
wherein the first regeneration process further comprises:

computer readable program code for generation of a
Second pooled object when the first pooled object is
marked “reserved'; and

Jan. 15, 2004

computer readable program code for discarding the first
pooled object when the first pooled object is marked
“free'.

33. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
of the first pooled object and a Second pooled object when
both pooled objects are “free”.

34. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
the first pooled object based on a first version number
asSociated with the first pooled object.

35. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
when the first version number of the first pooled object is
any one of greater than, equal to and less than a predefined
Second version number.

36. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
of the first pooled object based on a regeneration hierarchy.

37. The computer program product according to claim 36
wherein the regeneration hierarchy represents a Sequence
number associated with the first pooled object wherein the
first pooled object is regenerated based on whether the
Sequence number associated with the first pooled object is
any one of less than, equal to and greater than a predefined
regeneration Sequence number.

38. The computer program product according to claim 29
wherein the first regeneration proceSS permits regeneration
of the first pooled object when the first pooled object and a
second pooled object are both marked “free”.

39. The computer program product according to claim 38
wherein the first regeneration proceSS permits regeneration
of the first pooled object and the second pooled object when
both are marked “free'.

40. The computer program product according to claim 29
wherein a plurality of pooled objects share the same regen
eration process.

41. The computer program product according to claim 29
wherein an external event comprising a message from an
application program enables regeneration of the first pooled
object.

42. The computer program product according to claim 29
wherein the first pooled object is a pseudo object that
represents a plurality of pooled objects.

